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Abstract— This work extends the theory of backstepping
control of (m+n) hyperbolic PIDEs and m ODEs to blocks of
isotachic states (i.e. where some states have the same transport
speed). This particular yet physical and interesting case has
not received much attention beyond a few remarks in the early
hyperbolic design, and leads to a block backstepping design.
Our motivation is the rapid stabilization of N-layer Timoshenko
composite beams with anti-damping and anti-stiffness at the
uncontrolled boundaries. The problem of stabilization for a
two-layer composite beam has been previously studied by
transforming the model into a 1-D hyperbolic PIDE-ODE
form and then applying backstepping to this new system.
In principle this approach is generalizable to any number
of layers. However, when some of the layers have the same
physical properties (as e.g. in lamination of repeated layers),
the approach leads to isotachic hyperbolic PDEs. We use a
Riemann transformation to transform the states of N-layer
Timoshenko beams into a 1-D hyperbolic PIDE-ODE system.
The block backstepping method is then applied to this model,
obtaining closed-loop stability of the origin in the L2 sense.
An arbitrarily rapid convergence rate can be obtained by
adjusting control parameters. Finally, numerical simulations
are presented corroborating the theoretical developments.

I. INTRODUCTION

N-layer composite beams have been widely used in various
fields, such as aeronautics [17], mechanism design [4], civil
engineering [6] or electronics [30]. Several reasons justify
their application, including weight reduction, higher overall
stiffness, enhanced properties (with respect to fracture, fa-
tigue or corrosion) or cost reduction. However, the coupling
between layers can lead to vibration problems and, more
critically, tip boundary conditions with anti-damping or anti-
stiffness can cause divergence of the displacements and a
consequent delamination of the beam into its unbonded con-
stitutive layers. Therefore, it is necessary to design feedback
controllers able to stabilize the equilibrium of the system.

Although designing controller for N-layer beams is rather
challenging due to the involved complex mathematical mod-
els, there exists plenty of literature on stabilization. For
example, [24] studied the stabilization of a laminated beam
with interfacial slip, with an adhesive of small thickness
bonding the two layers and creating damping. In [25], a
viscoelastic laminated beam model is considered without
additional control, and explicit energy decay formulae are
established, giving the optimal decay rates by using minimal
conditions on a relaxation function. The works [2], [3]
investigated a one-dimensional laminated Timoshenko beam
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with a single nonlinear structural damping due to interfacial
slip, and established an explicit and general decay result by
adopting a multiplier method exploiting some properties of
convex functions. In [18] the well-posedness and stability
of structures with interfacial slip were researched; a large
class of control kernels are considered and the system is
proven to have a unique solution satisfying certain regularity
properties. Apart from damping control, boundary control
are frequently applied to laminated Timoshenko beams, for
instance, [8] considered the stability of the closed loop
system composed of laminated beams with boundary feed-
back controls, and a simple test method was used to verify
exponential stability. Some researchers have adopted the si-
multaneous use of boundary and interfacial damping control
to obtain exponential stability [1], [28]. Considering the time
delay, [16] studied the long-time dynamics of laminated
Timoshenko beams and established the existence of smooth
finite-dimensional global attractors for the corresponding
solution semigroup.

Most of these works achieve stability or even exponential
stability, but not rapid stabilization (being able to set an
arbitrarily fast decay rate in the closed loop), much less
in the presence of destabilizing boundary conditions. This
goal was achieved for beams by the use of backstepping
technique in two pioneering works [22], [26], in the first case
for an undamped shear beam, and in the second for an Euler-
Bernoulli beam. More recently, backstepping was extended
to obtain rapid stabilization for one-layer [10] and two-
layer [9] Timoshenko beams (with potentially destabilizing
boundary conditions) by using a Riemann transformation to
cast the system as a 1-D hyperbolic PIDE-ODE system.
This allows the use of the backstepping method, which
has provided many designs for hyperbolic systems over the
years; starting from a single 1-D hyperbolic partial integro-
differential equation [21], the method was to extended next
to 2×2 systems [12], [29], to n+1×n+1 systems (n states
convecting in one direction with one counter-convecting state
that is controlled) in [13], and finally to the general case
of n + m × n + m systems (n states convecting in one
direction and m controlled states convecting in the opposite),
both in the linear [19] and quasi-linear [20] cases. A later
refinement allowed to obtain minimum-time convergence [5].
These results opened the door to PIDE-ODE designs such
as [14], which was the key in our latest Timoshenko beam
designs.

