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Abstract—The process manufacturing industry plays a 
pivotal role in the manufacturing industry. It is characterized 
by frequent fluctuations in inlet conditions, frequent changes in 
operating conditions, and numerous random disturbances. It is 
challenging to achieve the optimal operation of the whole 
process by ignoring the changes in operation status and only 
requiring the key technical indicator to be close to the optimal 
setpoint. To this end, this paper proposes an optimal control 
method for operation status migration in the process 
manufacturing industry. First, a method for defining and 
classifying operation statuses based on mechanism knowledge is 
proposed. Then, construct a nonlinear process description 
model and propose an online spatiotemporal recognition 
method for operation status. Finally, with the objectives of 
minimal consumption, system stability, and approach to the 
optimal setpoint, an optimal control model for optimal 
migration of operation statuses is constructed to obtain the 
optimal control quantities and achieve optimal operation. The 
experimental results show that the proposed method can reduce 
resource consumption by finding the optimal migration path of 
the operation status to ensure system stability and product 
quality, which is of great significance for actual production. 
 

Keywords—mechanism knowledge, optimal control, operation 
status migration, process manufacturing industry 

I. INTRODUCTION 

he process manufacturing industry is an essential pillar of 
the industrial sector. Through global optimization, the 

optimal setpoint of each unit process and equipment can be 
set. Affected by frequent changes in inlet conditions and 
operating parameters, its internal operation status changes 
frequently. It is often difficult to make the process run at the 
optimal status only by considering the controlled variable 
close to the final optimal setpoint and ignoring the changes in 
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its internal operation status. How to make the whole process 
approach the optimal setpoint smoothly and economically by 
adjusting the control quantity in each sub-interval reasonably 
is an urgent problem to be solved. 

Optimal control is a method of optimizing the process by 
optimizing the control quantity in each interval, which is 
widely used in the optimal operation of industrial processes. 

Ashoori et al. discussed model predictive control (MPC) 
based on a detailed unstructured model for penicillin 
production in a fed-batch fermenter by constructing different 
cost functions for better control[1]. Logist et al. leveraged 
advanced deterministic techniques to reconcile multiple 
conflicting goals optimally[2]. Song et al. proposed multiple 
actor-critic structures for optimal industrial process 
control[3]. Sun et al. established a two-layer receding horizon 
framework for developing a data-driven optimal control[4]. 
Chen et al. proposed an optimal control algorithm based on 
off-strategy reinforcement learning to achieve precise control 
of ion concentration in the goethite iron removal process[5]. 

Some of the above literature used optimal control to study 
the coordination among different control objectives. The rest 
of the literature emphasized obtaining the control quantity 
through optimal control to realize the optimal operation of the 
process. However, they did not take into account the change 
in the operation status during the optimization. It would be 
unreasonable for the process manufacturing industry and may 
lead to fluctuations in operation statuses and unqualified 
products. In recent years, some scholars have also researched 
optimal control under multiple operation statuses (working 
conditions) in the process manufacturing industry. 

Liang et al. proposed a transfer predictive control method 
based on inter-domain mapping learning to control the 
roasting process under multiple operating conditions[6]. Liu 
et al. proposed an integrated optimal control method based on 
temporal causal network and reinforcement learning, which 
realizes the optimal operation of the entire process by solving 
the optimal electrolyte temperature under multiple working 
conditions[7]. 

The above literature considered the multiple operation 
statuses (working conditions) in the process manufacturing 
industry but did not consider the optimal migration problem. 

Xie et al. proposed a method to obtain the optimal working 
condition migration path for the copper flash smelting 
process[8]. Although the working condition migration was 
considered in this manuscript, the definition of the working 
condition was not based on the mechanism knowledge. When 
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the inlet conditions change significantly, the definition of the 
working condition may deviate. 

