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Abstract— Recently, online convex optimization techniques
have been utilized to develop online algorithms for controlling
linear systems under adversarial disturbances [1], [2], [3]. This
approach involves introducing a class of memory-augmented
controllers, also known as disturbance-action controllers, and
learning their parameters online to optimize general convex
functions. The performance of the controller is measured using
the concept of regret, which compares its performance to
a benchmark. However, while regret is an important metric
for algorithm performance, it does not directly address the
boundedness of the state variable. In this paper, we investigate
the conditions under which boundedness can be inferred from
regret, and vice versa, for the class of memory-augmented
controllers. Our analysis is independent of the specific controller
design, making it applicable to any algorithm or learning
procedure, as long as the specified conditions are satisfied.

I. INTRODUCTION

Online Convex Optimization (OCO) techniques can be
used to design algorithms making optimal decisions under
uncertainty and disturbances [4], [5]. In this setting, a de-
cision variable is selected and an a priori unknown cost is
suffered. An algorithm is then designed to map the available
history of measurements and cost functions to a decision
variable. Regret quantifies the performance of the algorithms
by comparing the incurred cost of by the online algorithm
with a baseline. It is common to select the the baseline as
the cost assuming full knowledge of the problem [6].

Recently, OCO has been used to design online optimal
policies for dynamical systems subject to adversarial distur-
bances. The proposed algorithms within the OCO framework
are online, capable of adjusting according to the properties
of the disturbances and costs. When the policy is selected
from a predefined policy class, the associated regret is called
policy regret while dynamic regret refers to the case with no
restrictions on policy class is exposed [7].

A common framework for studying optimal control prob-
lem is the class of linear systems, usually with a quadratic
cost. If the linear system is subject to Gaussian disturbance
(noise) on the system dynamics and no noise on the system’s
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state measurements, linear quadratic regulator (LQR) control
can be used to design an optimal controller by minimizing a
quadratic cost [8], [9]. The policy regret of the LQR problem
is studied in [10], [11], [12], [13]. If the disturbance is non-
Guassian but has a limited-energy, one can use the H∞-
control theory to guarantee an L2-gain performance bound
[14], [15]. The H∞ approach is typically overly conservative
as the resulting controller hedges against the worst-case
disturbance, which rarely occurs in reality. The regret of H∞-
controller is discussed in [16].

However, in many practical control systems, the distri-
bution of the disturbance is neither Gaussian nor worst-
case. To avoid the design of an overly-conservative controller
while optimizing a general convex cost function, the class of
memory-augmented policies (also called disturbance-action
policy) is introduced in [1], [2], [3], [17]. The main property
of the memory-augmented policy class is a neat parameter-
ization of the policy from which any general convex cost
function can be optimized using OCO.

The proposed algorithms in [1], [2], [3], [17] achieve
a sublinear regret bound implying that the cost by the
algorithm converges with at least a sublinear rate to the
baseline. To study memory-augmented policy in the context
of control theory, one needs to go beyond the regret and
analyzes if stability can be concluded from regret. The
relationship between the regret and stability for disturbance-
free linear systems with linear feedback controllers and
nonlinear systems is studied in [18] and [19] respectively.

In this paper, we consider linear systems subject to general
adversarial disturbances. For the class of memory-augmented
policies, we aim to specify the conditions to conclude bound-
edness of the state variable from a linear regret and vice
versa. Note that we study boundedness instead of stability
as the dynamical system is subject to general adversarial
disturbances. The stability in the absence of disturbance is
concluded as a special case in our analysis. To cover a wider
class of problems, we bring a linear tracking problem, where
a controller is designed to track a linear reference signal [20],
[21]. The regulation problem can be considered as a special
case by setting the reference signal to zero. The contribution
of this paper is as follows:

• We give the conditions to guarantee linear regret bounds
for the class of memory-augmented policies indepen-
dent of how the memory-augmented controller is de-
signed.

• We specify the conditions to infer boundedness of the
state variable from linear regrets.

The organization of this paper is as follows. In Section
II we define the optimal tracking problem and give the
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assumptions. In Section III, we define the class of memory-
augmented control policy and regret. Section IV contains
the main results of this paper and specifies the conditions
to guarantee boundedness of the state variable from a linear
regret and vice versa. Section V concludes the paper.