In principle the approach of applying Riemann transfor-
mation and then designing a backstepping control law for
the resulting PIDE-ODE hyperbolic system is generalizable
to any number of layers. However, when some of the
layers have the same physical properties (as e.g. in lami-
nation of repeated layers), the approach leads to isotachic
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hyperbolic PDEs (i.e. where some states have the same
transport speeds). This particular yet physical and interesting
case requires a modification of the general design, but has
not received much attention beyond a few remarks in the
earliest (m + n) design [19]. Thus, driven by the multi-
layer Timoshenko beam application, we extend the theory
of backstepping control of (m + n) hyperbolic PIDEs and
m ODEs to blocks of isotachic states, leading to a block
backstepping design based on a diagonalizing transformation.
This is applied to the model of an N-layer Timoshenko beam
by using a Riemann transformation to write the plant as
a 1-D hyperbolic PIDE-ODE system. After that, we apply
the proposed block backstepping theory to design a control
law, obtaining exponential stabilitiy with an arbitrary rate of
convergence.

This conference paper is a reduced version of our full
journal version [11], which contains the full details of our
results and its application to multilayer Timoshenko beams.

The paper is organized as follows: Section II presents
the family of systems under study, namely a 1-D (m + n)
hyperbolic PIDE system coupled with m ODEs, involving
some isotachic PDE states that are written as blocks. Section
III gives the block design of the boundary controller for
this case, and the main result. Then, Section IV analyzes
the resulting controller. Section V studies the closed-loop
stability. Section VI applies the proposed method to the
N-layer Timoshenko beams (details are left out, see [11]).
Section VII shows a numerical simulation corroborating the
theoretical results. Finally, Section VIII closes the paper with
some concluding remarks.

II. PROBLEM STATEMENT

Before addressing the problem of a N-layer Timoshenko
Composite Beam, we need to investigate the following
general system of (m+ n) hyperbolic PIDEs with m ODEs
constant-coefficient model

Zt = −Σ+Zx + Λ++Z + Λ+−Y +Π+X

+

∫ x

0

[
F++Z(y, t) + F+−Y (y, t)

]
dy, (1)

Yt = Σ−Yx + Λ−−Y + Λ−+Z +Π−X

+

∫ x

0

[
F−+Z(y, t) + F−−Y (y, t)

]
dy, (2)

Ẋ = AX +BY (0, t), (x, t) ∈ [0, 1]× [0,∞). (3)

with boundary conditions

Y (1, t) = U, (4)
Z(0, t) = CY (0, t) +DX. (5)

where

Z = [z1 z2 · · · zm]T , Y = [y1 y2 · · · yn]
T , (6)

Σ+ =

 σ+
1 0

. . .
0 σ+

m

 ∈ Rm×m, (7)

Σ− =

 Σ−
1 0

. . .
0 Σ−

κ

 ∈ Rn×n, (8)

Σ−
j = σ−

j Inj
,

κ∑
j=1

nj = n, nj ∈ N+, (9)

Λ++,Π+, F++, A,B,C,D ∈ Rm×m, (10)

Λ+−, F+− ∈ Rm×n, (11)
F−−,Λ−− ∈ Rn×n,Π−,Λ−+, F−+ ∈ Rn×m (12)

with speeds

−σ−
1 < · · · < −σ−

κ < 0 < σ+
1 ≤ · · · ≤ σ+

m (13)

