
Energy-optimal trajectory planning for electric vehicles using Model
Predictive Control

Alexandre Rocha∗1, Anand Ganesan1,2, Derong Yang2, and Nikolce Murgovski1

Abstract— This paper proposes a space-sampled Economic
Model Predictive Control (EMPC) approach to jointly minimize
total energy consumption of an electric vehicle (EV) and track
both longitudinal velocity and path curvature reference trajec-
tories. We consider a single-track vehicle model constrained to
the range of accelerations ±3 m/s2, and energy consumption is
modelled explicitly including power losses of electric machines.
Simulations with the high-fidelity simulator IPG CarMaker
show the trade-off between energy consumption and reference
tracking. Namely, results show how longitudinal velocity and
acceleration control significantly impact energy consumption,
whereas deviating from the path centerline mainly allows better
velocity tracking.

I. INTRODUCTION

The automotive industry is undergoing a disruptive trans-
formation in the last two decades, empowered by economic,
regulatory, and sustainability drivers. From policy makers
to consumers, society in general has created incentives to
develop less polluting and more efficient means of transporta-
tion, and manufacturers are rapidly adapting [1]. Electric
vehicles (EVs) appear as one such solution that reduces air
pollution throughout the energy production and consumption
cycle [2]. Although electric motors used in EVs are incompa-
rably more efficient than internal combustion engines, current
state-of-the-art batteries have a significantly lower energy
density than fossil fuels, leading to reduced driving range.
As a solution, alongside development of battery technology,
energy management can be embedded in vehicle motion
control algorithms [3], resulting in energy-optimal driving
of EVs.

According to the vehicle’s level of control autonomy,
energy consumption optimization occurs at different levels of
the control architecture and is embedded in different types of
algorithms. Cruise control (CC) emerges as one of the most
widely implemented of such algorithms. It consists of au-
tonomously tracking a reference longitudinal velocity, while
the driver remains responsible for the vehicle’s steering. CC
can be energy-optimal when taking into account an energy
consumption model and information about the surrounding
environment, such as traffic ahead and road slope [4], [5]. If a
vehicle autonomously controls its motion, then the problem
is converted to trajectory tracking or planning. Trajectory
tracking consists of jointly tracking given path and velocity
references [6], [7]. Commonly, these algorithms focus on
accurately tracking the references, which can be energy-
optimal based on route prior knowledge - a problem known
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as route planning. Instead, trajectory planning deals with
computing the vehicle’s position and velocity trajectories
online, given local and real-time information, possibly op-
timizing certain performance objectives. The well-known
work of [8] is an illustrative example of when multiple
traffic scenarios demand iterative replanning of trajectories.
Other traffic scenarios in which trajectory planning is applied
include obstacle avoidance [9], [10], as well as overtaking
and road merging maneuvers [11], [12]. Moreover, analogous
to CC, trajectory planning is energy-optimal when energy
consumption is modelled and optimized in the planning
problem [13], [14].

Optimizing the trajectory in real-time requires one to
solve numerically and iteratively an optimal control problem
(OCP) as the vehicle moves and acquires new information.
In contrast to low-speed autonomous vehicles, such as in cer-
tain industrial applications, road EVs require high-frequency
control updates to meet safety, comfort, and drivability
standards, which has been limiting the research focus of this
topic. Until today, most energy management strategies did
not include the joint problem of trajectory planning and en-
ergy consumption minimization, where instead a subproblem
is considered, for example, energy-optimal cruise control.
Moreover, from the reduced set of works that do include
such joint problem, energy consumption is not always mod-
elled explicitly, where commonly an approximation of it
is considered, thus being suboptimal. Nevertheless, as the
computational power of vehicle embedded systems increases,
energy optimization problems become feasible to compute in
real time [3], with higher modelling accuracy, and integrated
into more complex vehicle motion control algorithms [15].

