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Abstract— Federated learning is a distributed learning frame-
work that allows a set of clients to collaboratively train a
model under the orchestration of a central server, without
sharing raw data samples. Although in many practical scenarios
the derivatives of the objective function are not available,
only few works have considered the federated zeroth-order
setting, in which functions can only be accessed through a
budgeted number of point evaluations. In this work we focus on
convex optimization and design the first federated zeroth-order
algorithm to estimate the curvature of the global objective,
with the purpose of achieving superlinear convergence. We take
an incremental Hessian estimator whose error norm converges
linearly in expectation, and we adapt it to the federated zeroth-
order setting, sampling the random search directions from the
Stiefel manifold for improved performance. Both the gradient
and Hessian estimators are built at the central server in a
communication-efficient and privacy-preserving way by lever-
aging synchronized pseudo-random number generators. We
provide a theoretical analysis of our algorithm, named FedZeN,
proving local quadratic convergence with high probability
and global linear convergence up to zeroth-order precision.
Numerical simulations confirm the superlinear convergence rate
and show that our algorithm outperforms the federated zeroth-
order methods available in the literature.

Index Terms— Federated learning, zeroth-order optimization,
incremental Hessian estimator, convex optimization.

I. INTRODUCTION

Federated learning (FL) is a large-scale learning frame-
work that allows multiple users to collaboratively train
machine learning models while preserving the individual
privacy. The goal is to expose the model to as much data
as possible, achieving better generalization capabilities than
if each client trains a separate model on his own data. Clients
never transmit their raw data samples over the network, but
rather exchange model updates with a central orchestrating
server. This can dramatically reduce the communication cost
of the learning process and provides some degrees of data
security, which can be further improved by incorporating
mechanisms such as differential privacy and homomorphic
encryption. Moreover, the distributed nature of FL allows to
overcome the limited scalability of the standard centralized
setting, in which all the training data must be gathered and
processed at a single machine with enough computational
power and storage resources. For these reasons FL is the
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tool of choice when the training data is naturally distributed
in form of data islands, which often happens in networks of
smartphones, [oT sensors or other devices.

In many relevant cases, such as simulation-based or black-
box optimization, the derivatives of the objective functions
may be expensive or infeasible to obtain [1]. Most of the
existing federated learning algorithms, including the well-
known FedAvg [2], are gradient-based and thus cannot be
applied in such situations. A possible solution is offered by
the class of zeroth-order (ZO) algorithms, that do not require
any knowledge of the function derivatives. Rather, they only
need the objective to be evaluated at certain query points, and
they estimate derivatives by mean of finite-differences along
a set of search directions. We address the reader to [3] for a
survey on general zeroth-order optimization, and below we
briefly review the ZO federated algorithms available in the
literature: FedZO [4] is a zeroth-order version of FedAvg;
ZONE-S [5] is a primal-dual algorithm in which at each
iteration only one client is active, and the central server min-
imizes an augmented Lagrangian function; BAFFLE [6] uses
a stochastic gradient estimator based on Stein’s identity and
focuses on the privacy aspect; AsyREVEL [7] addresses the
vertical FL scenario, while this work concerns the horizontal
FL setting.

Remarkably, none of the above algorithms considers the
curvature of the objective function, missing out on the
possibility to greatly improve the convergence rate. In fact,
preconditioning with the Hessian matrix often leads to larger
improvements per iteration and consequently much fewer
iterations needed to converge. This is especially desirable
in FL, where many communication rounds are generally
needed, and could sensibly reduce bandwidth consumption
and idle time. ZO-JADE [8], which is the only distributed
zeroth-order algorithm to exploit the curvature information,
estimates both the gradient and the diagonal of the Hessian
matrix computing central-differences along the canonical
basis. However, neglecting the off-diagonal elements of the
Hessian may lead to suboptimal performance when the
objective function is highly skewed. Moreover, ZO-JADE is
designed for a general mesh network and does not take full
advantage of the star topology of the federated setting.

