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Abstract— Recently proposed data-driven predictive control
schemes for LTI systems use non-parametric representations
based on the image of a Hankel matrix of previously collected,
persistently exciting, input-output data. Persistence of excitation
necessitates that the data is sufficiently long and, hence, the
computational complexity of the corresponding finite-horizon
optimal control problem increases. In this paper, we propose an
efficient data-driven predictive control (eDDPC) scheme which
is both more sample efficient (requires less offline data) and
computationally efficient (uses less decision variables) compared
to existing schemes. This is done by leveraging an alternative
data-based representation of the trajectories of LTI systems.
We analytically and numerically compare the performance of
this scheme to existing ones from the literature.

I. INTRODUCTION

Model predictive control (MPC) [1] is an optimization-
based control technique that involves solving a finite-horizon
optimal control problem repeatedly at each time instant, and
then applying the first part of the optimal input to the system.
In recent years, the development of data- and learning-based
MPC schemes has received a significant amount of attention.
Here, the unknown system model or the MPC controller itself
are either approximated using machine learning techniques
or directly computed using input-output data of the system,
see, e.g. [2], [3] and the references therein.

One prominent approach to data-driven system analysis
and control exploits the behavioral approach to systems
theory [4]. For instance, Willems’ fundamental lemma [5]
provides a non-parametric representation of the finite-length
behavior of a discrete-time LTI system as the image of a Han-
kel matrix of a single persistently exciting (PE) trajectory.
In particular, it asserts that any trajectory of an LTI system
can be expressed as a linear combination of time-shifts of a
single measured trajectory. This result was successfully used
for system analysis and control design for linear systems
and extended to classes of nonlinear systems. The reader is
referred to [3] and [6] for a comprehensive review.

Among several successful applications of the fundamental
lemma is its use in data-driven predictive control schemes
(DDPC). Specifically, instead of relying on the typical steps
of deriving and identifying a predictive model for the MPC,
one can use previously collected input-output data as a
data-based non-parametric predictive model. This was first
proposed in [7] and further developed in [8]. Theoretical
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guarantees were established in [9], [10]. Extensions of this
data-driven predictive control scheme to classes of nonlinear
systems appeared in [11]–[14]. Several other extensions and
applications of this scheme include: stochastic DDPC [15],
[16], segmented DDPC [17], distributed DDPC [18], [19]
and generalized DDPC [20], among many others.

Crucial to the successful application of this scheme is
that the offline collected data is persistently exciting (PE).
This, however, necessitates that the data is sufficiently long,
and this required number of data points increases with
increased system order, number of inputs and prediction
horizon length. As a result, the computational complexity
of solving the corresponding finite-horizon optimal control
problem increases. Moreover, it may not be easy to obtain
such PE data in practice. For instance, the length of the avail-
able data might not be long enough to allow for application
of DDPC schemes with long prediction horizons. In such
circumstances, it was shown in [21] how one can obtain alter-
native non-parametric representations of LTI systems using
a small number of (potentially irregularly measured) data
points. In this work, we exploit the proposed representation
in [21] and illustrate its use in an efficient DDPC scheme.

The contributions of this paper are as follows: we propose
an efficient data-driven predictive control (eDDPC) scheme
which is both sample efficient (requires less offline data) and
computationally efficient (includes less decision variables)
compared to existing schemes. We show that the closed-loop
behavior is equivalent to that of existing schemes and hence
enjoys the same theoretical guarantees. We then analytically
and numerically compare the performance of the proposed
scheme with other existing ones from the literature and
illustrate how it consistently outperforms them.

The paper is structured as follows: Section II introduces
notation and necessary preliminaries. In Section III, we
formulate the eDDPC scheme. Section IV includes analytical
and numerical comparisons to existing schemes and Sec-
tion V concludes the paper.