II. OPTIMAL REFERENCE TRACKING PROBLEM

Notations and preliminaries: Let I denote an identity
matrix with appropriate dimension. Let 1 and 0 denote one
and zero matrices with appropriate dimensions respectively.
Let ∥xk∥ denote the instantaneous Euclidean norm of the
vector xk. For matrix A, the spectral norm is denoted by
∥A∥ and the Frobenius norm is denoted by ∥A∥F . Let IE
be an indicator function on set E. For a time-dependent
variable xk, the notation xi:j , j ≥ i is defined as xi:j =
{xi, xi+1, .., xj}. The notation O() is leveraged throughout
the paper to express the regret upper bound as a function of
T .

Definition 1: [3] Consider

xk+1 = Axk +Buk

and γ ∈ [0, 1), κ > 1. A linear controller K is (κ, γ)-
stable if ∥K∥ ≤ κ and ∥Ãt

K∥2 ≤ κ2(1− γ)t ∀ t ≥ 0 where
ÃK = A+BK.

A. The tracking problem

Consider the following linear dynamical system

xk+1 = Axk +Buk + wk, (1)

where xk ∈ Rn and uk ∈ Rm denote the state and the
control input of the system, respectively. In (1), wk ∈ Rn

denotes the adversarial (arbitrary and unknown) disturbance.
We assume that x0 = 0 and absorb the initial condition of
the system into w0 without loss of generality.

In this paper, we consider a tracking problem to design
uk such that the state of the system xk tracks an unknown
linear reference signal rk generated by

zk+1 = Szk,

rk = Fzk,
(2)

where zk ∈ Rp and rk ∈ Rn denote the state and output
of the reference signal, respectively. Let ek denote the state
tracking error

ek = xk − rk. (3)

If regulation of the dynamical system in (1) is of concern, one
can neglect the reference signal and set the relevant variables
equal to zero in the derivations.

We made standard assumptions regarding (1)-(2).
Assumption 1 (dynamical system): The pair (A,B) is

known and stabilizable. Moreover, the system matrices are
bounded, i.e., ∥A∥ ≤ κa and ∥B∥ ≤ κb.

Assumption 2 (disturbance): The disturbance sequence
wk is bounded, i.e., ∥wk∥ ≤ κw for some κw > 0. Moreover,
wk = 0 for k < 0.

Assumption 3 (reference signal): The following assump-
tions are made on the reference signal

• The pair (S, F ) is unknown, but observable.
• The state of the reference signal zk is not measurable

but the output rk is measurable.
• The reference signal rk is bounded, i.e., ∥rk∥ ≤ κr.

Since the system dynamics are assumed to be known in
Assumption 1, at each time k, w1:k−1 are known. This is
because wk−1 = xk − Axk−1 − Buk−1 and the state xk is
assumed measurable.

The following theorem brings the necessary and sufficient
condition to the reference tracking in the absence of distur-
bances.

Theorem 1: [22][Theorem 1.35 and Remark 1.36] Con-
sider (1)-(2) and let wk ≡ 0, k > 0. Assume that (A,B)
is stabilizable and (S, F ) is detectable. Select Kfb such that
A+BKfb is strongly stable. Then, the controller

uk = Kfbxk + (Γ−KfbΠ)zk (4)

solves the classical state tracking problem xk → rk if and
only if there exist matrices Π ∈ Rn×p and Γ ∈ Rm×p such
that

ΠS = AΠ+BΓ, Π− F = 0. (5)

It has been shown in Lemma 1 of [1] that one can extract
zk from the current and past outputs of the reference.

Lemma 1: Assume that (S, F ) is observable. Let l denote
the observability index of (2); i.e., the smallest positive
integer l ≥ 1 such that

Ol =

 F
...

FSl−1

 ∈ Rnl×p (6)

has full column rank. That is, rank(Ol) = p. Let

O+
l = (OT

l Ol)
−1OT

l ,

N =
[
N [1] . . . N [l]

]
= Sl−1O+

l ,

N [s] ∈ Rp×n, s = 1, ..., l.