Looking outside the zeroth-order literature, there are two
second-order federated algorithms that provide superlinear
convergence, namely FedNL [9] and SHED [10]. However
both do not support approximate derivatives, preventing
straightforward zeroth-order implementations where the ex-
act gradient and Hessian are replaced with estimates.
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Contributions: Motivated by the absence of federated
zeroth-order algorithms which leverage the curvature infor-
mation, in this paper we design a novel algorithm, named
FedZeN (Zeroth-order Newton). We focus on convex opti-
mization problems and aim to achieve superlinear conver-
gence, which requires knowledge of the full Hessian matrix.
For this reason, we extend the randomized incremental
estimator proposed in [11] to make it suitable for feder-
ated zeroth-order implementation. In particular, we exploit
synchronized pseudo-random number generators to sample
a common set of r search direction at all the nodes. The
clients query their local functions according to the search
directions, compute a set of coefficients needed to build both
the gradient and Hessian estimators, and send them to the
central server. The latter updates the model parameters using
a Newton-type method, which is known to be significantly
faster than first-order methods. The approximation error due
to the zeroth-order estimation is handled using either appro-
priate regularization or an eigenvalue clipping safeguarding.

Below we list the main novelties and distinguishing fea-
tures of the proposed method. (i) We devise a federated in-
cremental estimator of the full Hessian matrix, which enables
tackling federated optimization problems using second-order
methods even when the exact derivatives are not available.
Our estimator is the distributed zeroth-order counterpart of
the one proposed in [11], that converges almost surely to
the true Hessian and whose squared error norm goes to zero
linearly in expectation. We propose to generate the search
directions needed by the estimator by uniformly sampling the
Stiefel manifold, which empirically provides better accuracy
and enables the use of an excellent gradient estimator. (ii)
We design FedZeN, the first federated zeroth-order algo-
rithm to estimate and exploit the Hessian of the global
objective function. We provide a theoretical analysis of the
algorithm, proving local quadratic convergence with high
probability and global linear convergence up to zeroth-order
precision. Our numerical simulations show that FedZeN
outperforms the existing federated zeroth-order algorithms
and exhibits superlinear convergence. (iii) The proposed dis-
tributed derivative estimation procedure naturally addresses
some important concerns in federated learning. The first is
non-identically distributed data: the algorithm can be applied
to pools of clients with heterogeneous data distributions and
is unaffected by client drift. The second is privacy: if the
internal seed of the pseudo-random generators is kept private,
the proposed procedure hides the estimated derivatives from
potential external eavesdroppers. Regarding the computa-
tional and communication costs, at each iteration clients only
need to evaluate their local function at 2r + 1 query points
and transmit to the central server d + r scalar values, where
d is the dimension of the problem. The design parameter r is
independent from the dimension of the problem, making the
algorithm suitable for client devices with limited resources.

Notation: We denote with I the d-dimensional identity
matrix and with E[-] the expectation. Given a matrix,
is the spectral norm while ||| is the Frobenius norm. For
brevity, we indicate with [n] the set of integers {1,...,n},

and with U(S) the uniform distribution on the unit sphere
S={zecR¥st |z| =1}.

II. PROBLEM FORMULATION

We consider the horizontal federated learning setting,
where local datasets consist of samples with different IDs
that belong to the same feature space. Data is not indepen-
dently or identically distributed, i.e. the data distribution can
vary across clients. We consider a federation of n clients
wanting to collaboratively train a model parametrized by
x € R? by solving the empirical risk minimization

=;Zfi(x>}. (1
i=1

Here f;(z) : R — R is the loss function of client 4, and
the global average f(x) satisfies the following assumption,
which is standard in convex optimization.

Assumption 1: The global cost is m-strongly convex and
twice continuously differentiable with Lipschitz derivatives,
i.e. there exist positive constants m, Lo, L1, Lo such that
Vz,y € RY

f(2*) = min {f(x)

reRd

IIf( ) ( I < Lollz -yl
V2 f(x) f@) < Laflz —yll,
mId§V2 f(x) < Lily

In order to apply our distributed derivative estimation
technique, we assume that all the clients and the central
server own the same deterministic pseudo-random number
generator (PRNG). This trick allows to generate common
vectors at all the devices by just periodically sending seeds
or internal states to ensure synchronization, greatly reducing
the communication overhead of the algorithm. The presence
of PRNGs is a mild requirement and is assumed also in other
works, such as [6] and [12].

Assumption 2 (Synchronized PRNG): All the clients and
the central server are equipped with the same pseudo-random
number generator, whose output sequence can be determined
a priori by having knowledge of the internal seed.