II. PRELIMINARIES

The sets of integers, natural and real numbers are denoted
by Z,N,R, respectively. The restriction of integers to an
interval is denoted by Z[a,b], for b > a ∈ Z. We use Im
to denote an m × m identity matrix and 0n×m to denote
an n × m matrix of zeros. When the dimensions are clear
from the context, we omit the subscript for simplicity. For a
matrix M ∈ Rm×n, we denote its image by im(M) and
its kernel by ker(M). When a basis of ker(M) is to be
computed, we write N = null(M) which returns a matrix
N of appropriate dimensions such that MN = 0. For a
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symmetric positive definite matrix P = P⊤ ≻ 0, we define
the weighted norm of a vector x as ∥x∥P :=

√
x⊤Px. In

contrast, ∥x∥i, i ∈ {1, 2,∞}, denote the standard ℓ1, ℓ2
(Euclidean), and ℓ∞ norms, respectively.

The set of infinite length, q−variate, real-valued time
series w = (w0, w1, . . .) is denoted by (Rq)

N. For T ∈ N,
the set of finite-length, q−variate, real-valued time series
w = (w0, w1, . . . , wT−1) is denoted by (Rq)

T . With slight
abuse of notation, we also use w to denote the stacked vector
w =

[
w⊤

0 w⊤
1 · · · w⊤

T−1

]⊤ ∈ RqT , and a window of
it by w[a,b] where 0 ≤ a < b ≤ T − 1. The Hankel matrix
of depth L of w is defined as

HL(w) =
[
w[0,L−1] w[1,L] · · · w[T−L,T−1]

]
.

The (finite-length) behavior (B|T ) B of a dynamical
system is defined as the set of all (finite-) infinite-length
trajectories that can be generated by the system (cf. [4]).
A trajectory of length T of the system is denoted by w ∈
B|T ⊂ (Rq)

T . The system is linear if B is a subspace and
it is time-invariant if it is invariant to the action of the shift
operator, defined as σjw(k) := w(k + j) for j ∈ N.

Let ut ∈ Rm and yt ∈ Rp denote the inputs and outputs of
system B at time t. We define a partitioning of the variable
wt ∈ Rq such that wt = [ ut

yt ]. The set of discrete-time LTI
systems with q variables and bounded complexity (m,n, ℓ) is
denoted by L q

m,n,ℓ, where q = m+p and (m,n, ℓ) denote (i)
the number of inputs m(B) ≤ m, (ii) the order of the system
n(B) ≤ n, and (iii) the lag of the system ℓ(B) ≤ ℓ, which is
the observability index in the state-space framework. These
integers satisfy the following relation ℓ ≤ n ≤ pℓ [22].

A finite-dimensional LTI system B ∈ L q
m,n,ℓ admits a

kernel representation [4, Part I]

B = ker R(σ) := {w : Z≥0 → Rq | R(σ)w = 0}, (1)

where the operator R(σ) is defined by the polynomial matrix

R(z) =

r1(z)...
rg(z)

=
r1,0 + r1,1z + . . .+ r1,ℓ1z

ℓ1

...
rg,0 + rg,1z + . . .+ rg,ℓgz

ℓg

 , (2)

with ri,j ∈ R1×q . Given a trajectory w ∈ B|T of an LTI
system B ∈ L q

m,n,ℓ, it holds by linearity and shift-invariance
that im(HL(w)) ⊆ B|L. When equality holds, we obtain
a data-based representation of the finite-length behavior of
the system. For the case of controllable systems, Willems’
fundamental lemma [5] provides conditions on the input,
such that im(HL(w)) = B|L. This condition is known as
persistence of excitation (PE) and is defined as follows.

Definition 1: A sequence u ∈ (Rm)T is said to be
persistently exciting of order L if rank(HL(u)) = mL.

Lemma 1: [5] Let w ∈ B|T with B ∈ L q
m,n,ℓ con-

trollable. Let u ∈ (Rm)T be PE of order L + n, then
rank(HL(w)) = mL+ n, and w̄ ∈ B|L if and only if there
exists α ∈ RT−L+1 such that

HL(w)α = w̄. (3)

This lemma states that each length-L trajectory of a con-
trollable LTI system can be represented as a linear combi-
nation of time-shifts of previously collected data w (which
correspond to the columns of the Hankel matrix HL(w)),
given that the input is sufficiently exciting. We now recall
the following result, which allows us to retrieve a kernel
representation (2) of an LTI system directly from data.