(7)

Then, the state of the reference signal can be expressed as a
linear function of the current and l − 1 past outputs of the
reference

zk =

l−1∑
q=0

N [l−q]rk−q. (8)

B. The performance index

For the dynamical system in (1) and the reference signal in
(2), it is common to define a total cost function and optimize
it with designing a control policy π : (x1:k, w1:k−1, r1:k) →
uk. The total cost associated with a control policy π is
defined as

JT (π) =

T∑
k=1

ck(ek, uk). (9)
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Note in this paper we only consider total costs and do not
study discounted costs as the regret (to be defined in the next
section) is usually defined for total costs [23] and considering
discounted costs result in pathological cases as detailed in
[18].

We make the following assumption regarding the cost
function ck(ek, uk) in (9).

Assumption 4 (cost function): The cost ck(ek, uk) is con-
vex in ek, uk. Moreover, when ∥e∥, ∥u∥ ≤ D <∞, it holds
that |ck(ek, uk)| ≤ βD2 and ∥∇eck(e, u)∥, ∥∇uck(e, u)∥ ≤
GcD for some 0 < β <∞ and 0 < Gc <∞.
Assumption 4 limits the cost function to be convex, which
is more general than typical quadratic cost functions.

III. MEMORY-AUGMENTED CONTROL POLICY

For (1) and the reference signal in (2), in the presence
of an adversarial or arbitrary disturbance, it is common
to design a linear feedback controller using H∞-control.
However, besides conservativeness imposed by H∞-design,
the cost function ck(ek, uk) is not convex in the linear
feedback controller gains which makes the online control
design intractable. To circumvent this difficulty, one can
define the class of Memory-augmented control policies [1],
[3].

In this section, we define the class of Memory-augmented
control policies. We show that a linear feedback policy can
be considered as a special case of this class. At the end, we
define the regret function to quantify the performance of the
memory-augmented control policies.

A. Memory-augmented control policy

A memory-augmented control policy is defined as follows.
Definition 2: A memory-augmented control policy

π(K,M,P ) is specified by

uπk (K,M,P ) =Kxk +

mw∑
t=1

M [t−1]wk−t

+

mr−1∑
s=0

P [s]rk−s,

(10)

where K is a fixed controller gain and the parameters

M = [M [0], ...,M [mw−1]],

P = [P [0], ..., P [mr−1]],

Y = [M, P ],

are learnable.
Since the parameters M, P are being learned and thus are
changing over time, we refer to Yk = [Mk, Pk] as the policy
parameters at time k. Let ÃK = A+BK and define

ΨK,h
k,y (Mk−h−1:k−1) :=Ã

y
KIy≤h−1 (11)

+

h−1∑
j=0

Ãj
KBM

[y−j−1]
k−j−1 I1≤y−j≤mw

,

ψK,h
k,z (Pk−h−1:k−1) :=

h−1∑
j=0

Ãj
KBP

[z−j−1]
k−j−1 I1≤z−j≤mr

.

In (11), h > 0 is the memory length, usually used in the
online convex optimization context.

Let xπk and eπk denote the trajectory of the system (1) and
the tracking error upon execution of the memory-augmented
policy uπk . The following lemma specifies xπk .

Lemma 2 (Lemma 3 in [1]): Let xπk be the state attained
upon execution of the policy π(K,M0:k−1, P0:k−1) that
generates the control input in (10) at time k. Then,

xπk =

k−1∑
y=0

ΨK,k
k,y (M0:k−1)wk−y−1 +

k−1∑
z=0

ψK,k
k,z (P0:k−1)rk−z.

(12)
B. Linear feedback policy

It is also useful in our analysis to define a linear feedback
policy

ulin
k (Kfb,Kff ) = Kfbxk +Kffzk. (13)

Remark 1: One can see that linear feedback policies can
be considered as a special case of memory-augmented con-
trol policies. Set K ≡ Kfb, M ≡ 0,mr = l and P [s] =
N [l−s], s = 0, ...,mr − 1 in the memory-augmented policy
(10) to get a linear feedback policy.

C. Regret

The standard measure for online control algorithm is the
policy regret [4], [24] which is defined as the difference
between the total cost of Algorithm A and a baseline

RT (A) = JT (A)− bT . (14)

Note that bT is user specified and it usually denotes the
optimal total cost achievable from a specified policy class.
A linear regret bound is defined as follows.

Definition 3: The algorithm A has a linear regret O(T ) if
there exists C0, C1 ∈ R+ such that [18]

RT (A) ≤ C0 + C1T. (15)
One can see that a sublinear regret bound is favourable as
this implies that the total cost by the algorithm converges
with at least a sublinear rate to the base cost.