ITI. ZEROTH-ORDER ORACLES

Zeroth-order estimators approximate derivatives by means
of finite-differences between values taken by the objective
function at given query points. The latter are chosen in a
neighborhood of the current model parameters, fixing a set
of search directions and a small scalar ;4 > 0. The value of
the finite-difference granularity wu, also called discretization
or smoothing parameter, is usually chosen based on the
specific application and on the machine precision. When
choosing the derivative estimator, one must consider the level
of accuracy but also the associated computational cost. In
fact, the common assumption in the ZO optimization field is
that not only the exact derivative is inaccessible or prohibitive
to obtain, but also that function evaluations are expensive and
possibly budgeted in number.
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A. Incremental randomized Hessian estimator

Most ZO algorithms avoid estimating the Hessian matrix,
as this typically requires much more function evaluations
than gradient estimation. For example, to approximate all
the d(d + 1)/2 distinct entries of the Hessian using forward
finite-differences along the canonical basis {e1,...,eq}, one
has to query the objective function at the points x, {z+ pe; },
{x+pe; +pe;} with 4, j € [d], for a total of (d+1)(d/2+1)
evaluations [13]. If instead the 7j-th entry is estimated using
a 4-points scheme, e.g. {z o ue; o pe;} for o,0 € {+, -1,
then the number of function evaluations grows to 2d(d + 1).

To avoid necessarily computing O(d?) function values,
one can resort to randomized estimation schemes, that allow
to choose an arbitrary number r of search directions at the
cost of a possibly larger approximation error. An example
of randomized Hessian estimator is the one proposed in
[14], which performs 472 function queries along orthogonal
directions sampled from the Stiefel manifold. The error norm
of this estimator is shown to decrease sublinearly with the
number of search directions, and to suddenly drop only
when » = d. Based on the second-order Stein’s identity,
[15] develops some unbiased estimators of the Hessian of a
Gaussian-smoothed version of the objective function. How-
ever, as shown in our simulations, in practice these estimators
still require too many function evaluations to provide an
acceptable estimate. In fact, being sample averages over the
set of search directions, by the law of large numbers their
variance decreases with sublinear rate 1/7.

In this work we employ an Hessian estimator based on a
different principle. Given an initial symmetric matrix H° €
Rxd we apply r times the update proposed in [11]

H* = H*' + (V2 f(2)u — T H* u)uu™,  (2)

where u ~ U(S). The idea behind this iterative formula
is to add a rank-one matrix such that the updated estimator
matches the true Hessian along the direction u. The recursion
(2) satisfies the linear convergence condition

E(ll* = V@) 3] <nll#8 =@l @

where 17 = 1—2/(d?+-2d), and asymptotically H* converges
almost surely to the exact Hessian [11]. Since the true
Hessian is obviously not available, as also mentioned in
[11] Hessian-vector products can be estimated using finite-
differences, which makes the update (2) ideal for zeroth-
order optimization. In particular, in FedZeN we approximate
the directional curvature as
f(@+ pu) = 2f(2) + (o — pu)

I ’
and therefore computing the Hessian estimator H" requires
2r + 1 function evaluations.

Differently from the other estimators available in the litera-
ture, (2) is an incremental formula. This lends itself to warm-
start the estimator by initializing it with the estimate from the
previous iteration. This is especially useful when the Hessian
is constant or slowly changing and when approaching the
global optimum, so that only few updates per iteration are

u' V2 f(x)u ~

needed. On the contrary, the estimators in [14] and [15] are
designed to be reset at each iteration and not to exploit past
estimates, and in this way they lose all previously collected
information.

B. Stiefel sampling

The first and fundamental step to build the randomized
Hessian estimator is to choose a set of search directions
{u; ~ U(S)}, j € [r]. The standard way to generate these
directions is to sample r vectors from N(0, I;) and project
them on the unit hypersphere by dividing by their norm.
However, this sampling procedure is only asymptotically
optimal, and for limited values of  may cause to oversample
some regions of the space while barely exploring others.
To address this problem, in FedZeN we generate a matrix
uniformly sampled from the Stiefel manifold

Via = {U € R™" such that UTU = I}

and use its » < d columns as search directions. Intuitively,
since this set of vectors is orthogonal it should be more
evenly spread in the search space, thus maximizing the
information gain and reducing redundancy. Most importantly,
the marginal distribution of these vectors is ¢/(S), which is
the one required by the Hessian estimator. An explanation
of why this last fact holds is provided in [14], which first
introduced Stiefel sampling for zeroth-order optimization.
The procedure to uniformly sample from the Stiefel manifold
is based on Theorem 2.2.1 of [16], stating that a matrix
U = [u1,...,u,] uniformly distributed on V; 4 can be
expressed as

ii.d.