Corollary 1: [21, Cor. 2] Let w ∈ B|T where B ∈
L q

m,n,ℓ. Let d ≥ ℓ+1, and suppose rank(Hd(w)) = md+n.
Then, the coefficients of the polynomial matrix R(σ) in (2)
are given by the rows of Rd ∈ Rpd−n×qd which satisfies
RdHd(w) = 0.
By exploiting the kernel structure of Hankel matrices, it was
shown in [21] that one can obtain a full column rank matrix
whose image is equal to the finite-length behavior of the
system B|L. This result is summarized in the following the-
orem, and a sketch of the proof is provided for completeness.

Theorem 1: [21] Given w ∈ B|T where B ∈ L q
m,n,ℓ is

controllable, let u ∈ (Rm)T be persistently exciting of order
d+ n for d = ℓ+ 1. Then, for any L ≥ d, w̄ ∈ B|L if and
only if there exists a vector β ∈ RmL+n such that

Pβ = w̄, (4)

where P = null(Γ) and Γ is given by

Γ=



r1,0
r2,0

...
rpd−n,0

r1,1
r2,1

...
rpd−n,1

· · ·
· · ·
. . .
· · ·

r1,d−1
r2,d−1

...
rpd−n,d−1

r1,0
r2,0

...
rp,0

r1,1
r2,1

...
rp,1

· · ·
· · ·
. . .
· · ·

r1,d−1
r2,d−1

...
rp,d−1

. . . . . . . . . . . .
r1,0
r2,0

...
rp,0

r1,1
r2,1

...
rp,1

· · ·
· · ·
. . .
· · ·

r1,d−1
r2,d−1

...
rp,d−1



L
−
d

tim
es

, (5)

and ri,j ∈ R1×q are the elements of the matrix Rd in Cor. 1.
Proof: Since the input is persistently exciting of order

d + n, it holds by Lemma 1 that rank(Hd(w)) = md +
n. Therefore, by Corollary 1, one can compute a basis for
the left kernel of this matrix (i.e., RdHd(w) = 0) which
specifies a kernel representation of the system. The rest of
the proof follows from [21, Lemma 2] and [21, Theorem 3],
where it was shown that im(P ) = B|L, for any L ≥ d, with
P defined as in the theorem statement.
Theorem 1 provides a data-based representation of the tra-
jectories of an LTI system, but is different from the one
provided by Lemma 1. This alternative representation has
two advantages: (i) it can be obtained from a (very) small
number of data points. In particular, we only need input
data that is PE of order d + n (independent of L). This is
achieved by computing Rd as the left kernel of Hd(w) as
in Corollary 1 (note that this can even be done if the data
w potentially contains irregularly missing values, cf. [21]),
which allows us to represent any trajectory w̄ of length L
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(for arbitrary L ≥ d) via (4). (ii) It does not result in an over-
parameterization of the spanned input-output trajectories.
Specifically, the regressor vector β in (4) is of dimension
mL+n only, i.e., independent of the number of data points.

In Section III-B we comment in more detail on the sim-
ilarities and differences between Theorem 1 and Lemma 1.
Then, we explain how we make use of those differences to
propose an efficient data-driven predictive control scheme.

III. EFFICIENT DDPC

In this section, we propose an efficient data-driven predic-
tive control scheme which is both sample efficient (uses lass
offline data points) and computationally efficient (includes
less decision variables) compared to existing schemes. This
is done by using the alternative data-based representation
of LTI systems in Theorem 1 as a predictor in a receding
horizon scheme. In Section III-A, we start by giving an
overview of existing DDPC schemes and then in Section III-
B we introduce our proposed eDDPC scheme in the nominal
(noise-free) case.