In (9), Inj
represents the nj-sized identity matrix. Σ−

j

are the blocks that assemble to Σ−. Thus, the Y -system
has κ different transport speeds. When κ = n, that is
n1 = · · · = nκ = 1, all the states of Y−system have
different transport speeds (non-isotachic case) and the clas-
sical backstepping design [19] (or its multiple variations)
can be directly applied. When κ < n, there are at least
two states have an identical transport speed (isotachic case).
The direct coupling terms among the states with the same
transport speed produce singularities in the kernel equations
of [19]. To guarantee the kernel equations are solvable,
we expand Remark 6 of [19] to this PIDE-ODE case and
introduce an invertible transformation A(x) to transform
the original system into an intermediate system where the
isotachic stateshave no coupling between them. The details
of transformation A(x) are presented in Section III-A.

In addition, the following assumption is essential to
achieve the arbitrarily rapid stabilization of the coupled
hyperbolic PIDE-ODE system.

Assumption 2.1: The coupled matrix pair (A,B) is con-
trollable.

III. CONTROLLER DESIGN AND MAIN RESULT

A. Block transformation for isotachic states
For ease of derivation, the coupling matrix Λ−− can be

rewritten using blocks as follows

Λ−− =

 Λ−−
1 · · ·

. . .
· · · Λ−−

κ

 (14)

where Λ−−
i refers to the coupling only between states

belonging to the i-th block of isotachic states. To eliminate
these, we introduce a transformation

Ȳ (x, t) = A(x)Y (t) (15)
A(x) = diag{A1(x),A2(x), · · · ,Aκ(x)} (16)

dAj(x)

dx
=

1

σ−
j

Aj(x)Λ
−−
j , Aj(0) = Inj (17)

The matrices Aj(x) are all diagonal and invertible, with their
inverses Ãj(x) = (Aj(x))

−1 verifying

dÃj(x)

dx
= − 1

σ−
j

Λ−−
j Ãj(x), Ãj(0) = Inj

(18)

It is easy to see Ãj(x) is the inverse transformation of Aj(x)

since Aj(0)Ãj(0) = Inj
and dAj(x)Ãj(x)

dx = 0.
Use the transformation (15)–(18) and define

Λ̄+−(x) = Λ+−Ã(x), F̄+−(y) = F+−Ã(y), Λ̄−−(x) =
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A(x)
[
−Σ−Ã(x)dAdx (x) + Λ−−(x)

]
Ã(x), Λ̄−+(x) =

A(x)Λ−+, Π̄−(x) = A(x)Π−, F̄−+(x) = A(x)F−+,
F̄−−(x, y) = A(x)F−−Ã(y), Ū = A(1)U , one has the
(Z, Ȳ ,X) system

Zt = −Σ+Zx + Λ++Z(t) + Λ̄+−(x)Ȳ +Π+X

+

∫ x

0

[
F++Z(y, t) + F̄+−(y)Ȳ (y, t)

]
dy (19)

Ȳt = Σ−Ȳx + Λ̄−−(x)Ȳ + Λ̄−+(x)Z

+ Π̄−(x)X +

∫ x

0

F̄−+(x)Z(y, t)dy

+

∫ x

0

F̄−−(x, y)Ȳ (y, t)dy (20)

Ẋ = AX +BȲ (0, t) (21)

with boundary conditions

Ȳ (1, t) = Ū , (22)
Z(0, t) = CȲ (0, t) +DX. (23)

B. Stabilizing control law and main result

For system (1)–(5), the following control law is obtained
in Section IV.

