
 
 

     

 

Optimal Control of Parallel Pressure 
Filtration Systems 

Hans Aalto 

Abstract-Dynamical models exist for the non-complex membrane 
filtration process which has enabled full scale optimal control 
development. Parallel pressure filtration systems do have 
similarities with membrane filtration, but lack models suitable 
for optimal control and they operate as multiple parallel units 
and must be treated as a part of a larger plant. A simplified 
optimal control concept is presented and compared with optimal 
control of membrane filtration. The optimal control does not use 
constant filter run cycle times as previous works on membrane 
filtration, but is based on true feedback control and is capable of 
finding the optimal run cycle time in varying conditions. Plant-
wide control is also addressed in the simulated case example 
presented in the paper. 

I. INTRODUCTION 

Pressure filtration, also known as cake filtration is used in 
many biochemical production plants to remove impurities 
from process streams. A filter is a closed pressure vessel 
containing multiple plates of metal meshes (leafs), on which 
a layer of solid material, the “cake”, consisting of some 
inorganic material, “clay” is deposited. The liquid to be 
filtered passes through the cake and the leafs so that the 
impurities are absorbed into the clay. Clay is continuously fed 
into the feed stream upstream the filters in a small proportion, 
and a cake builds up on the leafs thus increasing the 
differential pressure (DP) over the filter, [2]. When DP 
reaches a given threshold, the feed to the filter is stopped and 
the re-initialization (or: recovery, or: off-line) operations 
commence. First, the filter is emptied from un-filtered slurry, 
then the filter cake is removed. Then, a pre-coat step is 
performed, where clean, already once filtered product mixed 
with clay is pumped through the filter so that a pre-coat cake 
settles on the cleaned filter leafs, after which next filter run 
cycle starts.  

The complex re-initialization sequences can be automatic or 
executed as manual operations. Automatic control has since 
long been recommendable, [9].  

Membrane filtration is commonly used in water purification, 
[5]. No clay is used, and when solid impurities (foulants) have 
built up on the membrane so that throughput flow rate has 
decreased down to a given threshold, or when an experience-
based time has elapsed, the flow is reversed for a short time 
period, known as the “backwash” procedure.  

Pressure filtration (PF) is often arranged as parallel pressure 
filtration systems (PPFS) with high throughput capacity. 
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Optimal control of such systems seems to not have been 
deeply analysed in the literature. In [2], the average 
throughput flow rate of one single filter over one filtering 
cycle is suggested as the criterion to maximize. 

For membrane filtration (MF), optimal control based on the 
Pontryagin Maximum Principle (PMP) has been published, 
using only one binary control signal: filtering (u = 1) and 
backwash (u = -1), [5], [6], [7]. The available dynamical 
models and simplicity of MF make this possible. The 
drawbacks of this solution are that a fixed optimal run time 
for the MF is applied based on a model, which makes it an 
open loop control, and a fixed operating period over multiple 
cycles needs to be defined.  

The contributions of this paper are: 1) to demonstrate that 
there exists an optimal filter run time when the filter flow rate 
is a decreasing function of time 2) to demonstrate that the 
filter run time optimization can be implemented by a simple 
real-time control algorithm 3) to use backward-acting 
inventory control to improve PPFS throughput when rate-of-
change constraints are applied on the individual filter flow 
rates 4) to formulate the throughput maximization of the PPFS 
in such a way that a fixed operating time period is not 
required. 

In section II the phenomena and models of PF and MF and the 
optimal control of the same will be presented, in section III 
we develop a two-level optimal control for a PPFS, and in 
Section IV we present a simulated case for optimal control 
under relevant constraints for a PPFS with 5 filters. Section V 
concludes with discussion and summary. 

In this paper “flow” mean volumetric flow rate. The filter 
cycle consists of the re-initialization (off-line) cycle of length 
To and run cycle of length Tr. 