A. Overview of existing schemes

As proposed in [7], [8], a data-driven predictive control
scheme for LTI systems relies on the non-parametric rep-
resentation in (3) of the finite-length trajectories of an LTI
system to make predictions over a finite horizon. Later in
[9], terminal equality constraints were introduced in order
to exponentially stabilize a (known) equilibrium point of an
unknown LTI system. Such an equilibrium point is defined
in terms of the system’s inputs and outputs as follows.

Definition 2: [9] We say that ws is an equilibrium of B ∈
L q

m,n,ℓ if the sequence w̄ ∈ (Rq)n+1 with w̄k = ws, for all
k ∈ Z[0,n], is a trajectory of the system, i.e., w̄ ∈ B|n+1.

The DDPC scheme in [9] repeatedly solves, at each time
step t, the following finite-horizon optimal control problem

min
α(t),w̄(t)

L−1∑
k=0

∥w̄k(t)− ws∥2W

s.t. w̄[−n,L−1](t) = HL+n(w
data)α(t)

w̄[−n,−1](t) = w[t−n,t−1]

w̄[L−n,L−1](t) = ws
n

w̄k(t) ∈ W, ∀k ∈ Z[0,L−1].

(6)

The notation in (6) is summarized as follows: wdata ∈ (Rq)T

refers to the a priori collected input-output data, while w̄(t) ∈
(Rq)L refers to the predicted input-output trajectories (over
the horizon length L) at time t. The online measurements
are denoted by wt. The stage cost is a quadratic function
that penalizes the deviation from the given set point (for
some weighting matrix W ≻ 0). We use ws

n to denote an
n−dimensional vector containing n instances of ws. Finally,
W denotes the constraints set and is defined as follows

W := {w = [ uy ] | u ∈ U, y ∈ Y}, (7)

where U,Y denote the input and output constraint sets,
respectively, with ws ∈ int(W).

To implement the DDPC scheme, one requires an offline
data sequence wdata ∈ (Rq)T , where the input is PE of order
L + 2n (L ≥ n), as well as an initial trajectory w[t−n,t−1]

to fix the internal state. Notice that, unlike Lemma 1,
persistence of excitation here is required to be of order
L + 2n instead of L + n. This is because the length of the
predicted trajectories is extended by n instances to account
for the initialization step, i.e., w̄[−n,−1](t) = w[t−n,t−1] in
(6). Persistence of excitation necessitates that the Hankel
matrix of the input HL+n(u

data) has at least as many column
as rows, and hence, T ≥ (m + 1)(L + 2n) − 1 (cf.
Definition 1). Therefore, implementing a DDPC scheme with
a large prediction horizon requires a longer sequence of
offline collected data. However, in many practical settings, it
may be difficult to collect such a long sequence, or one may
only have a short sequence of data which is not enough to
span trajectories of length L+ n.

In [17], the authors propose a partitioning of the (long)
prediction horizon to multiple (ns) segments of length Tini ≥
ℓ. If the available data is long enough to span trajectories of
length Tini, then one can restructure the original DDPC (with
longer horizon) to obtain the complete predicted trajectories.
This partitioning increases the number of decision variables
in the optimization problem at each time t, and the segmented
scheme only shows better computational performance than
standard DDPC when the prediction horizon is significantly
large. In contrast, our proposed scheme (see Section III-
B) reduces the sample complexity while simultaneously
reducing the number of decision variables in the optimization
problem, thus resulting in a more computationally efficient
scheme.