U =

∫ 1

0

Ã(1)K (1, y)A(y)Y (y, t)dy

+

∫ 1

0

Ã(1)L (1, y)Z (y, t)dy + Ã(1)Φ(1)X(t),(24)

whose gain kernels are the particular values of the matrices

K(x, y),Φ(x) ∈ Rm×m, L(x, y) ∈ Rm×n (25)

evaluated at x = 1. These matrices will be defined in
Section IV-B. Finding Φ(x) in particular requires setting
boundary condition Φ(0). Define

E1 = A+BΦ(0) (26)

We can obtain rapid stabilization of Timoshenko beam by
choosing Φ(0) to adequately set the eigenvalues of the E1

matrix, which is always possible due to Assumption 2.1 [31],
thus obtaining the following result.

Theorem 1: Consider system (1)–(5), with initial condi-
tions Z0, Y0 ∈ L2(0, 1), X0 ∈ L2 under the control law (24).
For all C2 > 0 there exists gains K(1, y), L(1, y) and Φ(1)
such that (1)–(5) has a solution Y (·, t), Z(·, t) ∈ L2(0, 1)
for t > 0, and the following inequality is verified for some
C1 > 0:

∥Z(·, t)∥2L2 + ∥Y (·, t)∥2L2 + ∥X(t)∥2L2

≤ C1e
−C2t

(
∥Z0∥2L2 + ∥Y0∥2L2 + ∥X0∥2L2

)
. (27)

The proof of Theorem 1 is given in Section V.

IV. CONTROLLER ANALYSIS

This section presents the steps leading to (24). The back-
stepping method is used: first, the target system is presented
in Section IV-A; next, the backstepping transformation (of
Volterra type) is introduced in Section IV-B. The well-
posedness of the kernel equations is stated in Theorem 2.

A. Target system
Inspired by [5], we design a target system as follows

σt = Σ−σx +Ω(x)σ, (28)

Zt = −Σ+Zx + Λ++Z + Λ+−Ã(x)σ + Ξ1(x)X (29)

+

∫ x

0

Ξ2(x, y)σ(y, t)dy +

∫ x

0

Ξ3(x, y)Z(y, t)dy,

(30)

Ẋ = E1X + E2σ(0, t). (31)

with boundary conditions

σ(1, t) = 0, Z(0, t) = E3X + Cσ(0, t) (32)

where

σ =


ρ1
ρ2
...

ρm

 , E2 = B, E3 = CΦ(0) +D. (33)

and where the values of Ξ1(x, y), Ξ2(x, y), and Ξ3(x, y) are
obtained in terms of the inverse backstepping transformation,
in Section IV-B. The actual value of Ω(x) is also given in
that section. The stability of this target system is shown in
Section V.

B. Backstepping transformation
Firstly, inspired by [27], we introduce for Ȳ the following

backstepping transformation of Volterra type

σ = Ȳ −
∫ x

0

K (x, y) Ȳ (y, t)dy

−
∫ x

0

L (x, y)Z (y, t)dy − Φ(x)X(t). (34)

The kernel equations are deduced as usual, by a tedious
but straightforward procedure of taking derivatives in the
transformation, replacing the original and target equations,
and integrating by parts. The details are skipped for brevity.
The kernel equations have the following expressions:

Σ−Kx +KyΣ
− = KΛ̄−−(y)− LΛ̄+−(y)

− Ω(x)K − F̄−−(x, y)

+

∫ x

y

K(x, s)F̄−−(s, y)ds,

+

∫ x

y

L(x, s)F̄+−(y)ds, (35)

Σ−Lx − LyΣ
+ = K(x, y)Λ̄−+(y) + L(x, y)Λ++

− Ω(x)L− F̄−+(x)

+

∫ x

y

K(x, s)F̄−+(s)ds

+

∫ x

y

L(x, s)F++ds (36)

Σ−Φx = ΦA− Π̄−(x)

− Ω(x)Φ− L(x, 0)Σ+D

+

∫ x

0

KΠ̄−(y) + L(x, y)Π+dy (37)
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with boundary conditions for K and L,

Σ−L(x, x) + L(x, x)Σ+ = −Λ̄−+(x), (38)
Σ−K(x, x)−K(x, x)Σ− = −Λ̄−−(x) + Ω(x), (39)
K(x, 0)Σ− + L(x, 0)Σ+C = Φ(x)B. (40)

with

Ω(x) =


0 0 0 0

ω2,1 0 0 0
...