To this end, an optimal control method for operation status 
migration in the process manufacturing industry is proposed 
in this study. By studying the appropriate control quantity at 
each time interval, the operation status can be approached to 
the vicinity of the optimal setpoint stably and economically, 
and the resource consumption can be reduced under the 
premise of meeting the production requirements. The 
proposed method not only overcomes the inaccurate 
definition of operation status based on production data, but 
also constructs the optimal operation status migration path by 
continuously approaching the optimal setpoint, which can be 
applied to diverse process manufacturing industries. 
Specifically, it includes three parts: 

(1) Define different operation statuses based on the 
proportion of reactants participating in the actual reaction and 
classify the operation statuses based on historical data. 

(2) Construct a nonlinear process description model and 
propose an online recognition method of operation status 
based on spatiotemporal distance. 

(3) Based on the optimal setpoint obtained from the global 
optimization (previous work [9]), combined with the optimal 
resource consumption and system stability, the optimal 
operation status migration model is established to obtain the 
optimal operation status migration path and the optimal 
control quantity at each moment. 

The rest of this paper is organized as follows. Section Ⅱ 
introduces the optimal control and operation status migration 
problem and its challenges in the process manufacturing 
industry, using the purification process in the zinc smelting 
process as an example. Section Ⅲ introduces the optimal 
control method for operation status migration in the process 
manufacturing industry. The verification of the proposed 
method by simulations based on real production data 
generated from the industrial site is presented in Section Ⅳ. 
Conclusions are drawn in Section Ⅴ. 

II. PROCESS DESCRIPTION AND ANALYSIS 

Zinc hydrometallurgy is a typical manufacturing process 
that mainly includes roasting, leaching, purification, and 
electrolysis. Among them, the purification process is a crucial 
process to ensure production safety and product quality, and 
its primary purpose is to remove the impurity ions contained 
in the neutral leachate to within the range required by the 
process. 

The purification process mainly includes two 
sub-processes: copper removal and cobalt removal, which is 
shown in Fig. 1.  
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Fig. 1.  Purification process. 

The copper removal process includes two continuous 
reactors, and the removal of copper ions is mainly achieved 
through the following replacement reaction. 

2+ 2+Cu +Zn=Zn +Cu                                (1) 
The cobalt removal process includes five continuous 

reactors, and the removal of cobalt ions is achieved by adding 
zinc powder and arsenic salt to react with cobalt ions. 

2+ + 2+
2 2HAsO +Co +3H +2.5Zn=CoAs+2.5Zn +2H O       (2) 

In actual production, a certain amount of copper ions will 
promote the removal of cobalt ions, so the removal of cobalt 
ions is more complicated and more concerning for 
operators[10]. Considering that the main cobalt removal 
reaction takes place in the 1# cobalt removal reactor (More 
than 80% of the cobalt ions are removed in the 1# cobalt 
removal reactor), this study takes the 1# cobalt removal 
reactor as an example to study the optimal control method for 
operation status migration in the process manufacturing 
industry. 

Considering actual production needs, the optimal setpoint 
of the key technical indicator (outlet cobalt ion concentration) 
can be obtained through global optimization[9]. In order to 
realize the optimal operation of the process, it is necessary to 
adjust the control quantity to make the controlled variable 
gradually approach and finally reach the optimal setpoint. 
Only considering how to make the controlled variable close 
to the optimal setpoint and ignoring the changes in the 
operation status during this process will lead to the operation 
status not always being optimal, affecting the final product 
quality and increasing resource consumption. Therefore, it is 
necessary to study the optimal migration of operation statuses 
during this process. Affected by changes in inlet conditions 
and operating parameters, the operation status inside the 
reactor changes frequently. Therefore, there are significant 
challenges in defining the operation status and achieving 
optimal migration of the operation status. It mainly includes: 

(1) Difficult in defining the operation status 
The mechanism of the manufacturing process is complex, 

and there are many disturbances. At the same time, 
considering the cascading characteristics of the process 
manufacturing industry, the operation status in the reactor 
changes frequently, so its definition is difficult. 