II. FILTRATION SYSTEM MODELS AND CONTROL 

A.  Pressure Filtration 

Pressure filtration is based on cake resistance α: 

𝛼 = 𝛼଴(Δ𝑝)௡                                                                                (1) 

where α0 is a material-specific flow resistance, Δp is the DP 
over the filter and n is the compressibility index in the value 
range 0.4…0.7. DP evolves over time as follows: 

Δ𝑝(𝑡) = ቎
𝑄(𝑡)

𝐴ଶ
න 𝑄(𝜏)𝑑𝜏 𝛽𝜇(1 − 𝑛)

௧

௧଴

቏

ଵ
ଵି௡

                           (2) 

where Q(t) is the flow through the filter, A is the total area of 
the filter leafs (and cake), μ is the viscosity of the filter feed 
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and β = α0c, where c is the average concentration of solids, 
including the clay and solid impurities, [2]. 

Eq. (2) was derived for constant flow Q, [2], [8] and there is 
no guarantee of it’s validity for varying flow.  

The average flow through a single filter over one filter cycle 
is to be maximized, [4]:   

max
ೝ்

𝐽 =
∫ 𝑄(𝑡)𝑑𝑡మ்

భ்

𝑇௥ + 𝑇௢

                                                                (3) 

Where T1 is the start time of the cycle, T2 is the end time and 
Q(t) is known. If there is no flow through the filter during off-
line operations, one may write T1 = 0, T2 = Tr.  If Q(t) = Qc is 
constant, the average flow is 𝐽 = 𝑄௖𝑇௥/(𝑇௥ + 𝑇௢). At constant 
flow it is optimal to run the filter up to the maximum 
differential pressure limit for maximal average throughput.                                    

B.  Membrane Filtration 

The liquid that flows through the membrane contains foulants, 
i.e. solid particles which accumulate on the membrane. The 
accumulated mass, m, is a function of time for which the 
models for forward flow during filtering, [5], [6]: 

𝑑𝑚(𝑡)

𝑑𝑡
=

𝑏

𝑒 + 𝑚(𝑡)
 ,    𝑚(0) = 𝑚଴                                       (4)  

and backwash flow, when assumed constant: 

𝑑𝑚(𝑡)

𝑑𝑡
= −𝑎𝑚(𝑡)                                                                       (5) 

The parameters are defined as 𝑏 =
஼஺మ∆௉

ఓఈ
, 𝑒 =

ோబ஺

ఈ
, 𝑑 =

𝐴ଶ∆𝑃/𝜇𝛼 and 𝑎 = 𝜔஻𝑄஻, where C is the concentration of 
foulants in the feed, A is the membrane surface area, ΔP is the 
pressure difference across the membrane, μ is the viscosity of 
the permeate, α is the specific resistance of the foulant layer, 
R0 is the intrinsic resistance of the membrane, ωB is the 
detachment  resistance of foulants, and QB is the constant 
backwash flow. The flow during filtering is: 

𝑄(𝑡) ≜ 𝑄൫𝑚(𝑡)൯ =
𝑑

𝑒 + 𝑚(𝑡)
                                                 (6) 

Using a single, binary control signal u(t): u(t) = 1, when the 
filter is filtering and u(t) = -1 for backwash, the accumulated 
amount of filtered product over a pre-defined time period T is 
to be maximized: 

max
௨(௧)

𝐽 = න[
1 + 𝑢(𝑡)

2
𝑄(𝑡) −

1 − 𝑢(𝑡)

2

்

଴

𝑄஻]𝑑𝑡                       (7) 

The optimal control is solved using PMP and provides a 
switching policy and a singular arc, characterized by the 
physically unrealizable value u(t) < 1, which is interpreted as  
the pulse width ratio of u(t), switching between the values -1 

and 1. The pulse duration is not provided by the optimal 
solution and needs to be found out by simulation. The singular 
arc is reached typically at a very short time T1 ≪ T, using u(t) 
= 1, and the singular arc is left at time T2, shortly before the 
end time: T-T2 ≪ T, also with u(t) = 1. 

The practical interpretation of the solution is that it is optimal 
to start backwash after a quite short time of filtering, and the 
repeat the short filter cycles (comprising of run and 
backwash) until T2. 