In this paper, we address the problem of energy-optimal
trajectory planning of an electric vehicle by explicitly mod-
elling the vehicle powertrain energy consumption. This con-
sumption model includes the power losses of electric motors
and their inverters, which are fitted to measured efficiency
points. The trajectory is then optimized to minimize total
energy consumption while tracking longitudinal velocity and
road curvature references. Furthermore, we study the relative
impact of these tracking objectives on energy consumption
by allowing the vehicle to deviate from the references. From
the control perspective, the MPC framework is chosen due
to its ability to encompass a dynamic model of the vehicle
to predict its future motion, handle constraints, and opti-
mize specific performance criteria in an integrated feedback
loop. To limit computational complexity, the focus is placed
on constrained-acceleration scenarios, avoiding cumbersome
nonlinearities within the vehicle model that might lead to
MPC feasibility problems and high computational times.
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Furthermore, inspired by [9], [10], vehicle kinematics is
modelled relative to the path and the MPC problem is
reformulated into the spatial domain, both of which largely
simplify problem formulation. Path curvature depends im-
plicitly on velocity in the temporal domain, and thus on
the actuators. As a consequence, not only the integration of
the dynamics increase in complexity but also the constraints
on path boundaries become time-dependent. By changing
the sampling domain from time to space, path boundaries
and curvature are defined as functions of the independent
variable, avoiding the intricate dependence on vehicle veloc-
ity. Finally, the proposed algorithm is tested in a test track
on the high-fidelity vehicle simulator IPG CarMaker, where
simulations are conducted for different controller tuning
to illustrate the trade-off between energy consumption and
reference tracking.

II. SYSTEM MODELLING

The vehicle chassis is a rigid body with mass m and rota-
tional inertia Iz and its position is described in the curvilinear
coordinate system, which relates the chassis center of mass
to a reference path. The degree of model accuracy must be
weighted with the complexity arising from nonlinearities and
increase in state-space dimension, in order to achieve a rea-
sonable trade-off with computational burden. In this paper, a
compromise is found by limiting the vehicle operating range,
constraining vehicle accelerations, which allows for model
simplification. To start with, the chassis model includes
only one wheel per axle. Consequently, roll dynamics are
ignored, whereas pitch, and thus longitudinal load transfer,
are assumed static. Furthermore, the tire traction forces are
modelled as linear, and the wheel dynamics is neglected. The
control inputs are the steering rate δ̇ of the front axle and
the total propulsion torque rate Ṫ , whereas friction brakes
are not considered.

Regarding the power consumption model, we consider
the total mechanical output power from the electric motors
together with the power losses of the electric machines,
i.e. motors and inverters, which vary depending on motor
speed and torque. Furthermore, in this paper, the subscript
i = {f, r} indicates the front (f) and rear (r) wheel, and the
constant positive parameters of the vehicle model are denoted
using the symbol C with a suitable subscript.

A. Curvilinear bicycle model

The curvilinear bicycle model (or single-track model) is
illustrated in Fig. 1. Vehicle kinematics is defined relative to
the path centerline, whereas its dynamics follows the single-
track model [16]. Let the kinematic states s, d, and ∆ψ =
ψ − ψs(s) denote the distance travelled along the path, the
lateral displacement from the given path centerline, and the
local heading angle, respectively, where ψs(s) denotes the
heading of the path at s. Moreover, let κ(s) be the curvature
of the path centerline at s. Using this coordinate system,
there is no need for the absolute x− y position. Instead, we
consider longitudinal and lateral velocities, vx and vy , and
the yaw rate r. Given a planar road with zero slope and bank

Fig. 1. Vehicle representation in the curvilinear coordinate system.

angles, the resulting vehicle kinematics and dynamics are as
in [17] and [16], respectively:

ṡ =
vx cos(∆ψ)− vy sin(∆ψ)

1− κ(s)d
,

ḋ = vx sin(∆ψ) + vy cos(∆ψ) ,

∆ψ̇ = r − κ(s)ṡ ,

mv̇x = cos(δ)Fx,f − sin(δ)Fy,f + Fx,r +mvyr − Fd ,

mv̇y = cos(δ)Fy,f + sin(δ)Fx,f + Fy,r −mvxr ,

Iz ṙ = lf cos(δ)Fy,f + lf sin(δ)Fx,f − lrFy,r ,
(1)

where Fx,i and Fy,i are the longitudinal and lateral tire
forces, δ is the steering angle, li is the distance from the
center of mass to the wheel i, and Fd are the dissipative
forces.

Given the absence of wheel dynamics, the longitudinal
tire forces are linear on motor torque, T : Fx,i = TCT,i,
where CT,i considers the gear ratio, the wheel radius, and
the torque distribution among axles. Whereas, the lateral tire
forces result from a linearization of Pacejka’s tire model [18],
Fy,i = Cyσy,i, where σy,i = − arctan(

vy,i

vx,i
) is the lateral

slip angle of the tires that depends on the longitudinal and
lateral velocities, vx,i and vy,i, in the wheel coordinate frame.
The parameter Cy is the slope of Pacejka’s tire model at zero
tire slip and is scaled according to the normal load on each
wheel: Fz,f = mglr

lf+lr
and Fz,r =

mglf
lf+lr

, where g stands for
gravity.