(2) Difficult in establishing process model and identifying 
operation status online 

Considering that the whole process contains a large 
number of process variables and there are coupling 
relationships among different variables, it is challenging to 
establish a nonlinear process description model. At the same 
time, because some technical indicators are difficult to obtain 
online, it is challenging to recognize the operation status 
online based on the definition. 

(3) Difficult in determining the optimal operation status 
migration path 

Considering the volatility of the process, the operation 
status changes frequently. It is challenging to migrate the 
operation status smoothly and economically to the optimal 
setpoint by adjusting the control quantity. 

2023



 
 

 

III. METHODOLOGY 

In this study, an optimal control method for operation 
status migration in the process manufacturing industry is 
proposed. The overall framework is shown in Fig. 2. First, the 
zinc powder utilization performance index (ZPUPI) is 
proposed to evaluate the proportion of reactants participating 
in the actual reaction and used to define and classify the 
operation status; then, a nonlinear process description model 
is constructed, and an online recognition method of operation 
status based on spatiotemporal distance is proposed; finally, 
with the objectives of minimum consumption, system 
stability, and approach to the optimal setpoint, an optimal 
control method for operation status migration is proposed 
considering the smooth migration of operation status and 
production constraints. It is elaborated in Sections Ⅲ.A to 
Ⅲ.C. 
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Fig. 2.  Overall framework. 
 

A. Definition and classification of operation status 

In the 1# cobalt removal reactor, multiple 
oxidation-reduction reactions are carried out in parallel, and 
they promote and inhibit each other to form a dynamic 
balance. At the same time, considering the large volume of 
the hydrometallurgical reactor, the input reactants cannot 
completely participate in the actual reaction. The proportion 
of participation can reflect the degree of progress of each 
reaction to a certain extent, that is, the operation status in the 
reactor. In the 1# cobalt removal reactor, zinc powder is the 
main reactant. ZPUPI is proposed to evaluate the operation 
status in the reactor, which is shown in (3). 

                                theory

actual

zinc
ZPUPI

zinc
                                 (3) 

where, 
theoryzinc  and 

actualzinc  represent the amount of zinc 

powder theoretically required and actually consumed to 
remove certain impurities, respectively. 

Considering the volume of the hydrometallurgical reactor 
and the average inlet flow rate, it takes around 2 hours for a 
certain amount of solution to flow from flowing into the 
reactor to flowing out of the reactor. At the same time, the test 
interval of the key technical indicators is also 2 hours. 
Therefore, this study takes 2 hours as an interval to calculate 
ZPUPI in each time interval. The actual production data of 
about 5,000 consecutive hours were taken for analysis, and 
ZPUPIs in about 2,500 time intervals were calculated. Its 

distribution is shown in Fig. 3. 

 
Fig. 3.  Distribution of ZPUPI. 
 

Fig. 3 shows that ZPUPIs calculated from historical data 
basically obey a normal distribution. Therefore, the operation 
status can be classified according to the distribution 
characteristics of ZPUPI combined with the key parameters 
of the normal distribution. The specific classification and 
corresponding parameter requirements are shown in Table Ⅰ. 

 
TABLE I 

OPERATION STATUS CLASSIFICATION 

Category Range of ZPUPI 

Operation status A 0.4237ZPUPI      

Operation status B 0.3171 0.4237ZPUPI        

Operation status C 0.2104 0.3171ZPUPI        

Operation status D 0.2104ZPUPI      

 is the expectation of the normal distribution, which is 0.3171;  is the 

standard deviation of the normal distribution, which is 0.1067.  
 