A generalization of the optimal control is presented in [7]. The 
switching character and short run cycles remain optimal for a 
large class of functions characterizing accumulation and 
detachment of foulant, provided that Q(t) in (6) is a decreasing 
function. 

C. Pressure and Membrane Filtration Compared 

The run time of PF may vary a lot in practical applications, 
[2], [3], being from 8 to17 hours. A typical time required to 
re-initialize one filter is 1 hour.  

During the PF run cycle it is preferable, [2], [3], [4], to have 
as constant flow Q(t) as possible. If the flow cannot be kept 
constant, at least flow increases should be avoided towards 
the end of the run cycle, while flow decreases are allowed. 
Constant flow targets could not be met in laboratory tests on 
PF in [8] and [11] while flows decreased more than 60% 
during the run cycle. 

PF are typically a part of a larger plant for which material 
balance must be managed, so flow through the PF cannot be 
freely controlled. The combined task of PF throughput 
maximization and plant-wide material balance management is 
considered difficult, [2], [3]. 

MF is operated with constant pressure difference throughout 
the run cycle contrary to PF’s which run with increasing 
pressure. MF seem to operate with a strongly decreasing flow 
profile, even showing 92% flow decrease during the run 
cycle, [5]. 

Typical run cycles for MF are 1 hour, and the off-line cycle, 
i.e. backwash, is less than one minute, [5], [6], [7]. PF and 
PPFS have high flow throughput while MF seems to be used 
in applications with much lower throughput, [2],[ 3], [4], [5]. 

III . OPTIMAL FILTER RUN-TIME 

We set as a target to develop optimal control for a PPFS. The 
complexity of PPFS and the fact that suitable models like (4) 
to (6) for MF are not available, we shall adopt a less rigorous 
approach. The optimal control strategy works on two levels: 
run-time optimization for individual parallel filters at the 
lower level and coordination of constraints and plant-wide 
throughput flow maximization at the higher level. 

Backwash in MF is equivalent to a loss of filtered product, 
whereas pre-coating in PF normally does not mean a loss, 
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while the pre-coat solution can be led to the filtered product. 
For illustration and comparison, we shall discuss pre-coating 
loss for PF also. 

A. Introductory case 

Consider (3) with T1 = 0, T2 = Tr and Q(t) given. Assume that 
no constraints (see Section III.C below) exist. Setting the 
derivative of J w.r.t. Tr to zero yields the extrema of J: 

𝑑𝐽

𝑑𝑇௥

=
𝑄(𝑇௥)(𝑇௥ + 𝑇௢) − ∫ 𝑄(𝑡)𝑑𝑡ೝ்

଴

(𝑇௥ + 𝑇௢)ଶ
= 0                             (8) 

The second derivative of J is: 

𝑑ଶ𝐽

𝑑𝑇௥
ଶ

=

𝑑𝑄
𝑑𝑡

|௧ୀ ೝ்
∗

(𝑇௥
∗ + 𝑇௢)

                                                                        (9) 

so we have maximum of J at t = 𝑇௥
∗ if the derivative of Q(t) at 

t = 𝑇௥
∗ is negative. 

If a pre-coat loss of volume of filtered product, Vp, needs to 
be considered, (3) is written by noting that whatever Vp is, it 
is a constant not dependent on Tr: 

max
ೝ்

𝐽 =
∫ 𝑄(𝑡)𝑑𝑡 − 𝑉௣

ೝ்

଴

𝑇௥ + 𝑇௢

                                                       (10) 

Clearly, Vp >0 affects the optimal run time. 

Example. Linearly decaying flow Q(t) = Q0 – Q1t .  We have 

=
ொబ ೝ்ିொభ ೝ்

మ/ଶ

ೝ்ା ೚்
 , so 

ௗ௃

ௗ ೝ்
=

ொబ ೚்ିொభ ೚் ೝ்ିொభ ೝ்
మ/ଶ

( ೝ்ା ೚்)మ  

Solving for 
ௗ௃

ௗ ೝ்
= 0 gives 𝑇௥

∗ = ට𝑇௢
ଶ +

ଶொబ ೚்

ொభ
− 𝑇௢. With pre-

coat loss, 𝑇௥
∗ = ට𝑇௢

ଶ +
ଶ(ொబ ೚்ା௏೛)

ொభ
− 𝑇௢  

Fig. 1a. shows Q and J for Q0 = 30 m3/h, Q1 = 2 m3/h2 ,Vp = 0 
and To = 1 hour, as functions of run time Tr. At the optimum 
run time, Q and J intersect, which is also obvious from (8). 