The dissipative forces are the aerodynamic drag force
Faero = Caerov

2
x (wind speed and direction are neglected)

and the tire rolling resistance force Frri = CrrFz,i.

B. Power consumption

Let ω and T stand for motor rotational speed and torque.
The total power consumption at a given time instant is

P = Pmech + Pel.loss = wT + Pel.loss , (2)

where Pmech is the mechanical power output of the motor and
Pel.loss stands for the power losses of the electric machines.

According to the modelled dynamics, the power produced
by the motor to overcome all resistive forces, Pmech, is
decomposed into inertial power (wheel rotational inertia
neglected) and power losses due to tire resistive forces
related to rolling resistance and lateral slip, and aerodynamic
drag. Power losses in electric motors and their inverters,
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Pel.loss, are modelled as a polynomial fit of the efficiency
operating points, measured experimentally. In this work, the
polynomial is of 5th and 2nd order in motor rotational speed,
ω, and in its torque, T , respectively,

Pel.loss(ω, T ) =

5∑
n=0

2∑
m=0

pn,mw
nTm , (3)

p(·,·) being fitting parameters and p4,2 = p5,1 = p5,2 = 0

C. Optimal Control Problem (OCP)
The problem is formulated as an economic optimal control

problem (OCP), where the main objective is to track a refer-
ence longitudinal velocity trajectory and the path centerline
while minimizing energy consumption.

Let the system state x and input u vectors be:

x =
[
s d ∆ψ vx vy r δ T

]T
, (4)

u =
[
δ̇ Ṫ

]T
. (5)

The respective dynamics f(x(t),u(t), κ(s(t))) are then as in
Eq. (1), with the addition that the steering angle and motor
torque are lifted to match the system input with the controlled
variable of the actuators.

Recall that the validity region of this vehicle model is
limited when compared to a high-fidelity counterpart. For
that reason, ax and ay are constrained to a reduced operating
range. In addition, [δ, δ̇, T, Ṫ , d] are also constrained accord-
ing to the physical limitations of both the actuators and the
track. These are modelled as constant-value box constraints
except for d, which is constrained according to the time-
dependent bounds.

Given an obstacle-free feasible path, whose curvature and
bounds are known a priori, the problem is formulated as:

min
x(t),u(t)

∫ tf

0

l(x(τ),u(τ)) dτ +m(x(tf ))

s.t. ẋ(t) = f(x(t),u(t), κ(s(t))), ∀t ∈ [0, tf [,

x(t) ∈ [x, x̄], ∀t ∈ [0, tf ],

u(t) ∈ [u, ū], ∀t ∈ [0, tf [,

g(x(t),u(t), κ(s(t))) ≤ 0, ∀t ∈ [0, tf [,

x(0) = x̂0, x(tf ) ∈ X ,

(6)

where l(·) and m(·) are generalized running and target cost
functions, the notation {α, ᾱ} refer to the lower and upper
bound of α, and g(·) denotes additional algebraic constraints
on acceleration. The initial state is set as the path initial state
x̂0 and the final state is constrained to the target set X .

III. NUMERICAL SOLUTION OF OCP
The optimal control problem (6) is solved numerically, in

a receding horizon fashion. The problem is first reformulated
in the spatial domain and then transcribed into a nonlinear
finite-dimension optimization problem, which is then solved
by a state-of-the-art numerical solver at every control itera-
tion. We use the software acados [19] for problem formu-
lation, and the solver numerical method is the Sequential
Quadratic Programming, which uses an interior-point method
solver, HPIPM [20], to solve each sub-quadratic program.

A. Spatial reformulation of system dynamics
By changing the sampling domain, the system dynamics

becomes a function of track progress s instead of time t.
Subsequently, s becomes both the independent variable and
a state, being thus possible to reduce the state vector to

ξ =
[
d ∆ψ vx vy r δ T

]T
, (7)

whose dynamics fs(ξ(s),u(s), κ(s)) in the spatial domain
are defined ∀ṡ ̸= 0 as follows:

∂ξ(t)

∂s
=
∂ξ(t)

∂t

∂t

∂s(t)
= f(ξ(t),u(t), κ(s(t)))

1

ṡ(t)

= fs(ξ(s),u(s), κ(s)).