Through the classification in Table Ⅰ, the production data in 
each operation status can be obtained. For the 1# cobalt 
removal reactor, its operating goal is to reduce the outlet 
cobalt ion concentration to within a certain range (according 
to the process constraints). Due to the harsh production 
environment and the limitation of detection devices, it is often 
impossible to obtain the outlet cobalt ion concentration 
through online detection in actual production, so it cannot be 
used as a controlled variable. As mentioned above, the 1# 
cobalt removal reactor contains multiple parallel 
oxidation-reduction reactions, so the oxidation-reduction 
potential (ORP) can reflect the progress of each reaction to a 
certain extent, and it can be detected online, so it is used as a 
controlled variable. By adjusting the amount of zinc powder 
added, the ORP gradually approaches the optimal ORP 
setpoint (by establishing a conversion model between the 
optimal outlet cobalt concentration and the optimal ORP) to 
realize the optimal operation of the process. In order to ensure 
the rationality of ORP in each operation status in the 
subsequent optimal control, it is necessary to determine the 
reasonable range of ORP in each operation status. The 
distribution of the ORP average value in each time interval in 
each operation status is shown in Fig. 4. 
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(a) Operation status A                        (b) Operation status B 

  
(c) Operation status C                        (d) Operation status D 

Fig. 4.  The distribution of the ORP average value in each time interval in 
each operation status. 
 

It can be seen from Fig. 4 that the distributions of ORP in 
each operation status are close to the normal distribution. 
When the ORP is within one standard deviation from the 
expectation of normal distribution, it can be considered a 
more reasonable range in this category. The reasonable range 
of ORP in each operation status is shown in Table Ⅱ. 

 
TABLE Ⅱ 

REASONABLE RANGE OF ORP IN EACH OPERATION STATUS 

Category Reasonable range of ORP 

Operation status A 614.5055 557.6327ORP     
Operation status B 607.5860 558.3330ORP     
Operation status C 604.7248 538.8988ORP     

Operation status D 604.6840 513.6994ORP     

B. Process model and online recognition of operation status 

The process model is the basis of optimal control. In order 
to further study the optimal control method and the optimal 
operation status migration path, it is necessary to construct 
the process description model. It is mentioned in Section Ⅲ.A 
that ORP can characterize the progress of each reaction to a 
certain extent, so a description model between inlet 
conditions, operating parameters, and ORP is constructed.  

 

 
Fig. 5.  Process description model. 
 

The nonlinear auto-regressive model with exogenous 
inputs (NARX) fitting module in MATLAB was used to 
construct the process description model, and the continuous 

960 mins data was used, of which 750 mins data was used as 
training, and 210 mins data was used as testing. The fitting 
results are shown in Fig. 5.  

Operation statuses were defined and classified based on 
mechanism knowledge and historical data distributions in 
Section Ⅲ.A. Due to some key technical indicators being 
challenging to detect online, the current operation status 
category cannot be determined according to the definition of 
the operation status when the system is running online. 
Therefore, it is necessary to construct an online recognition 
method for the operation status, that is, to determine the 
category of the current operation status by evaluating the 
similarity between the current operation status and the 
operation status of each category in the historical samples. 

Euclidean distance is a common method to judge sample 
similarity through spatial distance. However, changes in inlet 
conditions and operating parameters result in frequent 
changes in its operation status, and many new samples will be 
generated during operation. Samples that are further away 
from the current time will have less reference value to the 
present. Therefore, the time distance between historical and 
current samples also needs to be considered when evaluating 
similarity. To this end, this study proposes an online 
recognition method of operation status based on 
spatiotemporal distance, which determines the best matching 
sample by comprehensively considering the distance of time 
and space. The specific algorithm is shown in Algorithm 1. 

 
Algorithm 1 Online operation status recognition method  
based on spatiotemporal distance 

Step 1. Spatial distance calculation: Calculate the distance 
between the current sample and all historical samples, get the 
samples closest to the current sample in each operation status 
and sort them, take the two closest distances, and record the 
distances as 

1d  and 
2d  respectively, the corresponding 

categories are 
1c , 

2c  respectively, and their time orders in all 

samples in their respective categories are 1n , 2n  respectively. 

Step 2. Spatial distance judgment: if 
1d a  and 2d a  

( a  is the spatial distance judgment threshold, obtained 
according to production needs), go to Step 3; if 

1d a  and 

2d a , go to Step 4; if 
1d a  and 

2d a , go to Step 5. 