. . . 0 0
ωm,1 · · · ωm,m−1 0

 . (41)

where ωi,j(x, t) = (Σ−
i,i − Σ−

j,j)Ki,j(x, x) + Λ̄−−
i,j (x), i >

j, i = 2, · · · ,m. Notice that for i, j belonging to the same
block, Σ−

i,i = Σ−
j,j but also Λ̄−−

i,j = 0, thus resulting in
ωi,j = 0. Therefore there are no singularities in (39) for i, j
such that Σ−

i,i = Σ−
j,j .

The structure of the kernel equations is similar to [5]. For
m ≥ i ≥ 2, the kernel equations for Kij , Lij and Φij seem to
be nonlinear. However, one can start by solving K1j , L1j and
Φ1j , which are linear and can be proven solvable. Then, they
become known coefficients of the equations verified K2j ,
K2j and Φ2j . Thus K2j , L2j and Φ2j become also linear and
solvable. In the same recursive manner (in the spirit of [5]),
we can obtain the solution of each kernel equation. Regarding
the well-posedness of K(x, y), L(x, y), the following result
holds.

Theorem 2: There exists a unique bounded solution to
the kernel equations (35)–(40), namely Kij(x, y), Lij(x, y),
Φij(x) for i = 1, 2, · · · ,m; j = 1, 2, · · · , n; in particular,
there exists positive numbers N ,M such that

∥Kij(x, y)∥∞, ∥Lij(x, y)∥∞, ∥Φij(x)∥∞ ≤ N eMx (42)
The proof follows along the lines of [14] and is skipped;

it is based on using the method of characteristics to write
(35)–(40) in the form of integral equations and then posing
a solution in terms of a successive approximation series,
whose convergence is proven recursively. It is clear that the
derivations of [14] can be easily adapted to the presence
of the blocks, the integral terms and the differences in the
boundary conditions without much effort.

Since the kernels appearing in (34) are bounded, the trans-
formation is invertible from the theory of Volterra integral
equation. Thus one can define

Ȳ = σ +

∫ x

0

⌣

K (x, y)σ (y, t)dy

+

∫ x

0

⌣

L (x, y)Z (y, t)dy +
⌣

Φ (x)X, (43)

with bounded kernels. Both the transformation and its inverse
map L2 functions into L2 functions (see e.g. [20]).

From the inverse transformation, the kernels Ξ1(x),

Ξ2(x, y), Ξ3(x, y) appearing in (30) are

Ξ1(x) = Λ+−Ã(x)
⌣

Φ(x) + Π+ (44)

+

∫ x

0

F+−Ã(y)
⌣

Φ(y)dy, (45)

Ξ2(x, y) = Λ+−Ã(x)
⌣

K(x, y) + F+−Ã(y) (46)

+

∫ x

0

F+−Ã(y)
⌣

K(s, y)ds, (47)

Ξ3(x, y) = Λ+−Ã(x)
⌣

L(x, y) + F++ (48)

+

∫ x

0

F+−Ã(y)
⌣

L(s, y)ds. (49)

from which it can be deduced that they are bounded kernels.

V. STABILITY AND ANALYSIS OF CLOSED LOOP

This section proves Theorem 1. First, in Section V-A,
the solution of (28)–(32) is studied with the method of
characteristics. This helps to find stability conditions in
Section V-B. Then, a Lyapunov analysis in Section V-C
shows exponential stability.