U=XX"X)"12 X e R st. X;; "<V N(0,1). (4)

In our tests, generating the search directions according to
(4) instead of using non-orthogonal directions considerably
improves the accuracy of the Hessian estimator, especially
for small values of r. In case r > d, we generate [r/d]
separate orthogonal matrices.

C. Zeroth-order gradient estimator

In this work we adopt the gradient estimator

d
)=y L) o)
j=1

where the orthonormal search directions {u; ~ U(S)},
j € [d] are a subset of the directions used to build the
Hessian estimator. The choice of this gradient estimator is
motivated by several reasons. First, as constructing the Hes-
sian estimator H" involves querying the objective function
at the points {x+pu;}, j € [r], it makes sense to reuse these
function values to estimate also the gradient for free. Second,
numerical simulations show that in practice r must be at least
greater than the dimension of the problem to get a satisfac-
tory approximation of the Hessian, which guarantees that d
orthonormal search directions are always available. Finally,
by estimating the gradient along an orthonormal basis we
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can provide deterministic guarantees on the approximation
error, as shown by the following Lemma.

Lemma 1 (Error of the gradient estimator): If the set of
search directions used to build the gradient estimator (5) is
an orthonormal basis U = {u1,...,uq}, then Vz € R?

dLop?
IV 5() ~ g(a)l < T2

Proof: Define A; = V2 f(z + tuu;) — V2 f(x — tuu;).
Since U is a basis of R? and ||u;|| = 1 Vi € [d], using Taylor
expansion with integral remainder we get

d
Z(Vf(x)Tui)u,» —g(z)

IVf(z) = g(2)] =
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Other properties of the estimator (5) can be found in

[14]. In comparison, commonly used randomized gradient

estimators such as the ones employed in FedZO [4] and

ZONE-S [5] do not search along orthogonal directions and

are associated with larger variance and approximation errors
[14] [17].

IV. FEDERATED HESSIAN ESTIMATION

In this section we describe how to build the randomized
estimators in a communication-efficient way by taking ad-
vantage of the star topology of the network, and we introduce
the proposed federated zeroth-order algorithm. We use the
subscript k& where needed to denote the value of a variable
at the k-th iteration of the algorithm.

According to Assumption 2, each client can access a
pseudo-random number generator, and all the generators can
be synchronized by making the central server broadcast a
common internal seed at the first iteration. In the initial-
ization step of the algorithm the master also chooses the
initial Hessian estimator, which can be any symmetric matrix
HY € R¥4, for example H) = BI; with 8 > 0. At each
iteration, both the clients and the master use their PRNG
to generate a common random matrix X € R?*" such that
Xij “RE N (0,1). From the latter, using Stiefel sampling (4)
they compute the set of vectors {u; ~ U(S)}, j € [r], which
is the same at all the nodes. The central server broadcasts the
current decision vector x. Each client ¢ evaluates its local
function at the points xy and {z £ puu;}, j € [r] to compute
the d gradient coefficients

- filwk 4 ) = fiwe — puy)
Cij = %

; (6)

and the r directional curvatures

_ filwr + pug) = 2fi(xr) + fi(xr — puy)
bij = 5 - (D
W
These d + r scalars are sent to the master, where they are
averaged over the set of clients. Using the fact that the search
directions are the same for all nodes, the central server is
able to build the derivative estimators, where the Hessian

estimator is updated starting from HY = HJ_, when k > 1.

d n
Gk = Z (;Z%) Uy, (®)

j=1 i=1

) p 1 <& )
-1 -1 .
H]i = H}i + (n E bij - UJTI{IJc Uj> Ujuf, Je [T]
i=1

€))
To get the new model parameters, the central server
performs a step of a Newton-type method, which requires
Hp to be invertible and positive-definite. To ensure that
this constraint is satisfied and improve the robustness of the
algorithm with respect to estimation errors, we consider two
possible safeguarding mechanisms. The first is a simple and
computationally inexpensive regularization, where a scalar
multiple of the identity matrix is added to Hj:

Zy = (H] +pI))™ ', p>0. (10)