For the DDPC scheme in (6), note that the dimension
of the decision variable α(t) ∈ RT−L−n+1 increases as
the number of offline data points T increases (compare the
lower bound for T above). This implies that for increasing
system dimension, number of inputs and prediction horizon
length, the problem in (6) becomes more expensive to solve.
To address this issue, the authors of [23] implement a pre-
processing step of computing the singular value decomposi-
tion of the Hankel matrix of data HL+n(w

data) in (6). Let
such decomposition take the following form

HL+n(w
data) =

[
U1 U2

] [S1 0
0 0

] [
V ⊤
1

V ⊤
2

]
, (8)

where S1 is a diagonal matrix that contains the non-zero
singular values of HL+n(w

data), while Ui, Vi, for i = {1, 2},
are matrices of appropriate dimensions. As a consequence of
the singular value decomposition, it holds that im(U1S1) =
im(HL+n(w

data)). Therefore, the authors propose using
U1S1 as a predictor in a predictive control scheme. Since
U1S1 has m(L+n)+n columns, the corresponding regressor
vector (denoted g ∈ Rm(L+n)+n) is of reduced dimension.
However, one still requires the same number of data points
needed for the DDPC (in (6)) in order to build the matrix
HL+n(w

data) and compute its SVD, making this scheme not
sample-efficient.

In the following section, we propose a data-driven pre-
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Algorithm 1 Offline data pre-processing for eDDPC
Input: Measured trajectory wdata ∈ B|T , satisfying
rank(Hd(w

data)) = md+n for d = ℓ+1, where B ∈ L q
m,n,ℓ.

1. Compute a basis for the left kernel of Hd(w
data), i.e.,

RdHd(w
data) = 0.

2. Use Rd to build the matrix Γ as in (5), but with L+n−d
shifts.

3. Obtain P = null(Γ).
Output: Matrix P such that im(P ) = B|L+n.

dictive control scheme which is both more sample-efficient
and more computationally efficient than existing schemes in
the literature. This is done by implementing a few (algebraic)
pre-processing steps on the collected data, which can be done
prior to the online phase of the DDPC scheme.

B. Nominal eDDPC scheme

When comparing the results of Lemma 1 and Theorem 1,
we see that both provide us with a non-parametric rep-
resentation of the finite-length behavior of a controllable
LTI system. This is true since im(HL(w

data)) = im(P ) =
B|L. However, the following are two important distinctions
between the two results that will enable us to arrive at an
efficient data-driven predictive control scheme.
D1 Theorem 1 requires at least T ≥ (m + 1)(ℓ + n +

1)− 1 data points to satisfy the PE condition, whereas
Lemma 1 requires at least T ≥ (m+ 1)(L+ n)− 1. If
the minimum T is chosen in both cases, then Theorem 1
will always require (m + 1)(L − ℓ − 1) less samples,
for any L > ℓ+ 1.

D2 Given w̄ ∈ B|L, equation (3) has infinitely many solu-
tions for α ∈ RT−L+1, whereas the corresponding β ∈
RmL+n vector in (4) is unique for each trajectory. This
is because in order to fix a trajectory of an LTI system,
one would only need mL+ n degrees of freedom that
correspond to fixing the initial state (n) and specifying
the input trajectory (mL). Notice that the dimension of
β is independent of the number of collected data points,
whereas the dimension of α increases with increasing
T . In fact, even if the minimum T was chosen for
the results of Lemma 1, then the dimension of β in
Theorem 1 would still be smaller than the dimension of
α by mn.

We now exploit D1 and D2 to propose an efficient
data-driven predictive control scheme (eDDPC). Recall that
in order to arrive at the data-based representation in (4),
Theorem 1 implements a few (algebraic) pre-processing
steps on the collected data. In Algorithm 1, we summarize
these steps which can be efficiently done offline. Since the
predicted trajectories are of length L+n (to account for the
initialization at each time), Step 2 of Algorithm 1 requires
that we carry out L+ n− d shifts compared to L− d shifts
as in (5).

Once these (algebraic) pre-processing steps have been im-
plemented, we obtain a matrix P such that im(P ) = B|L+n.
Now, we construct the following minimization problem,

Algorithm 2 eDDPC scheme
Input: Measured trajectory wdata ∈ B|T , satisfying
rank(Hd(w

data)) = md+n for d = ℓ+1, where B ∈ L q
m,n,ℓ.