Step 3. Time distance judgment: if 
11 0.2* cn m  (

1cm : the 

total number of samples in the 
1c  category) and 

22 0.2* cn m  (
2cm : the total number of samples in the 

2c  

category), the current sample is considered to belong to 
2c , 

otherwise, it is considered to belong to 
1c . 

Step 4. It can be considered to belong to 
1c . 

Step 5. It can be considered to belong to 
2c . 

2025



 
 

 

C. Operation status migration optimization 

Facing actual production needs and stability requirements, 
construct an optimization model for the optimal migration 
path of the operation status and obtain the control quantity in 
each time interval through optimal control to achieve optimal 
operation of the whole process.  
ⅰ. Assumptions. 
Considering the simplicity and practicality of the 

calculation, some reasonable assumptions need to be made 
before constructing the optimal control model. 

(1) According to the volume of the hydrometallurgical 
reactor combined with the average inlet flow rate of the 1# 
cobalt removal reactor, it can be considered that the time 
required for a certain solution to flow from flowing into the 
reactor to flowing out of the reactor is approximately 2 hours. 

(2) Considering the reaction time and the frequency of the 
optimal setting in previous studies, this study studies the 
optimal migration of operation statuses with a two-hour 
cycle. 

(3) The migration of the operation status takes a certain 
amount of time. In order to simplify the solution and facilitate 
understanding, this study does not consider the migration 
time of the operation status and believes that the migration of 
the operation status can be completed instantly. 
ⅱ. Objectives. 
In order to ensure the optimal operation of the process, the 

following objectives need to be considered at the same time. 
(1) Approach to optimal setpoint (

1T ) 

In our previous research, the optimal ORP setpoint for each 
reactor was set every two hours according to the operation 
status of each reactor combined with the production goals. At 
the end of each time interval (2 hours, 120 mins), the ORP in 
the reactor needs to be as close as possible to the optimal ORP 
setpoint. It can be expressed as: 
          

1( ) ( 116,117,118,119,120)t goalabs xk xk t           (4) 

where, 
ixk  indicates the ORP at the tht  minute in a time 

interval, 
goalxk indicates the optimal ORP setpoint 

corresponding to the current time interval, 
1 indicates the 

acceptable deviation range between the current ORP and the 
optimal ORP setpoint, which is determined by the production 
requirements. 

(2) System stability (
2T ) 

System stability is the key to ensuring product quality and 
production safety. In order to ensure that the system does not 
experience significant fluctuations, it is necessary to ensure 
that the fluctuations between the manipulated variable (zinc 
powder) and the controlled variable (ORP) between 
consecutive moments are less than a certain threshold. 
System stability objective can be expressed as: 

  
1 2 1 3; ( 2,3, ,120)t t t tu u xk xk t                    (5) 

where, 
tu  represent the amount of zinc powder added at tht  

minute in a time interval, 
2  and 

3  represent the acceptable 

fluctuation thresholds of the amount of zinc powder added 
and ORP at adjacent moments in the production, respectively. 

(3) Minimal consumption of zinc powder (
3T ) 

Reducing the consumption of zinc powder on the premise 
of meeting the production requirements will help reduce the 
cost of the enterprise, which is of great significance for actual 
production.  
ⅲ. Constraints. 
(1) No cross-category migration 
Divide each time interval into six sub-intervals (each 

sub-interval is 20 mins), identify the operation status category 
of each sub-interval based on the method in Section Ⅲ.B, and 
record the identified category as ( 1, 2, ,6)ic i   , considering 

the smoothness of operation status changes, it is required that 
the operation status cannot migrate across categories. 
Assuming that the operation statuses A, B, C, and D are 
respectively recorded as 1, 2, 3, and 4, it needs to meet: 
                    

1( ) 1( 2,3,4,5,6)i iabs c c i                           (6) 

(2) Reasonable range constraints 
ORP in every time interval needs to satisfy the reasonable 