The second is eigenvalue clipping, based on the spectral
decomposition H| = QDQT, where D is the diagonal
matrix whose entries are the eigenvalues of the estimator, and
@ is orthonormal since the estimator is real and symmetric.
Although spectral decomposition may be computationally
demanding for high-dimensional problems, this operation is
performed at the central server and allows to easily compute
the inverse of the approximate Hessian as

Z, = QDQ", Dy =1/ max (Amin, min(Dyi, Amax)) -
(11
The above formula projects the eigenvalues in the interval
[Amin, Amax] before the inversion, where 0 < Apin < Amax
are design parameters. Finally, the target variable is updated
according to the approximate Newton step

Tht1 = T — LR Gk- (12)

The learning rate o can be either a constant value or follow
an increasing schedule. The latter option is preferable to
promote algorithmic stability and prevent oscillations, as at
the beginning the norm of the gradient is usually large and
the Hessian approximation may not be sufficiently accurate.
After a few damped iterations it is desirable to bring up
the stepsize to a = 1, which is the optimal value for the
exact Newton method. This is justified by the fact that once
the decision vector xj, begins to settle the Hessian becomes
almost constant. As a consequence, in virtue of (3) the
Hessian estimator converges linearly to the true Hessian, and
one recovers an almost perfect Newton step. The pseudocode
of the algorithm summarizes the main steps.
We now emphasize some of the strengths of FedZeN.
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Algorithm 1 FedZeN

Initialization:
Central server (CS): Choose x1 € R?, r > 0,
HY € R4 symmetric.
Clients: Choose p > 0.
CS: Broadcast r and a random seed for the PRNGs.
for each iteration k =1,2,... do
All nodes: Generate [u; ... u,]| using (4).
CS: Broadcast xy.
for each client i € [n] do
Compute ¢;;,b;; j € [r] using (6, 7).
end for
CS: If k> 1 set HY = H]_,.
CS: Compute g, Hj, using (8, 9).
CS: Compute Zj, using either (10) or (11).
CS: k41 = T — Zigk-
end for

(i) The core of the algorithm is the distributed estimation
of the full Hessian matrix of the global objective function,
which is used for preconditioning. By considering also
the off-diagonal entries of the Hessian, the algorithm can
preserve fast convergence also in case of highly skewed
objectives. The estimation of both gradient and Hessian
only requires to evaluate the local functions at an arbitrary
number of points, making the algorithm suited for black-box
optimization problems in which the exact derivatives are not
available.

(ii) The algorithm is conceptually simple and straight-
forward to be implemented, as it is self-contained and
differently from [5] does not involve solving auxiliary sub-
problems. Moreover, it requires a small amount of parameter
tuning, as the only design parameters are r, o and the ones
required for robust matrix inversion, i.e. either p or the pair
Amins Amax- In particular, r determines both the number of
function queries and the number of scalars transmitted by
each client, allowing to adapt the computational and com-
munication cost of the algorithm to the available resources.

(iii) Differently from other works which require statistical
similarity between the local functions, here we do not
make any assumption about the relationship between the
data distributions of the clients. Indeed, by estimating the
derivatives of the global objective function, FedZeN naturally
handles data heterogeneity between clients. Moreover, since
it does not perform multiple local iterations, it does not suffer
from client drift.

(iv) Since g;, and H; cannot be obtained without knowing
the vectors {u;}, which in turn require knowing the seed
of the PRNG, our method offers an additional level of
privacy provided that the initial seed is transmitted on a
secure channel. In this case, a possible eavesdropper on
the communication channel between the participants and the
central server would not be able to obtain the estimated
derivatives, as the coefficients c;; and b;; are useless by
themselves. This is very important for data security, since
in some cases it is possible to reconstruct raw data samples

from shared gradients [18].

V. CONVERGENCE ANALYSIS

In this section we derive theoretical guarantees on the
performance of the proposed algorithm. Our analysis is
inspired by the one in [19], which deals with subsampled
Newton methods.

Remark 1: Below we derive rates of convergence up to
zeroth-order precision, which is the smallest theoretically
achievable accuracy. Once the zeroth-order estimation error
becomes dominant, one can either reduce the finite-difference
granularity p or terminate the algorithm. We recall that the
design parameter y can be chosen arbitrarily small according
to the available hardware, and for 1 — 0 we have exact
convergence.

Our first result, Theorem 1, concerns the improvement of
the function value and shows that the algorithm enjoys global
linear convergence up to zeroth-order precision.