In the sequel we define two regrets for the class of
memory-augmented policies in Definition 2

Rlin∗
T (π) = JT (π)− JT (u

lin∗
k ), (16)

Rπ∗

T (π) = JT (π)− JT (π
∗). (17)

The first regret Rlin∗
T (π) in (16) quantifies the difference

between the cumulative cost of the designed memory-
augmented control policy π = π(K,M,P ) and that of
the best linear control policy ulin∗

k = ulin∗
k (K∗

fb,K
∗
ff ) in

hindsight and is studied in [1], [3].
The second regret Rπ∗

T (π) in (17) quantifies the differ-
ence between the cumulative cost of the designed memory-
augmented control policy π = π(K,M,P ) and that of the
best memory-augmented control policy denoted by π∗ =
π∗(K∗,M∗, P ∗). Since the class of memory-augmented
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control policies is more general than the class of linear
control policies, Rπ∗

T (π) provides a stronger performance
guarantee. Our results in the sequel are valid for both regrets
in (16)-(17).

IV. BOUNDEDNESS GUARANTEE FROM THE REGRET AND
VICE VERSA

This section contains the main results of this paper. Our
aim is to give conditions to infer boundedness of the state
from a linear regret and vice versa.

A. Inferring linear regret form bounded state and control

In the next lemmas we specify the conditions such that
the state, error, and input remain bounded using memory-
augmented and linear feedback policies. We define the fol-
lowing constants to be used in the results below.

κz :=∥ψK,k
k,z (P0:k−1)− FN [l−z]∥,

κn :=∥Kff

l−1∑
q=0

N [l−q]∥, (18)

D :=κ3γ−1κw + κ3γ−1κb(1− γ)−1(κwmwκm + κrmrκp)

+ κ3γ−1κrκbκn + γ−1(κwκm + κrκp) + κr

l−1∑
z=0

κz.

Lemma 3: Consider (1)-(2) and the memory-augmented
control policy in (10). Let Assumptions 1-3 hold. Assume
that K is selected such that A + BK is (κ, γ)-stable and
Mk, Pk are learned such that ∥M [t]

k ∥ ≤ κm(1−γ)t, ∥P [t]
k ∥ ≤

κp(1− γ)t. Then,

∥xπk∥ ≤ D, ∥uπk∥ ≤ D, ∥eπk∥ ≤ D. (19)

Moreover, if wk ≡ 0, rk ≡ 0, k > 0, then the system is
asymptotically stable.

Proof: The proof is similar to the proof of Lemma 5
in [1] and is given in Appendix V-A for completeness of the
results.
The conditions in Lemma 3 are necessary for the bounded-
ness of the state and error. Indeed if the conditions do not
hold, for example if ∥M [t]

k ∥ ≤ κm(1−γ)t, ∥P [t]
k ∥ ≤ κp(1−

γ)t is not satisfied, the boundedness cannot be guaranteed
anymore.

Lemma 4: Consider (1)-(2) and the linear feedback policy
in (13). Let Assumptions 1-3 hold. Assume that Kfb is
selected such that A+BKfb is (κ, γ)-stable. Then,

∥xlin
k ∥ ≤ D, ∥ulin

k ∥ ≤ D, ∥elin
k ∥ ≤ D. (20)

Proof: The proof is similar to the proof of Lemma 5
in [1] and is given in Appendix V-B for completeness of the
results.
The results of Lemmas 3-4 will be used to show that using
a memory-augmented control policy results in linear regret
bounds.

Theorem 2: Consider (1)-(2) and the memory-augmented
control policy in (10). Let Assumptions 1-4 hold. Assume
that K is selected such that A + BK is (κ, γ)-stable and

Mk, Pk are learned such that ∥M [t]
k ∥ ≤ κm(1−γ)t, ∥P [t]

k ∥ ≤
κpm(1− γ)t. Then,

Rlin∗
T (π) = O(T ),

Rπ∗

T (π) = O(T ).
(21)

Proof: We use |ck(ek, uk)| ≤ βD2 from Assumption
4 to derive an upper bound for the total cost in (9)

JT (π) =

T∑
k=1

ck(ek, u
π
k (K,Mk, Pk)) ≤

T∑
k=1

βD2 = TβD2,

where D is given in Lemma 3. This shows that the total
cost of a memory-augmented policy is linear. Similarly, using
Lemma 4, one can conclude that the total associated with a
linear feedback policy ulin

k is linear

JT (u
lin
k ) =

T∑
k=1

ck(ek, u
lin
k ) ≤

T∑
k=1

βD2 ≤ TβD2.