Note 1. A simple control strategy can be designed, where only 
flow Q(t) is measured during the run cycle, and the time t at 
which Q(t) intersects with the integrated flow divided by To+t, 
is the optimal run time and the filter should go off-line. 

Note 2. Because Q(t) is to a great extent determined by 
external circumstances, like material balance control, it may 
become irregular and generate multiple extrema to (10). Fig. 
1 b. shows the linear flow of the example which decreases to 
a constant value Q2 for 1.7 hours. If Q2= 13 m3/h, the global 
optimum of J is at Tr = 6.17 hours, but if Q2 = 11 m3/h, the 
global optimum is at Tr = 1.65 hours. 

 

Fig 1 Flow (m3/h, blue line) and J (m3/h, red line) as functions of candidate 
Tr. a: (left) linear flow, b: (right) irregularity in linear flow, Q2=13 m3/h. 

B.  Optimal filter run time  

The average flow (3) over one filter cycle is formally not 
correct to be used when considering multiple filter cycles. In 
the spirit of optimal feedback control, we must, when 
optimizing Tr at cycle number “k”, consider what has 
happened in all past cycles 1,2,…,k-1. Rewriting (3), 
assuming no pre-coat loss, yields: 

𝐽 =  
𝑆௖ + ∫ 𝑄௞(𝑡)𝑑𝑡

்మೖ

்భೖ

𝑇௖ + 𝑇ଶ௞ − 𝑇ଵ௞ +  𝑇௢௞

                                                    (11) 

Where: 

𝑆௖ = ෍ න 𝑄௜(𝑡)𝑑𝑡                                                           (12𝑎)
்మ೔

்భ೔

௞ିଵ

௜ୀଵ

 

𝑇௖ = ෍ 𝑇௥௜ + 𝑇௢௜

௞ିଵ

௜ୀଵ

 ≜  ෍ 𝑇ଶ௜ − 𝑇ଶ,௜ିଵ ,   𝑇ଶ଴ = 0

௞ିଵ

௜ୀଵ

          (12𝑏) 

Where Tri is the run time, Toi is the off-line time of cycle “i” 
and Qi(t),i = 1…k, are known filter flows. Without loss of 
generality, we may in (11) set  𝑄௞(𝑡) → 𝑄(𝑡), 𝑇ଵ௞ → 0, 𝑇ଶ௞ →
𝑇௥ and 𝑇௢௞ → 𝑇௢. Tr is subject to constraints: 

𝑇௥ே ≤ 𝑇௥ ≤ 𝑇௥௑                                                                        (12𝑐) 

The unconstrained optimal 𝑇௥
∗ can be solved analogously as in 

Section III.A: 

𝑑𝐽

𝑑𝑇௥

=
𝑄(𝑇௥)(𝑇௖ + 𝑇௥ + 𝑇௢) − (𝑆௖ + ∫ 𝑄(𝑡)𝑑𝑡)ೝ்

଴

(𝑇௖ +  𝑇௥ + 𝑇௢)ଶ
= 0    (13) 

In (13), Q(Tr)Tc – Sc = 0 if: 

1. Cycle number k = 1 is considered 

2. At cycle k > 1, we just disregard the past cycles of the 
filter 

3. If all cycles have been identical, i.e. the flow Qi(t), Tri and 
Toi have been identical for all cycles i = 1,…,k 

At the optimal 𝑇௥
∗ we have: 
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𝑄(𝑇௥
∗) =

𝑆௖ + ∫ 𝑄(𝑡)𝑑𝑡ೝ்
∗

଴

𝑇௖+ 𝑇௥
∗ + 𝑇௢

≜ 𝐽∗                                             (14) 

The possibly constrained run time becomes: 𝑇௥
∗ →

max(min(𝑇௥ 
∗, 𝑇௥௑) , 𝑇௥ே). 