ORP range of the corresponding category in Table Ⅱ. 
                  min max ( 1,2, 120)txk xk xk t                         (7) 

where, 
maxxk  and 

minxk  represent the acceptable maximum 

and minimum ORP of the current category, respectively. 
(3) Production constraints 
In actual production, the amount of manipulated variable 

(zinc powder) needs to be limited to the acceptable range of 
the process: 
                       min max ( 1,2, ,120)tu u u t                       (8) 

where, 
maxu  and 

minu  represent the acceptable maximum and 

minimum zinc powder added in production, respectively. 
To sum up, the optimal control construction for operation 

status migration can be described as: 

   

1 1 2 2 3 3

1

min max

min max

min( , , )

. . ( ) 1( 2,3,4,5,6)

      ( 1,2, 120)

      ( 1,2, ,120)

t t i

i i

t

t

xk u c wT w T w T

s t abs c c i

xk xk xk t

u u u t



  

  
  

  




         (9) 

where, 
1w , 

2w , and 
3w  respectively represent the weights 

corresponding to the three objectives, which are determined 
by production needs. 

IV. EXPERIMENTAL RESULTS 

In this section, the proposed method was verified using the 
real production data of a large zinc smelter. The production 
data of 8 consecutive time intervals (960 mins) were used for 
verification. The method proposed in this paper (Proposed 
Method, PM) was compared with the method that ignores the 
operation status migration path and only considers the 
approach to the final optimal ORP setpoint (Only Goal, OG, 
later referred to as the comparison method). The control 
effects of the two methods are shown in Figs. 6(a) and 6(b), 
respectively. 
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(a) Control effect of PM                  (b) Control effect of OG 

Fig. 6.  Comparison of the control effects of the two methods. 
 

It can be seen from Figs. 6(a) and 6(b) that the ORP values 
obtained by the two methods are close to or reach the optimal 
setpoint at all target points and are within the acceptable error 
margin of the production site, and the ORP fluctuations 
obtained by the proposed method are relatively smaller. The 
comparison of the amount of zinc powder added in each time 
interval and the average amount of zinc powder added of the 
proposed method, the comparison method, and the manual 
control are shown in Figs. 7(a) and 7(b), respectively. 

 

     
(a) Each time interval                               (b) Average value 

Fig. 7.  Comparison of the amount of zinc powder added. 
 

It can be seen from Figs. 7(a) and 7(b) that the proposed 
method reduces zinc powder consumption while meeting the 
production requirements, which proves the effectiveness of 
the proposed method. 

In order to further verify the control effect, the MATLAB 
neural network fitting app is used to establish a nonlinear 
model of the manipulated variable and outlet technical 
indicator. The training effect of the outlet technical indicator 
model is shown in Fig. 8(a). The testing effect of the proposed 
method, the comparison method, and the manual control in 
continuous 960 minutes is shown in Fig. 8(b). 

 

      
(a) Outlet technical indicator model         (b) Comparison of control effect. 
Fig. 8.  Outlet technical indicator model and the comparison of the outlet 
technical indicator control effect. 
 

It can be seen from Fig. 8(b) that both the outlet technical 
indicator obtained by manual control and the comparison 
method exceeded the requirement, while the outlet technical 
indicator obtained by the proposed method met the actual 
production requirement, which further proves the necessity of 

researching optimal operation status migration and the 
effectiveness of the proposed method. 

V. CONCLUSION 

In the process manufacturing industry, the frequent 
fluctuations of the inlet conditions and operating parameters 
make it challenging to make the whole process run in the 
optimal status by only considering the final optimal setpoint 
and ignoring the changes in the operation status. To this end, 
this study proposed an optimal control method for operation 
status migration in the process manufacturing industry. By 
finding the optimal migration path of the operation status, the 
operation status is gradually migrated to the optimal setpoint. 
Actual production data was used for experimental verification. 
The results showed that the method proposed in this study can 
make the controlled variables gradually approach the final 
optimal setpoint and reduce resource consumption under the 
premise of meeting the production requirements. The 
proposed method is of great significance for the process 
manufacturing industry to improve product quality and 
reduce enterprise costs. 
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