Theorem 1 (Global linear convergence): Let Z;, be com-
puted using the eigenvalue clipping formula (11), let a <

2Amin/L1 and define v = f\’?m (1 _ _Lia

max 2Amin
iteration of FedZeN the bound

Flarsr) = f(@) < (1 =7) (flze) = f(27)) + O(k?)

holds with probability 1, i.e. for each realization of the
derivative estimators. The stepsize that maximizes 7 is a* =
Amin/ L1, for which v(a*) = (mAmin)/ (L1 Amax)-

Proof: We list the main steps: (1) Taylor’s expansion
for functions with bounded Hessian, (2) add and subtract
Vf(zx), 3 Cauchy-Schwarz, (4) Lemma 1, the bound
Vf(z) < Lo Vz € R? provided by Assumption 1, and the
fact that by construction 1/Anax < || Zk]| < 1/Amin, G) the
assumption on .

). Then at each

O)
Flenin) = ) + V@) (—aZsgy) + 5 laZgnl

D fur) — aV Fa)" Zu(gr — VI (k) + V(1))

L1042 2
> 1Zk(gr — Vf(zk) + Vf(zr))ll
®
< flzk) —aVf(zp)" (Zk - L;azlz) Vf(xr)

L1a2 2
+alVE@)IZel IV f @) — gl + —— (| 2]

X Nlgk = V£ (@)l (lgr — V(@) + 2V f(@e)])

@ Lia
< flax) —aVif(x)T2? (1 - ;Zk) 7% f(ax)
OéL() dL2M2 L1a2 dLQ/,LQ dLQ/.LQ
2L
Amin 6 2X2. 6 6 o

®
<

o) = a9 sl (1= 525 ) T 00

Recalling that m-strong convexity implies ||V f(z)||”> >
2m(f(xz) — f(z*)) and subtracting f(z*) from both sides
the proof is concluded. ]
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As usually done for Newton-type methods, we inspect the
behaviour of the algorithm in a neighborhood of the optimal
solution to derive a faster convergence rate.

Theorem 2 (Linear-quadratic local bound): Consider the
generic k-th iteration of FedZeN where Zj, is computed using
eigenvalue clipping (11) and the stepsize is & = 1. Then the
improvement towards the global minimum z* satisfies

* L2 w12 dLQ,U,Q
_ < o
s =27 < 52— flan — 27| + G2
VQf(ka,) - Zil *
_|_H k H ka_x”

)\min

Proof: 'We first isolate the contribution due to the
approximation error of the derivative estimators.

[ehsr — 27| = llox — 2" = Zig |
= |2 (25 (2 = 2*) = g+ V(i) = V(@) |

< ﬁ (1Z; ok — 2*) = Vf(an)|| + IV f () — gell]
= ﬁ 12" = V2 (@) @k — 2)|| + |V £ (2x) — gl]
e 9 = ) = Ve

Recalling that V f(2*) = 0 and using the fundamental the-
orem of calculus and the Lipschitz property of the Hessian,
we can bound the norm in the last term as

IV f (i) (z — %) + Vf(z*) = Vf (@)

1
§ HVQf(l’k)((Ek — LU*) +

1
< ||:ck—a?*H/O IV2F (@) — V2 (p + ta” — )| dt

d
LG far + 4 —a0)) dtH
, dt

/01 [V2f (1) — V2 fax +t(a* — )] (a2 — %) dtH

1
<l =o'l [ Laft(on — ") de
0
_ Lo|lz — ¥
5 .
Using the above result and Lemma 1 we get the bound to
be proved. [ ]

The bound provided by Theorem 2 can be used to prove
local quadratic convergence up to zeroth-order precision with
high probability. To do so, from now on we allow a variable
number of search directions at each iteration. To simplify the
analysis, we bound with high probability the approximation
error of the Hessian estimator by means of the following
assumption.

Assumption 3: Fix a symmetric H) € R?*4  an accuracy
€r > 0 and a failure probability 6 € (0,1). Update the
initial estimate H} along r search directions to obtain H},
and compute Zj using eigenvalue clipping (11) with 0 <
Amin < m and Apax > L1. We assume that there exist a
finite-difference precision fi(ex,d) and a minimum number
of search directions 7 (e, 0, ) such that if p < i(ex,d) and
r > (e, 6, 1) it holds P (|| V2 f(z1) — Z; || = &) < 6.