Thus, one can conclude that the regret is linear

Rlin∗
T (π) = JT (π)− JT (u

lin∗
k ) = 2TβD2. (22)

Linearity of Rπ∗

T (π) is stablished similarly.
If the conditions in Theorem 2 are satisfied, a memory-
augmented control policy results, in the worst case, a linear
regret bound O(T ). This is independent of how the memory-
augmented control policy is designed or learned. If the
conditions in Theorem 2 are not satisfied, for example if
∥M [t]

k ∥ ≤ κm(1 − γ)t, ∥P [t]
k ∥ ≤ κp(1 − γ)t do not hold, a

linear regret cannot be guaranteed anymore. Note that it is
possible to achieve sublinear regret bounds O(Tα), 0 < α <
1 by designing algorithms, see [1], [3].

One can get stronger results regarding the performance of
the memory-augmented policy π = π(K,M,P ) if the cost
function ck are all equal ck = c, ∀k. Let

M̄ :=
1

T

T∑
k=1

Mk,

P̄ :=
1

T

T∑
k=1

Pk

(23)

denote the average of the learnable parameters Mk, Pk over
T steps.

Corollary 1: Consider (1)-(2) and the memory-augmented
control policy in (10). Let Assumptions 1-4 hold. Let ck =
c, ∀k. Assume that K is selected such that A+BK is (κ, γ)-
stable and Mk, Pk are learned such that ∥M [t]

k ∥ ≤ κm(1−
γ)t, ∥P [t]

k ∥ ≤ κpm(1− γ)t. Then

c(ek,u
π
k (K, M̄, P̄ ))− c(ek, u

lin∗
k ) ≤ O(Tα−1),

c(ek,u
π
k (K, M̄, P̄ ))− c(ek, u

π∗

k ) ≤ O(Tα−1),
(24)

where 0 < α ≤ 1.
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Proof: By Jensen’s inequality [25],

c(ek,u
π
k (K, M̄, P̄ ))− c(ek, u

lin∗
k )

≤ 1

T

T∑
k=1

(c(ek, u
π
k (K,Mk, Pk))− c(ek, u

lin∗
k ))

≤ 1

T
Rlin∗

T (π).

Based on Theorem 2, Rlin∗
T (π) ≤ O(T ), so in general

c(ek, u
π
k (K, M̄, P̄ )) − c(ek, u

lin∗
k ) ≤ O(Tα−1), 0 < α ≤ 1,

where α = 1 for a linear regret Rlin∗
T (π) ≤ O(T ) and

0 < α < 1 in a sublinar regret regime Rlin∗
T (π) ≤ O(Tα).

The second inequality in (24) is concluded similarly.

B. Inferring boundedness of the state variable from linear
regret

To conclude boundedness of ∥xπk∥, ∥eπk∥ from a linear
regret, we need to restrict the cost function further.

Assumption 5 (cost function): There exists 0 < κc < ∞
such that

κc(∥ek∥2 + ∥uk∥2) ≤ ck(ek, uk).

Assumption 5 is more stringent than Assumption 4, as it
requires a positive lower bound as (5). A similar assumption
is also used in proving stability from linear regret for
disturbance-free nonlinear systems in [19] using a general
controller and disturbance-free linear systems in [18] using
a linear feedback controller.

Theorem 3: Consider (1)-(2) and the memory-augmented
control policy in (10). Let Assumptions 1-5 hold. If the regret
bound Rlin∗

T or Rπ∗

T associated with the memory-augmented
control policy in (10) is linear, then ∥xπk∥, ∥eπk∥ are bounded.