Note 3: The simple real-time control algorithm in Note 1 
above is easily extended to the constrained multiple cycle 
case. It simply integrates the flow starting from time 0 to 
present time t, and when Q(t) coincides with the total 
integrated flow, including Sc, divided by Tc + To + t, then we 
have that t = 𝑇௥

∗, and the filter run cycle ends unless minimum 
time forces to extend run time or TrX forces to stop before the 
unconstrained  𝑇௥

∗. 

C. Optimal control of a PPFS 

The run-time optimization of N parallel filters can proceed 
independently under the condition that min/max constraints 
on run time for each filter are obeyed. On the higher level, 
constraints related to usage of process units and equipment 
related to off-line operations must be taken care of. Typically, 
[4], off-line operations can be done for only one filter at a 
time, so simultaneous end of run cycle for two or more filters 
must be avoided. This can be achieved by starting up the PPFS 
in a suitable sequence (fig.2) and by calculating TrN and TrX 
for each filter using a straight-forward look-ahead calculation 
(not shown here) in case there appears variations in off-line 
and run times. 

The run-time of each filter, Tr, must be at least (N-1)To. If Tr 
> (N-1)To, we define Ta = [Tr - (N-1)To]/N which is a 
periodically occurring time period during which all parallel 
filters are running, see fig. 2. The total flow through the PPFS 
shows considerable variations and may indeed challenge 
overall material balance control. 

The higher level PPFS optimal control takes care of 
calculating the constraints for each individual filter. Using 
Qkj(t) for the flow of each filter “j” at cycle “k” we have 
constraints: 

∆𝑝(𝑡) = 𝑎௝𝑄௞௝(𝑡) න 𝑄௞௝(𝜏)𝑑𝜏

௧

଴

≤  [∆𝑝ெ௔௫,௝(𝑡)]ଵି௡          (15) 

𝑄ெ௜௡,௞,௝(𝑡) ≤ 𝑄௞௝(𝑡) ≤ 𝑄ெ௔௫,௞,௝(𝑡)                                      (16) 

𝐷ெ௜௡,௞,௝(𝑡) ≤
𝑑𝑄௞௝(𝑡)

𝑑𝑡
≤ 𝐷ெ௔௫,௞,௝(𝑡)                                   (17) 

𝑇௥ே,௝ ≤ 𝑇௥௝ ≤ 𝑇௥௑,௝                                                                    (18) 

Where (15) is a DP constraint obtained by applying (1) for 

each filter j: 𝑎௝ =
ఉೕఓೕ(ଵି௡)

஺ೕ
మ  , (16) and (17) are constraints on 

filter flows and rate-of-change of filter flows. In addition to 
these, constraints dependent on plant-wide variables may be 
needed. The criterion to be maximised must be defined, such 
as the total throughput flow of the system. See Section IV. 

 

Fig 2. PPFS with three filters starting up, filter flows (blue, red and yellow) 
as functions of time, and total flow through the PPFS (purple). Principle plot 
without units. 

Note 4: From (15) it can be concluded that when DP 
approaches the maximum limit, it is favourable that Qkj is 
small which allows a large value of the integrated flow, thus 
contributing to increase of average throughput J. 

IV. THROUGHPUT OPTIMIZATION OF A PARALLEL 
PRESSURE FILTRATION SYSTEM 

We will discuss a PPFS with N = 5 parallel filters as a part of 
a plant with one filter feed tank, see figure 3.  

We add challenge by including fast filter empty during the 
off-line cycles to the filter feed tank, which causes large 
temporary increases in the inventory of that tank.  

 

Fig. 3. Process unit with a feed pump, feed tank and a PPFS. IC is an 
inventory (or level) controller and FC are flow controllers getting setpoints 
from IC. 