A. A semi-explicit solution for the target system

We start solving (28)–(32) with the method of charac-
teristics. It can be shown (see [11] for details) that σ(x, t)
converges to zero in finite time 1

Σ−
m,m

. For t > 1
Σ−

m,m
,

Zt(x, t) =− Σ+Zx(x, t) + Λ++Z(x, t) + Ξ1(x)X

+

∫ x

0

Ξ3(x, y)Z(y, t)dy, (50)

Ẋ =E1X, (51)
Z(0, t) =E3X. (52)

Solving for X we get X(t) = X(0)eE1t, where we have
used the matrix exponential. Then

Zt(x, t) =− Σ+Zx(x, t) + Λ++Z(x, t) + Ξ1(x)X(0)eE1t

+

∫ x

0

Ξ3(x, y)Z(y, t)dy, (53)

Z(0, t) =E3X(0)eE1t. (54)

Applying the method of characteristics, Volterra-type integral
equations can be found for the components of Z. The details
are skipped, but one can always find a unique L2 solution
for Z.

B. Stability conditions

The only requirement for stability is that E1 is Hurwitz as
then the origin of the state is exponentially stable for (50).
Nevertheless, for rapid arbitrary stabilization, the eigenvalues
of E1 = A+BΦ(0) need to be set (e.g. by pole placement).
Thus, if we choose the boundary conditions Φ(0) such that

E1 + ET
1 < −2cI, (55)

then the zero equilibrium of X in (51) is exponentially stable
with a convergence rate of at least c. This is always possible
to achieve by Assumption 2.1.
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C. Lyapunov-based stability analysis of target system

Next, we use a Lyapunov functional for the stability
analysis of target system, to show exponential stability of
the origin with a fixed convergence rate. Define

V =ζ1X
TX + ζ2

∫ 1

0

eδxσT (x, t)(Σ−)−1σ(x, t)dx

+

∫ 1

0

e−δxZT (x, t)(Σ+)−1Z(x, t)dx (56)

It can be shown (see [11] for details) that, choosing c =
(c′+1)/2 with c′ > 0, and adequately setting Φ(0) to verify
(55), one reaches V̇ ≤ −c′V , achieving exponential stability
with an arbitrary convergence rate.

VI. RAPID STABILIZATION OF A N-LAYER TIMOSHENKO
COMPOSITE BEAM

A. N-layer Timoshenko Composite Beam Model

The N-layer Timoshenko Composite Beam model can be
expressed as [23] (see also [11] for more details)

βivi,tt = ηi (vi,xx + θi,x) , (57)

+ C1(i)k
i−1
n si−1

n − C2(i)k
i
ns

i
n (58)

ζiθi,tt = αiθi,xx − ηi (vi,x + θi) (59)

+ C1(i)h
i−1
2 ki−1

t si−1
t + C2(i)h

i
1k

i
ts

i
t, (60)

si−1
t = −hi−1

1 θi−1 − hi−1
2 θi, (61)

si−1
n = vi−1 − vi, i = 1, · · · , N (62)

where

C1(i) =

{
1 i > 1

0 i = 1
, C2(i) =

{
1 i < N

0 i = N
(63)

where the sub-index i makes reference to each of the layers,
vi are the transversal displacements, θi the rotational angles
of the cross-sections, ηi the shear stiffnesses, ζi the rotational
inertia, hi the interface-centroids distances, kit and kin the
tangential and normal interface stiffnesses, αi and βi the
ratios of two layer beams with respect to normal stiffnesses
and the moments of inertia of the cross-section, sit and sin the
tangential and normal displacements in the interface between
two beams, with boundary conditions

vi,x(0, t) = θi(0, t)− ξ2i−1vi,t(0, t)− ξ2ivi(0, t),

vi,x(1, t) = U2i−1(t),

θi,x(0, t) = 0, θi,x(1, t) = U2i(t), i = 1, · · · , N (64)

where ξ2i−1 are the anti-damping of each beam, and ξ2N
the anti-stiffness, with U1(t), U2(t), U3(t), · · · , U2i(t) being
the actuation variables that are designed next. All quantities
in the model are dimensionless. It must note that the 2N
actuators are independent and they will not de-laminate the
adjacent layers due to the adhesives existing between them.