Remark 2: In the interest of space, we do not provide an
explicit formula for fi(e,d) and 7(e, o, ) and leave it for
future work. In particular, we plan to consider the estima-
tion error ||V2f(xx) — Hy|| for any value of (e,d,u, H°),
obtaining stronger results that do not rely on the choice of the
eigenvalue clipping parameters. This will involve quantifying
the zeroth-order error and analysing how the latter builds up
over the course of the estimator updates, allowing to replace
Assumption 3 with rigorous bounds and provable conditions.
Intuitively, by shrinking p one can make the zeroth-order
error negligible and approximate arbitrarily well the update
(2). The latter is known to converge almost surely to the
true Hessian, and the existence of 7 is guaranteed by the
convergence rate (3).

Theorem 3 (Local quadratic convergence w.h.p.):
Consider the assumptions of Theorem 2 and let Assumption
3 be satisfied. At each iteration k of FedZeN:

o If |lgi|l > %2“2, according to Assumption 3 choose
2
5 (0,1), e < (Hng - dLTM) and let 7(ex, 0, 11)

be the corresponding minimum number of search direc-
tions. If © > 7(eg, d, 1), then with probability (1 — 0)
the local convergence rate up to zeroth-order precision
is quadratic:

Ly+2
2>\min

[ k41 — 27| < lzx —a*|* + O ().

o If |lgi]| < %, then the suboptimality gap satisfies
dLop®

O(1?)

[ — 2™} <

and one can use this as a stopping criterion.
Proof: In the first case, Assumption 3 guarantees that
with probability (1 — ¢) it holds
_ dLyy?
||v2f(xk) - Z]:1|| <e€ < HngLi(j
1
— |V — \Y%
_ Ngell =19 FG) —gelll _ IVSGR
L1 Ll
Combining the above inequality with Theorem 2 we obtain
the quadratic rate to be proved. In the second case, we have

ka — .%‘*H < ||Vf(l’k)|| < Hgk” + ||Vf(;ck> — gk”
m m
Loy
_ lgell + 5= 2 dLo®
< — <28

|

Remark 3: The condition on ¢; used in Theorem 3 is

implementable in practice by following these steps: (i) search

along d orthonormal directions and build gg, (ii) use the

latter to compute the upper bound on e, (iii) choose r >

7(ex, 0, 1), (iv) evaluate the function along the remaining
r — d directions to build Hj,.

VI. NUMERICAL RESULTS
A. Testing the distributed Hessian estimator

We start the numerical analysis by comparing the pro-
posed distributed zeroth-order Hessian estimator to the main
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Hessian estimators available in the literature. We consider
the following competitors: (i) the identity matrix, which
is implicitly used by the methods that only use gradient
estimates, (ii) the Jacobi estimator employed in [8], which
approximates the diagonal of the Hessian matrix, (iii) a
distributed version of the randomized estimator based on
the second-order Stein’s identity proposed in [15], and (iv)
a distributed version of the one based on Stiefel sampling,
introduced by [14]. Differently from our Hessian estimator,
all the aforementioned ones are thought to be reset at
each iteration. To allow a complete comparison, we also
implement incremental versions of the last two estimators
where the latest estimate is used as starting point.

Figure 1 displays the evolution of the approximation error
in case of constant Hessian, showing that our distributed
zeroth-order version of (2) outperforms all the other estima-
tors, including the incremental versions of the competitors.
This happens because while the estimators [14] and [15] are
sample averages, the update (2) imposes the correct curvature
along each search direction. The plot shows the average
errors over 100 random Hessian matrices. All algorithms
perform the same number of function evaluations per itera-
tion, namely 2d + 1, which is the amount of queries required
by the deterministic Jacobi estimator [8]. Since the Hessian
is known to be constant, the incremental versions of [14]
and [15] compute the mean of all the past estimates, e.g.
Hir = (H, + (k— 1)Hy_1)/k.

10°
100+ j
= [14]
I [14] incremental
E 107° | our
= 8]
o Identity matrix
> [15]
10-10 L [15] incremental
10" ‘ w
0 500 1000 1500

iterations

Fig. 1: Approximation error of various Hessian estimators in
case of constant Hessian, averaging over 100 matrices.