A.  Optimal control problem definition 

The problem is to find a maximal constant flow Q0 into the 
feed tank by optimal choice of filter run-times: 

𝑀𝑎𝑥 𝑄଴                                                                                       (19) 

Subject to: 

𝑑𝑉(𝑡)

𝑑𝑡
=  𝑄଴ −  𝑄௦(𝑡) + 𝑄௘(𝑡)                                              (20) 

𝑄௦(𝑡) = 𝐾௉ ቂ(𝑉(𝑡) − 𝑉଴) +
ଵ

்಺
∫ (𝑉(𝜏) − 𝑉଴)𝑑𝜏

௧

଴
ቃ             (21) 
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𝑄௦(𝑡) = ෍ 𝑄௜

ே

௜ୀଵ

(𝑡)                                                               (22) 

𝑉ெ௜௡ ≤ 𝑉(𝑡) ≤ 𝑉ெ௔௫                                                                 (23) 

and subject to constraints (15) to (18) for each individual 
filter. Note, that the cycle index “k” can be left away for the 
higher level plant-wide constraints. 

Eq. (20) is the differential equation for the volume balance of 
the tank. Qe(t) = 20 m3/h for 15 min. when a filter is emptying 
at the beginning of the off-line cycle and Qe(t) = 0 otherwise. 
(21) is the proportional plus integrating (PI) inventory 
controller of the tank volume V(t), with the flow Qs(t) as  
controller output and bound to be exactly the sum of 
individual filter flows as expressed by (22). V(t) must lie 
between VMin = 15 m3 and VMax = 25 m3. The filters are 
identical. i.e. have identical values for μ, β, A and n (See (2)). 
The maximum allowed flow rate for each filter, constraint 
(16), is QMax,k,j(t) = 28 – 2.7Δp(t) for Δp = 0…∆𝑝ெ௔௫ ≜ 4 bar, 
where Δp(t) is obtained from (15). QMin,k,j(t) = 25 m3/h for t = 
0…60 seconds and otherwise zero, in order to ensure that  
filter “j” starts the run cycle with a flow which promotes 
maximal plant throughput. 

The rate-of-change constraint (17) for each filter is: 

−𝛿ଵ ≤
𝑑𝑄௞௝(𝑡)

𝑑𝑡
≤ 𝛿ଶ(𝑡)                                                         (24) 

Where δ1 is a sufficiently large number and 𝛿ଶ(𝑡) =

max (0 , 0.7 −
ଵ.଴ହ

ೝ்೐
): Tre is the expected run-time of the 

current cycle which is equal to the previous actual run cycle 
of the same filter. The maximum rate of change starts at the 
value 0.7 m3/h/min. and decreases to zero at relative time 
2Tre/3 (in the run cycle counting from t = 0). Because 
controller output Qs(t) is subject to constraints, anti-windup 
logic must be used, [10]. Details are not presented here due to 
space limitation. The filters are started with maximal 
avoidance of risk for simultaneous off-line operations (fig. 2), 
allowing a minimum Ta = 2 min. The base case for all 
simulations is chosen as Tr = 8 hours (Ta = 48 min.), because 
in this time, DP reaches the maximum limit when the filter 
flow obeys the Δp- dependent maximum flow curve presented 
above. Tr* is calculated for all filters using the algorithm in 
Section III.B, Note 3. 

All continuous-time models presented above are discretized 
with a sample interval of 1 minute into a simulation model. 

B.  Forward-acting inventory control 

We use a simple line search to find the maximum constant Q0. 
As a reference case, we use no constraints on rate-of-change 
of filter flows, and with Tr = 8 hours, we obtain the maximal 
feed F0 = 85.02 m3/h. Fig. 4 shows filter 1 and 2 flows, tank 
inventory and emptying flows from filters 1 and 2. The green 
arrows illustrate that the emptying takes place as a first step 

in off-line. Inventory increases rapidly every time a filter is 
emptying and increases also after that due to less available 
throughput capability of the PPFS because one filter has just 
gone off-line.  

Fig. 4. Top: filter 1 max flow (blue) and actual (red), middle: ditto for filter 
2, bottom:  tank inventory (red) and emptying flows to tank from filters 1 and 
2 (blue; scale is 0 to 20 m3/h). Limits for tank inventory shown as black dotted 
lines.  