Proof: Based on Lemma 4, since Assumptions 1-3 hold,
there exists a Kfb such that the bounds in (20) hold. Then,
as it has been shown in the proof of Theorem 2, the total
cost of the optimal linear feedback policy ulin∗

k is linear

JT (u
lin∗
k ) ≤ TβD2. (25)

Since the class of linear feedback policies is included in the
class of memory-augmented policies, one can also conclude
that the total cost of uπ

∗

k is also linear

JT (u
π∗

k ) ≤ TβD2. (26)

We prove the theorem by contradiction. Assume that the
regret Rlin∗

T or Rπ∗

T associated with the memory-augmented
policy uπk is linear but ∥eπk∥ is unbounded. Since the refer-
ence signal is bounded (Assumption 3), one can conclude
that ∥xπk∥ = ∥eπk + rk∥ is unbounded. Similarly, ∥uπk∥ is
unbounded.

Since uπk results in linear regret bounds

Rlin∗
T (π) = JT (π)− JT (u

lin∗
k ) ≤ C0 + C1T,

Rπ∗

T (π) = JT (π)− JT (π
∗) ≤ C0 + C1T,

and based on (25)-(26), the total cost associated with uπk is
also linear

JT (π) ≤ C0 + (C1 + βD2)T. (27)

By using the lower bound in Assumption (5), the total cost
reads

JT (π) =

T∑
k=1

ck(e
π
k , u

π
k ) ≥

T∑
k=1

κc(∥eπk∥2 + ∥uπk∥2).

However, since both eπk and uπk are unbounded, the total cost
JT (π) is unbounded which leads to a contradiction with (27).
This completes the proof.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have studied the relationship between
policy regret and boundedness of the state variable for
the class of memory-augmented control policies. We have
considered two regret functions and shown that by properly
bounding the parameters of the memory-augmented policy,
it is possible to obtain linear regret bounds while sublinear
regrets can be obtained by properly designing the learning
procedure. We have also shown that the cost should be
positive and properly bounded to conclude boundedness of
the state variable from a linear regret. For our future works,
we will consider studying dynamic regrets.

APPENDIX

A. Proof of Lemma 3

First, we give the bounds on ΨK,h
k,y , ψ

K,h
k,z in (11)

∥ΨK,h
k,y ∥ ≤ ∥Ãy

KIy≤h−1∥ (28)

+ ∥
h−1∑
j=0

Ãj
KBM

[y−j−1]
k−j−1 I1≤y−j≤mw

∥

≤ κ2(1− γ)yIy≤h−1

+

h−1∑
j=0

κ2(1− γ)jκbκm(1− γ)y−j−1I1≤y−j≤mw

≤ κ2(1− γ)yIy≤h−1 +mwκ
2κbκm(1− γ)y−1,

where the second inequality follows from (κ, γ)-stability
of the controller gain K and the condition that ∥M [t]

k ∥ ≤
κm(1− γ)t. Similarly

∥ψK,h
k,z ∥ ≤ mrκ

2κbκp(1− γ)z−1. (29)

We use ∥ΨK,h
k,y ∥, ∥ψK,h

k,z ∥ to derive the bounds.
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The bound of ∥xπk∥: Based on (12)

∥xπk∥ ≤ κw

k−1∑
y=0

∥ΨK,k
k,y (M0:k−1)∥+ κr

k−1∑
z=0

∥ψK,k
k,z (P0:k−1)∥

≤κw
k−1∑
y=0

(κ2(1− γ)yIy≤k−1 +mwκ
2κbκm(1− γ)y−1)

+ κr

k−1∑
z=0

mrκ
2κbκp(1− γ)z−1 (30)

≤κwκ2γ−1(1 +mwκbκm(1− γ)−1)

+ κrκ
2γ−1mrκbκp(1− γ)−1

=κ2γ−1(κw + κb(1− γ)−1(κwmwκm + κrmrκp)) ≤ D

where we have used the fact that
∑N

n=0(1− γ)n ≤ 1
γ to get

the third inequality. To show asymptotic stability in the case
of disturbance- and reference-free system, set wk ≡ 0, rk ≡
0 for k > 0 in (12) (note that w0 is basically the initial
condition of the system, (see our explanations after (1))

xπk = ΨK,k
k,k−1(M0:k−1)w0

resulting in

∥xπk∥ ≤ ∥ΨK,k
k,k−1(M0:k−1)∥∥w0∥.

In (11), set h = k, y = k − 1. For k → ∞

∥ΨK,k
k,k−1(M0:k−1)∥ ≤ ∥Ãk−1

K ∥ ≤ κ2(1− γ)k−1.