B. Test of FedZeN

We empirically test the efficiency of the proposed FedZeN
and compare it to the federated zeroth-order algorithms
FedZO [4] and ZONE-S [5] and to a federated version of
ZO-JADE [8]. Below we briefly introduce these competitors
and describe the chosen hyperparameter configurations, that
are the ones leading to the best performances in our test. (i)
FedZO [4] is essentially a zeroth-order version of FedAvg,
and we set learning rate = 0.1, H = 10 local epochs
and by = d perturbation directions. (ii) ZONE-S [5] selects
only one active client at each iteration and minimizes an

augmented Lagrangian function at the server. In our im-
plementation we use use Nesterov accelerated gradient to
minimize the Lagrangian, and in Figure 2 we show the
average number of function queries per client. (iii) ZO-
JADE [8] is designed for general mesh networks of agents
and uses an estimate of the diagonal of the Hessian for
preconditioning. In our federated implementation we set
learning rate € = 0.2. (iv) For the proposed FedZeN we set
Amin = 1073, Apax = 10%, p = 102 and r = d search
directions. The learning rate follows a simple increasing
schedule: we start with a conservative o = 0.3 and after
30 iterations we switch to a = 1.

The test consists in binary classification via logistic re-
gression, where two classes of the dataset Covertype [20]
are evenly split over a pool of n = 100 clients. The local
objectives are the regularized log-losses

|Di|

filx, D) = Zlog (1+exp (—lk[sg 1}3@))4—% HxHZ,
k=1

i
where [;, € {—1, 1} is the label associated to the sample s;, €
R~ d = 55 and w > 0. All algorithms are started from
the same initial x;. The normalized training loss shown in
the plots is (f(x) — f(z*)) /| f(z*)|, where z* is the global
minimum.

FedZO
ZONE-S

FedZeN, regularization pl,
— — — -FedZeN, eigenvalue clipping
ZO-JADE (federated)

10°
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@
i
0
g 10-10 |
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1 1 1 1
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function queries per client x10*
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]
|
£ 02l 1
-
>
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function queries per client x10*

Fig. 2: Logistic regression using the dataset Covertype [20].
FedZeN (our) versus other federated zeroth-order algorithms.

Figure 2 clearly shows that FedZeN outperforms the
other zeroth-order algorithms. In particular, ZONE-S settles
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far from the optimal solution and FedZO, that relies only
on gradient estimates, converges much more slowly than
the algorithms that also exploit the Hessian. The federated
version of ZO-JADE is initially in the lead, as it has an
accurate estimate of the diagonal of the Hessian available
from the first iteration. However, ZO-JADE is soon surpassed
by our FedZeN, whose winning strategy is to invest the
early function evaluations to estimate the full Hessian and
then capitalize it. The speed of convergence is expressed
in terms of number of function evaluations, which in the
Z0 optimization field are assumed to be the most expensive
computations. Plotting the training loss against the number
of iterations or the the number of scalars transmitted and
received by each client, one obtains figures identical to the
one shown. The plot on the bottom confirms the effectiveness
of the incremental Hessian estimator employed in FedZeN
when the target Hessian changes over time. Since methods
that estimate only the gradient can be thought to use the
identity matrix as Hessian estimator, in ZONE-S and FedZO
we set Hy = Iy Vk just for reference.

VII. CONCLUSIONS

We have introduced a general procedure to estimate the
global Hessian matrix in the federated learning setting
when exact derivatives are not available and functions are
only accessible through point evaluations. Under the mild
assumption that all nodes own a pseudo-random number
generator, we generate a common set of search directions
at all the nodes, sampling from the Stiefel manifold for
greater estimation accuracy. This allows to greatly reduce
the communication complexity and conceal the estimated
derivatives from external eavesdroppers. Since the Hessian
estimator is incremental and builds upon past estimates,
few function evaluations per iteration are required. This
distributed estimation technique is the foundation of the
proposed FedZeN, a zeroth-order algorithm for federated
learning which is the first to approximate and leverage the
Hessian matrix. FedZeN allows to tailor both the commu-
nication and the computational costs to the capabilities of
the clients by selecting an appropriate number of search
directions. Moreover, the algorithm is suited for federations
of clients with heterogeneous data distributions. FedZeN
comes with theoretical guarantees of global linear and local
quadratic convergence up to zeroth-order precision. Numeri-
cal simulations confirm that FedZeN converges superlinearly,
outperforming the main federated zeroth-order algorithms.
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