(8)

There are a set of advantages inherent to this sampling
domain. Firstly, reducing the dimension of the state-space
formulation reduces problem dimensionality and, conse-
quently, its computational expenditure. Secondly, path curva-
ture becomes a function of the independent variable, avoiding
an intricate dependency on time and, in turn, numerical
instability when integrating dynamics. Lastly, formulation
of constraints on d is simplified. Whereas in the temporal
domain, the nearest boundary depends on velocity, in the
spatial domain it is constant at every sampling instant. As
disadvantages, the spatial domain introduces a singularity
at ṡ = 0 and increases the nonlinearity of fs due to
multiplication with 1

ṡ(t) .

B. MPC Problem Formulation
A direct multiple shooting is used as a transcription

method, discretizing the state and the input space into a
regular finite-sized grid. The implicit 4th-order Runge-Kutta
method is used to discretize system dynamics, and hereon
we denote their discrete counterpart as fds (ξ(s),u(s), κ(s)).

The receding horizon optimization problem is an economic
MPC (EMPC) problem, and it is solved for a finite-horizon
of Sf and a horizon length N , with sampling interval ∆s =
Sf/N . In EMPC, persistent feasibility is cumbersome to
guarantee, and operating near feasibility limits may increase
computational complexity. To avoid such difficulties, the
constraints the vehicle most often tends to violate, i.e. those
of acceleration and path limits, are softened by adding slack
variables, represented by the vector ζ, and penalizing them.
Let the subscript i denote the node i of the horizon starting
at s0, thus abbreviating α(i|s0) to αi. The EMPC problem
formulation then follows:

min
ξ0,...,ξN ,u1,...,
uN−1,ζ1,...,ζN

N−1∑
i=0

(
∥ξi − ξi,ref∥2Qξ

+ ∥ui∥2Qu

+ ∥ax,i∥2qax
+ ∥ζi∥2Qζ

+ qe,iEi

)
+ ∥ξN − ξN,ref∥2Qx

+ ∥ζN∥2Qζ

s.t. ξi+1 = fds (ξi,ui, κi(si)), ∀i ∈ [0, N − 1]

ξi ∈ [ξ, ξ̄], ∀i ∈ [0, N ]

ui ∈ [u, ū], ∀i ∈ [0, N − 1]

gs(ξi,ui, κ(si)) ≤ 0, ∀i ∈ [0, N − 1]

ξ0 = ξ̂(s0) ,

(9)
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Fig. 2. Test path with initial point highlighted in red.

where E = P∆s/ṡ is the energy consumed per sampling
interval and ξ̂(s0) is the measured current state. Constrained
variables are those referred to in Section II-C, where the
algebraic constraints are redefined in the spatial domain as
gs(·). Specifically, algebraic constraints limit the longitudinal
and lateral accelerations as a2(·) ≤ 32m/s2. To mitigate tuning
unbalance between terms of different units and magnitude
in the cost functions, the weights q· and Q· are scaled as
follows:

Qξ,1,1 =
q̃d
d2max

, Qξ,3,3 =
q̃v

(vx − vx,ref)2max

, Qu,1,1 =
q̃δ̇
δ̇2max

Qu,2,2 =
q̃Ṫ
Ṫ 2
max

, qax
=

q̃ax

a2x,max

, qe,i =
q̃e

vx,ref,iCETmax
,

where Q(·) are diagonal matrices with Qξ,n,n = 0∀n ∈
{2, 4, 5, 6, 7}, (vx − vx,ref)max is user-defined, and the con-
stant CE translates linear wheel velocity to motor rotation
velocity.

IV. SIMULATION RESULTS

The proposed controller was tested with a high-fidelity
model of a sports passenger car in the IPG CarMaker
software. The main parameters of the vehicle are: m = 2100
kg, Iz = 4900 kg/m2, and lf + lr = 2.80 m. Moreover, it
has one electric motor per each wheel, among which the
optimized torque is equally distributed. The test track is
presented in Fig. 2. It is a planar path with constant width and
multiple corners of increasing curvature. The vehicle starts
at the red dot in Fig. 2 and drives towards the first corner
to the left. At the start of every simulation, the vehicle is
driven from vx = 0 km/h towards the reference velocity
by the controller embedded in the simulator. MPC takes
control only after the vehicle velocity is close enough to the
reference velocity. All plots below contain a vertical line that
indicates the MPC trigger instant. Furthermore, we assume
full-state observation and the controller runs at 20 Hz. All
computations were performed on a standard laptop computer
with Intel i9 2.30 GHz processor.