Since there are no rate-of-change constraints, tank IC makes 
flow increases over the whole filter run cycle. Those sudden 
increases compensate for filters going off-line. 

Now, invoking the filter flow rate-of-change constraints 
(Section IV.A), the maximum achievable inlet flow becomes 
Q0 = 73.76 m3/h with Tr = 8 hours. The unconstrained Tr* is 
217 min., which is constrained to 250 min. by the requirement 
of Ta = 2 min., whereby the achievable Q0 becomes 89.97 
m3/h. The remarkable improvement comes from the shorter 
run time but also from that the time spent in fully constrained 
flow rate change (zero) for each filter reduces from 160 to 83 
min. Fig. 5 shows filter 1 flow for run-times 480 and 250 min. 
(the flow time series for 250 min. has been shifted for easy 
comparison). The flows for Tr = 250 min. show only small 
decreases required by IC because Ta = 2 only, so the time  

 

Fig. 5. Filter 1 flow for Tr =480 min. (top) and for Tr =250 min. (bottom). 

spent with all filters running, requiring some filters to 
decrease the flow, is very short.  
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C.  Backward-acting inventory control 

Backward-acting control is recommended for inventories 
upstream from a process bottleneck, [1], which in this case 
means that IC acts on the tank inlet flow Q0: 

𝑄଴(𝑡) = 𝐾௉ ቎(𝑉଴ − 𝑉(𝑡)) +
1

𝑇ூ
න൫𝑉଴ − 𝑉(𝜏)൯𝑑𝜏

௧

଴

቏            (25) 

Formally, (19) shall also be re-defined to Max(Qs). The 
maximization Qs is now decoupled from material balance 
control and becomes directly constrained by the DP-
dependent maximum flow of individual filters, so the 
throughput-maximizing strategy is to keep filter flows at their 
maximum limit over their respective run cycles. 

Q0 = 89.38 m3/h is achieved for Tr = 480 min. and Q0  = 93.11 
m3/h for the optimal run-time Tr* = 268 min. which is above 
the minimum limit 250 min. so the unconstrained run time is 
the final optimal run time. Table 1 summarizes the results of 
simulation runs in sections IV.B and IV.C with Tr** = 
max(Tr*,250).  Note, that the maximum DP limit 4 bar was 
not reached in any of the simulated cases. 

Table 1. Maximized average Q0 for the three cases. 

Section, Case Q0 (480) Tr* Tr** Q0 (Tr**) 

B, no dQ/dt constraints 85.02 306 306 88.98 

B, dQ/dt  constrained 73.76 217 250 89.97 

C, backward IC 89.38 268 268 93.11 

 

V. CONCLUSIONS 

If flows through the filters in a PPFS are decreasing over the 
run cycle, an optimal run time can be easily found using only 
the measured flow during the current run cycle and cumulated 
flows and run / off-line times of past cycles. The presented 
optimal control of filter run times is truly based on feedback 
and can adapt to variations in run / off-line times in previous 
cycles. There is no need to define a fixed operating time 
period “T”. 

The maximization of throughput of a larger plant of which the 
PPFS is a part interacts with optimal run time control by 
constraining the individual filter flows. The paper shows, by 
the simulated case presented, that backward-acting inventory 
control can circumvent the specific requirements on filter 
flows – avoidance of flow increases late in the run cycle- and 
moreover achieve a superior throughput compared to 
forward-acting inventory control. 

The uncertainties and variabilities of a PPFS, of which 
unknown composition of the feed flow is one of the most 
important ones will be reflected on the filter flow and DP 
behaviour, but one these are measured, optimal control can be 

implemented. If filter flow rates are very irregular, the cost 
function may end up having multiple maxima, in which case 
the optimal run time can be wrongly concluded. Future 
research should deal with this issue. Another subject for future 
research is to include operating costs such as energy costs into 
the optimization problem instead of maximizing throughput 
at any cost, as we did in this paper. 
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