B. Transformation to a system of 1-D hyperbolic PDEs
coupled with ODEs

Assumption 6.1: The anti-damping coefficients ξ2i−1 ap-
pearing in (64) verify ξ2i−1 ̸=

√
βi/

√
ηi, i = 1, 2, · · · , N .

As a first step, the Timoshenko beam is maped into a first-
order hyperbolic integro-differential system coupled with
ODEs. The system becomes a (2N + 2N) × (2N + 2N)
system of hyperbolic PIDEs , coupled with 2N ODEs, by
using the following Riemann-like transformations:

pi =
√
ηivi,x +

√
βivi,t, ri =

√
ηivi,x −

√
βivi,t (65)

qi =
√
αiθi,x +

√
ζiθi,t, si =

√
αiθi,x −

√
ζiθi,t (66)

0 = x2i−1 − vi(0, t) (67)
0 = x2i − θi(0, t), i = 1, 2, · · · , N (68)

Then the N-layer Timoshenko composite beams are trans-
formed into a PIDE-ODE system that verifies Assumption
2.1. Following Section II–Section V we can design a bound-
ary control law. See [11] for full details of the Timoshenko
plant written in Riemann coordinates and the controller.

VII. NUMERICAL SIMULATION

To illustrate the stabilization result with a numerical ex-
ample, we consider the case of N = 2 with β1 = 1, β2 =
2, η1 = η2 = 1, ζ1 = 1, ζ2 = 2, h1

1 = 1, h1
2 = 1, k1T =

1, k1N = 1, α1 = 1, α2 = 1, ξ1 = ξ3 = −1, ξ2 = ξ4 = 1,
where the transport speeds verify

√
η1√
β1

=
√
α1√
ζ1

>
√
η2√
β2

=
√
α2√
ζ2

. Thus, there are two “blocks” with the same transport
speeds. The value of Φ(0) can be set arbitrarily to specifiy
the decay rate and is chosen as Φ11(0) = −11,Φ12(0) =
1,Φ22(0) = −5,Φ33(0) = −11.4142,Φ34(0) = 1,Φ44(0) =
5 and other elements in Φ(0) are set as zero, which leads to
the decay rate C2 = c+1 = 6. For computing the 48 highly
coupled kernel equations with triangle domains, a power
series method is applied. Specifically, we start by solving
k1j , L1j ,Φ1j , j = 1, 2, 3, 4 since they are coupled with each
other and independent of other kernel functions.The kernel
equations are solved taking into account that K13,K14 are
all discontinuous due to the fact that (38) and (40) needs to
be simultaneously verified (but not K12 due to it belonging
to the same “block” as K11). Thus, they possess a “line
of discontinuity” along which they should be split in two
analytic parts by dividing the triangular domain T into two
parts which means we equivalently solve 2x4+2x4+4=20
coupled kernel functions. This procedure is followed until
all the kernels are found. The open-loop Timoshenko states
are divergent over time, but, when we apply the the proposed
controller the states converge to zero as shown in Fig. 1.

VIII. CONCLUDING REMARKS

This work presented an extension of the backstepping
hyperbolic design to isotachic systems by working in blocks,
motivated by the boundary control problem of a N-layer
Timoshenko composite beams with anti-damping and anti-
stiffness at the uncontrolled boundary. The plant can be
written, in general, as such a isotachic system, and we are
able to achieve arbitrarily fast decay by applying the block
design. Independent multiple actuations are also required for
rapidly stabilizing controllers for multi-layer fluids [15] and
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Fig. 1. Evolution of closed-loop Timoshenko states v1(x, t), θ1(x, t), v2(x, t), θ2(x, t) (from left to right).

multi-lane traffic [32]. It is only when the subsystems occupy
the same physical space, as in multi-class traffic [7], that a
single actuator suffices.
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