The reference ξref(s) is composed by zero-elements except
for the reference longitudinal velocity, which is defined as:

vx,ref(s) = min

{
Vx,ref,

√
ay,max

∥κ(s)∥

}
, (10)

where Vx,ref is a constant velocity reference value. By
saturating Vx,ref according to κ(s) and ay,max, we ensure

TABLE I
ENERGY-OPTIMAL PATH TRACKING: PERFORMANCE INDICATORS

{q̃ax , q̃e} {0, 0} {0, 10} {1, 0} {1, 10}
Relative energy saving [%] - 0.0 12.1 14.2

v̄x [km/h] 44.9 44.9 44.1 43.9
MAD (d) [m] 0.06 0.05 0.06 0.06

Mean computation time [ms] 7.7 15.2 7.4 14.6
Max computational time [ms] 15.0 21.4 13.8 24.0

the optimal velocity trajectory remains in the vicinity of the
reference. Although this saturation can be less accurate for
d ̸= 0, it is assumed to have little effect on the optimal
trajectory and to be surmountable with proper controller
tuning.

Two scenarios are studied. Firstly, MPC is tuned to ac-
curately track the path centerline, where different values of
q̃e and q̃ax

are chosen to analyze the impact of longitudinal
control on energy savings. Secondly, a range of q̃d is chosen
to study the effect of deviating from the path centerline on
energy consumption. We refer to these scenarios as energy-
optimal path tracking and trajectory planning, respectively.
In both, the reference velocity is Vx,ref = 70 km/h, and the
look-ahead distance is Sf = 50 m with N = 50.

In the results, the energy consumed along the path is
decomposed into different sources of consumption, computed
for the high-fidelity vehicle model. These are inertial forces
(linear and rotational), tire resistive forces (longitudinal and
lateral slips and rolling resistance), and aerodynamic drag.
Other types of non-modelled power dissipation sources, e.g.
gears, are assumed negligible due to their magnitude.

A. Energy-optimal path tracking

The controller is tuned with the following parameters:

q̃d =10, q̃v = 1, q̃δ̇ = 0.1, q̃Ṫ = 0.05,

q̃ax
∈ {0, 1}, q̃e ∈ {0, 10} .

The tracking results are shown in Fig. 3 and the performance
indicators for this scenario are summarized in Table I.
Looking at the latter, one can note that the mean absolute
deviation of d from d = 0, MAD(d), is similarly low for
all {q̃e, q̃ax

}, which indicates the vehicle accurately tracks
the path centerline. Given the high q̃d, the controller is
expected to exploit vx instead in order to save energy.
Nevertheless, in Fig. 3, comparing the two trajectories with
q̃ax

= 0, higher q̃e did not lead to a significant reduction in
velocity - the trajectories practically overlap. In fact, for that
q̃ax

, trajectories show aggressive manoeuvring to track the
reference, which in turn is infeasible given the constraints on
acceleration. Conversely, when q̃ax = 1, the overall penalty
on deviating from vx,ref is reduced and one observes a slight,
but visible difference between trajectories for different q̃e.

Comparing results with different q̃ax
, one concludes that

smoother longitudinal control yielded a lower overall energy
consumption. Penalizing q̃ax

resulted in fewer electrical and
longitudinal tire slip power losses, where a reduction of
v̄x ≈ 1 km/h also led to a decrease in drag power losses
and inertial power. The energy dissipated due to rolling
resistance remained constant, since load transfer is assumed
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Fig. 3. Energy-optimal path tracking: Longitudinal velocity and energy
consumption (per dissipation source). ”Lon Slip” and ”Lat Slip” refer to
longitudinal and lateral tire slips, and ”Rol Res” refers to tire rolling
resistance.

static, while dissipation due to tire lateral slip did not vary
significantly and was of low magnitude due to the limited
range of lateral accelerations.

Having as a baseline the case with {q̃ax
, q̃e} = {0, 0},

smoothing vehicle accelerations and reducing v̄x ≈ 1 km/h
led to energy savings of more than 12%. More interestingly,
comparing the trajectories with q̃ax = 1 but different q̃e,
it was found that reducing acceleration when entering and
exiting corners while reducing speed on average solely 0.2
km/h, resulted in consuming 2.1% less energy.