As a result, limk→0 ∥xπk∥ = 0 and the system is asymptoti-
cally stable.
The bound of ∥uπk∥: Based on (10)

∥uπk∥ = ∥Kxπk +

mw∑
t=1

M [t−1]wk−t +

mr−1∑
s=0

P [s]rk−s∥

≤κ∥xπk∥+ κw

mw∑
t=1

κm(1− γ)(t−1)

+ κr

mr−1∑
s=0

κp(1− γ)s

≤κ3γ−1(κw + κb(1− γ)−1(κwmwκm + κrmrκp))

+ γ−1(κwκm + κrκp) ≤ D.

The bound of ∥eπk∥: The tracking error is defined as

eπk = xπk (Y0:k−1)− Fzk

where xπk (Y0:k−1) is defined in (12). Using Lemma 1 to
replace zk with a linear combination of the outputs of the

reference

eπk =

k−1∑
y=0

ΨK,k
k,y (M0:k−1)wk−y−1 +

k−1∑
z=0

ψK,k
k,z (P0:k−1)rk−z

− F

l−1∑
q=0

N [l−q]rk−q

=

k−1∑
y=0

ΨK,k
k,y (M0:k−1)wk−y−1

+

l−1∑
z=0

(ψK,k
k,z (P0:k−1)− FN [l−z])rk−z

+

k−1∑
z=l

ψK,k
k,z (P0:k−1)rk−z.

Using the bounds in (28)-(29)

∥eπk∥ ≤
k−1∑
y=0

(κ2(1− γ)yIy≤k−1 +mwκ
2κbκm(1− γ)y−1)κw

+

l−1∑
z=0

∥ψK,k
k,z (P0:k−1)− FN [l−z]∥κr

+

k−1∑
z=l

mrκ
2κbκp(1− γ)z−1κr

≤κ2γ−1κw(1 +mwκbκm(1− γ)−1)

+ κr

l−1∑
z=0

κz + κrκ
2γ−1mrκbκp(1− γ)l−1

≤κ2γ−1κw(1 + κb(1− γ)−1mwκm)

+ κr

l−1∑
z=0

κz + κ2γ−1κrκb(1− γ)−1mrκp ≤ D

where we have used the fact that
∑N

n=0(1− γ)n ≤ 1
γ to get

the second inequality and (1 − γ)(l−1) ≤ (1 − γ)−1 to get
the third inequality.

B. Proof of Lemma 4

The bound of ∥xlin
k ∥: Using the linear feedback policy in

(13), the closed-loop system of(1) reads

xlin
k+1 = (A+BKfb)x

lin
k +BKffzk + wk

= (A+BKfb)x
lin
k +BKff

l−1∑
q=0

N [l−q]rk−q + wk,

where we have used (8) in Lemma 1 to replace zk in the
second line. xlin

k reads

xlin
k =

k−1∑
i=0

(A+BKfb)
iwk−i−1

+

k−1∑
i=0

(A+BKfb)
iBKff

l−1∑
q=0

N [l−q]rk−i−1−q.

1181



As result,

∥xlink ∥ ≤κw
k−1∑
i=0

∥Ãi
Kfb

∥+ κr

k−1∑
i=0

∥Ãi
Kfb

BKff

l−1∑
q=0

N [l−q]∥

≤κw
k−1∑
i=0

κ2(1− γ)i + κrκbκn

k−1∑
i=0

κ2(1− γ)i

≤γ−1κ2(κw + κrκbκn) ≤ D (31)

where we have used the fact that
∑N

n=0(1− γ)n ≤ 1
γ in the

last inequality.
The bound of ∥ulin

k ∥: Similarly, for the linear feedback
controller in (13)

∥ulin
k ∥ ≤∥Kfb∥xlin

k + ∥Kff

l−1∑
q=0

N [l−q]∥∥rk−q∥

≤γ−1κ3(κw + κbκnκr) + κnκr ≤ D.

The bound of ∥elin
k ∥: Since ∥xπk∥ and ∥xlin

k ∥ have the same
upper bound D, see (19) and (31), and based on (19) ∥eπk∥ =
∥xπk − Fzk∥ ≤ D, once can conlude that ∥elin

k ∥ = ∥xlin
k −

Fzk∥ ≤ D.
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