Offline phase: Run Algorithm 1 to obtain matrix P .
Online phase:

1. At time t, use past n input-output measurements
w[t−n,t−1] to solve (9).

2. Apply the input ut = ū∗
0(t) to the system.

3. Set t = t+ 1 and return to 1.

which is solved at each time step t and defines our efficient
data-driven predictive control scheme (eDDPC)

min
β(t),w̄(t)

L−1∑
k=0

∥w̄k(t)− ws∥2W

s.t. w̄[−n,L−1](t) = Pβ(t)

w̄[−n,−1](t) = w[t−n,t−1]

w̄[L−n,L−1](t) = ws
n

w̄k(t) ∈ W, ∀k ∈ Z[0,L−1].

(9)

Apart from using P to predict future trajectories in place
of the Hankel matrices, the two problems in (6) and (9)
have the same cost function and the same constraints. The
proposed eDDPC scheme is summarized in Algorithm 2.

Since im(P ) = im(HL+n(w
data)), the two optimization

problems in (6) and (9) are in fact equivalent and the
resulting closed-loop trajectories are identical. The following
lemma formalizes the equivalence between our proposed
eDDPC scheme and the one from [9].

Lemma 2: Given w ∈ B|T where B ∈ L q
m,n,ℓ, let

im(HL+n(w
data)) = im(P ) = B|L+n where P is obtained

by Algorithm 1. For a given initial trajectory w[t−n,t−1], if
(6) and (9) are initially feasible, then the two DDPC schemes
result in the same closed-loop trajectories ut, yt for t ≥ 0.

Proof: The result directly follows from the the fact that
im(P ) = im(HL+n(w

data)).
Remark 1: In [24] equivalence was established between

the DeePC scheme of [8] (which solves at each time t
a similar problem to (6), but without terminal constraints)
and the subspace predictive control scheme (SPC) of [25].
A similar equivalence result can be established between
SPC and eDDPC (9). This is omitted from this paper for
space reasons, but also follows from the fact that im(P ) =
im(HL+n(w

data)).
Another implication of the equivalence of the two optimiza-
tion problems (6) and (9) is that the proposed eDDPC scheme
retains the same theoretical guarantees as the ones shown in
[9] for the DDPC scheme specified by (6).

In the next section, we analytically compare the number of
data points and the number of decision variables needed for
both schemes. Later we illustrate how the proposed eDDPC
scheme outperforms the existing schemes in [9], [17], [23].

IV. COMPARISON TO EXISTING SCHEMES

In this section, we analytically and numerically compare
our proposed eDDPC scheme to the schemes reviewed in
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TABLE I
ANALYTIC COMPARISON BETWEEN EDDPC AND EXISTING DDPC SCHEMES.

DDPC sDDPC SVD-DDPC eDDPC
T ≥ (m+ 1)(L+ 2n)− 1 (m+ 1)(2Tini + n)− 1 (m+ 1)(L+ 2n)− 1 (m+ 1)(ℓ+ n+ 1)− 1

dim(regressor) T − L− n+ 1 ns(T − 2Tini + 1) m(L+ n) + n m(L+ n) + n

Section III-A. These include the DDPC scheme of [9],
the segmented DDPC scheme of [17] and the minimum-
dimension DDPC scheme of [23]. Note that the authors of
[17], [23] do not enforce a terminal equality constraint. In
the following, we implement such terminal constraints to
their schemes and refer to them as sDDPC and SVD-DDPC,
respectively. This ensures that the closed-loop trajectories are
identical and that our comparisons are fair. As mentioned
in the introduction, several other DDPC schemes have been
proposed in the past few years. In this paper, we restrict
the comparison to the schemes discussed above since (i)
the closed-loop behaviors of all of them are equivalent and,
hence, sample efficiency and computational efficiency are
studied and compared fairly, and (ii) the schemes in [17]
and [23] explicitly address either sample efficiency [17] or
computational efficiency [23] as well.