Furthermore, maximum computation did not exceed two
times the average, which suggests solver numerical stability.
It is also interesting to note that including the economic
term in MPC led to higher computation times, illustrating
its impact on computational complexity.

B. Energy-optimal trajectory planning

For this study, multiple simulations were conducted for
different q̃e and q̃d, with the following MPC tuning:

q̃v = 1, q̃ax
= 1, q̃δ̇ = 0.1, q̃Ṫ = 0.05

q̃d =10n, n ∈ {−4,−3, ..., 2}, q̃e ∈ {2, 5, 10}.

Fig. 4 illustrates a set of performance indicators of all
simulated trajectories: energy consumption E, MAD(d), v̄x,
MAD of vx from vx,ref, ax standard deviation, σ(ax), and
the closed-loop trajectories cost, J .

Looking at the evolution of the different parameters as a
function of q̃d, one concludes that the energy consumed over
one lap increased as q̃d decreased. Fig. 5 presents an analysis
of two trajectories corresponding to q̃d ∈ {10−4, 10}, with
constant q̃e = 10, which illustrate the following conclusions.
For high q̃d, the main objective of the vehicle is to follow the
centerline of the path. To do so, it compromises velocity to
guarantee feasible accelerations, which leads to a decrease

Fig. 4. Energy-optimal trajectory planning: Trade-off between reference
tracking and energy consumption.

Fig. 5. Energy-optimal trajectory planning: Longitudinal velocity, lateral
displacement, and energy consumption per dissipation source with q̃d =
10−4 relative to the baseline q̃d = 10.

in v̄x. Coherently with the findings above, such reduction
in average velocity led to energy savings, mainly due to
lower inertial power and drag power losses. Conversely,
for small q̃d, when approaching a corner, the vehicle both
reduces its velocity and deviates from the path centerline.
That results in lower longitudinal acceleration and reduced
MAD(vx), since lateral acceleration limits can be respected
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by controlling both trajectory curvature and velocity - see Eq.
(10). However, even though the electric power losses were of
lower magnitude, the higher v̄x increased the inertial power
and drag power losses and consequently the total energy
consumption.

The results show a trade-off between energy consumption
and reference tracking. The main optimization objective is to
track the reference longitudinal velocity, since otherwise the
vehicle would have no incentive to move forward. Therefore,
energy minimization and tracking of the path centerline
become secondary. When reducing the penalty on d, the con-
troller was able to more accurately track vx,ref, increasing v̄x.
Moreover, the standard deviation of longitudinal acceleration
decreased with q̃d due to less variation in the velocity along
the track. Consequently, better tracking of vx,ref, smoother
longitudinal control, and reduced penalty on d led to an
overall decrease in the cost of closed-loop trajectories, at the
cost of higher energy consumption. Inversely, the accurate
tracking of path centerline increased the cost J due to a
higher deviation from vx,ref and more aggressive longitudinal
control, regardless of the decrease in energy consumption. In
sum, note that energy consumption depended mainly on v̄x,
following a proportional relation to it.

When comparing among q̃e, instead, the main observation
is that the average longitudinal velocity and standard devia-
tion of the longitudinal acceleration decrease as the energy
becomes more expensive for higher q̃e, resulting in lower J .
However, attention must be paid when increasing q̃e, since
too high values can lead to deviation from vx,ref in straight
parts of the track, which is obviously undesirable.

V. CONCLUSIONS

In this paper, we proposed an Economic Model Predictive
Control (EMPC) approach to the problem of energy-optimal
trajectory planning of an electric vehicle. A simplified ve-
hicle dynamics model was presented, and the problem was
formulated in the spatial domain, which allowed for easier
treatment of path constraints and curvature.

The proposed controller was tested with a high-fidelity
vehicle model on a simulated test track while tracking the
track centerline and a space-varying longitudinal velocity
reference. Over one lap, the results showed that significant
energy savings come from slight reductions in average
longitudinal velocity, which are maximized by smoothing
longitudinal acceleration. For the specific case when the
vehicle deviates from the track centerline, the controller
tended to prioritize velocity reference tracking, leading to
higher average longitudinal velocity and thus total energy
consumption, proving the existence of a trade-off between
reference tracking and energy consumption.

Future work includes the proper definition of the target
cost and set of the MPC problem to include prior knowledge
of the curvature ahead, and thus optimally exploit the full
track width. In addition, we plan to implement MPC on
vehicle hardware to assess computational aspects.
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