Table I analytically compares the minimum number of
required offline data points as well as the complexity of the
corresponding optimization problems solved at each time t
(expressed in terms of the dimension of the regressor vector)
for the following schemes: (i) the (DDPC) scheme of [9],
(ii) the segmented DDPC (sDDPC) scheme of [17], (iii) the
minimum-dimension DDPC (SVD-DDPC) scheme of [23]
and finally (iv) our proposed (eDDPC) scheme (9). It can
be seen that the proposed eDDPC scheme outperforms the
existing ones in terms of sample complexity (uses less offline
data) and computational complexity (includes less decision
variables).

Compared to the SVD-DDPC scheme, eDDPC uses the
same number of decision variables but uses less data points.
For the sDDPC scheme, the length of each segment must
satisfy Tini ≥ ℓ. Here, we assumed that the prediction horizon
is an integer multiple of Tini, i.e., L = nsTini where ns is
the number of segments. In this case, sDDPC and eDDPC
schemes use the same number of data points only when
Tini = ℓ = 1. Otherwise, eDDPC always uses less data
points. As for the number of decision variables, eDDPC
always uses less decision variables, even when T is minimal.

Next, we carry out numerical simulations on random LTI
systems to illustrate the efficiency of the eDDPC scheme.
We consider systems of dimensions n = {4, 6, 8, 10, 12, 14}
(with p = m = n − 2). For each system order, we first
generate 100 random systems (using Matlab’s built-in drss
command) and collect data by applying a PE input (sampled
from a random a uniform distribution U(−1, 1)m) with the
minimum possible length T as specified in Table I. Notice
that for a fixed system order, number of inputs and number
of outputs, the lag is not necessarily equal across all 100
systems. Therefore, for consistency we use a slightly longer
data sequence for eDDPC than the minimum possible one

specified in Table I. Specifically, since ℓ ≤ n, we collect
T = (m+1)(2n+1)−1 data points for eDDPC. Furthermore,
in order for all four schemes to have the same initialization
w[t−n,t−1], we set Tini = n for the sDDPC scheme. Notice
that in this considered setting, eDDPC is still more sample-
efficient than the other three schemes.

We then implement the four different DDPC schemes in
a condensed formulation, i.e., the optimization problems of
each scheme are reformulated such that the only decision
variables are the regressors, e.g., α(t) in DDPC (6) or β(t)
in eDDPC (9). The objective is to stabilize the origin. We use
a prediction horizon L = 2n, and sample the initial internal
state from a uniform distribution U(−1, 1)n to later obtain
the initialization trajectory w[−n,−1]. The same quadratic
stage costs (with Q = R = In−2) and the following
input/output constraints were used in all schemes

W = {w = [ uy ] ∈ Rq | − 5 ≤ wi ≤ 5, ∀i ∈ Z[1,q]}. (10)

This process is finally repeated and averaged for all 100 sys-
tems (per system dimension). The simulations were done on
a standard Intel Core i7-10875H CPU @ 2.30GHz processor
with 16 GB of RAM, using Matlab’s quadprog with active-
set algorithm and warm-start strategy. The corresponding
MATLAB codes can be found at [26].

Table II summarizes the results. It can be seen that our
proposed eDDPC scheme outperforms the other schemes
in terms of number of offline data points. We report both
the average (avg) computation time per iteration over 100
systems as well as the maximum (max) computation time
(for any MPC iteration out of all 100 systems). It can be
seen that eDDPC and SVD-DDPC schemes have the fastest
average computation time of all four schemes. Furthermore,
their computation times are almost equal, which is expected
since they have the same (minimum) number of decision
variables among all four schemes. It can be also seen that
the computation time of DDPC is of the same order of
magnitude as eDDPC and SVD-DDPC. This is because we
use the minimum number of data points and, hence, the
difference in the number of decision variables is only mn
(cf. D2 in Section III-B). However, if more data points are
used, the DDPC’s average computation time increases as the
dimension of α(t) grows. As for sDDPC, it should be noted
that it uses less data points than DDPC and SVD-DDPC,
however it has the slowest average computation times due
to the increased number of decision variables caused by the
segmentation (cf. [17]).

The results of Tables I and II highlight the advantages of
our proposed eDDPC approach, specifically in presence of
scarce data and/or limited computational resources.

Remark 2: Numerical considerations: As the system com-
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TABLE II
NUMERICAL SIMULATIONS ON 100 RANDOM SYSTEMS OF DIFFERENT COMPLEXITIES.

DDPC sDDPC SVD-DDPC eDDPC

States avg
[ms]

max
[ms]

T dim(α) avg
[ms]

max
[ms]

T
∑

dim(gi)
avg
[ms]

max
[ms]

T dim(g) avg
[ms]

max
[ms]

T dim(β)

n = 4 1.19 6.98 47 36 1.68 3.94 35 56 1.06 4.22 47 28 1.04 2.94 26 28
n = 6 2.76 6.04 119 102 4.67 7.44 89 156 2.40 4.19 119 78 2.37 4.52 64 78
n = 8 6.01 10.32 223 200 17.77 39.02 167 304 4.74 8.61 223 152 4.70 12.01 118 152
n = 10 20.07 40.55 359 330 66.98 131.23 269 500 14.63 48.00 359 250 14.77 48.30 188 250
n = 12 45.70 75.60 527 492 174.32 325.75 395 744 32.36 95.61 527 372 32.18 58.67 274 372
n = 14 97.41 161.50 727 686 448.11 695.54 545 1036 67.22 116.83 727 518 67.03 111.76 376 518

plexity (m,n, ℓ) increases, some numerical problems were
encountered when constructing the matrix Γ in (5). Specifi-
cally, taking the first p rows of the matrix Rd can sometimes
result in a matrix Γ with a very large condition number,
which might lead to errors in computing P = null(Γ). One
explanation is that the kernel representation specified by
the rows of Rd is not necessarily minimal. In a minimal
kernel representation, the number of rows of Rd is equal
to the number of outputs p (cf. [4]), which is the number
of rows that are shifted in (5). Since obtaining the minimal
kernel representation for multivariable systems is a difficult
problem (cf. [22]), we devised a (heuristic) combinatorial
method to obtain a well-conditioned matrix Γ. The idea is
to try different combinations of p rows of Rd and use them
to construct the shifts in Γ and later check if the condition
number is smaller than a specified threshold. Note that these
steps are done offline and do not increase the computational
burden of the eDDPC scheme.

V. CONCLUSIONS

In this paper, we proposed a data-driven predictive control
scheme which is both more sample-efficient (uses less offline
data) and computationally efficient (uses less decision vari-
ables) than existing data-driven predictive control schemes in
the literature. We analytically and numerically showed that
the proposed scheme outperforms existing schemes from the
literature. Future work will focus on providing theoretical
guarantees for recursive feasibility and stability of a robust
eDDPC scheme in presence of noise.
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driven predictive control for linear parameter-varying systems,” IFAC-
PapersOnLine, vol. 54, no. 8, pp. 101–108, 2021.

[14] Y. Lian and C. N. Jones, “Nonlinear data-enabled prediction and
control,” in Proceedings of the 3rd Conference on Learning for
Dynamics and Control, vol. 144. PMLR, 07 – 08 June 2021, pp.
523–534.

[15] G. Pan, R. Ou, and T. Faulwasser, “On a stochastic fundamental lemma
and its use for data-driven optimal control,” IEEE Tran. Automat.
Contr., vol. 68, no. 10, pp. 5922–5937, 2023.

[16] V. Breschi, A. Chiuso, and S. Formentin, “Data-driven predictive
control in a stochastic setting: a unified framework,” Automatica, vol.
152, p. 110961, 2023.

[17] E. O’Dwyer, E. C. Kerrigan, P. Falugi, M. Zagorowska, and N. Shah,
“Data-driven predictive control with improved performance using
segmented trajectories,” IEEE Transactions on Control Systems Tech-
nology, vol. 31, no. 3, pp. 1355–1365, 2023.
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