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Abstract— Pontryagin’s Maximum Principle is one of two
famous results towards characterization of solutions of optimal
control problems. Due to a shift in the desire from maximizing
gain or profit to minimizing costs it is nowadays more often
and henceforth in this publication referred to as Minimum
Principle. The theory behind it utilizes variational calculus and
provides necessary conditions. Many versions of the minimum
principle exist. Among them variations exist that consider
constraints, sufficient conditions, whereas other realize time-
discrete formulations of the problem. Nevertheless, so far a
generalization towards output-feedback systems is not found
in the literature. The goal of this publication is to extend the
existing theory via including an output function and variables.
Additionally, general equality and inequality constraints as
well as terminal constraints and sufficient conditions will be
incorporated. The original Pontryagin’s Minimum Principle can
then be seen as a special case of the derived criteria.

I. INTRODUCTION

Optimal control (OC) [1], [2] has become a very important
topic in the 1950s and is nowadays indispensable in the fields
of e.g. robotics, aviation, and financial economics. In OC an
objective function, representing costs or the deviation from a
target state, shall be minimized while the development of the
system’s states is given via ordinary differential equations.
Two famous results, the Hamilton-Jacobi-Bellman equation
(HJBE) which is based on Bellman’s principle of optimality
[3] regarding end pieces of optimal trajectories and Pontrya-
gin’s Minimum Principle (PMP) which characterizes optimal
solutions using small deviations, have been developed. The
nowadays so-called Pontryagin’s Minimum Principle was
first derived by Lev Semenovich Pontryagin and his students
[4], [5], [6]. Its concept is to consider small variations of
an optimal trajectory and investigate the resulting change
in the objective [7], [1], i.e. lifting the idea of differential
calculus from Rn to function spaces. The idea behind the
method is illustrated in Fig. 1. Shown are the optimal solution
trajectory x(·) in the state space, variations (x +∆x)(·) of
that trajectory and the reachable region for a given initial
vector x(0) and target vector x(tf ) at a final time tf .
The advantage of PMP over the HJBE is the possibility
of consideration of a free final time and free final state,
compare Fig. 2. Unfortunately, PMP can not be used to derive
a feedback-law but rather for numerical solutions.
Over the decades, the theory behind PMP has been extended

to allow the consideration of constraints regarding the state
and input variables [8], [9], [10] as well as the terminal state
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[11], [12], [13]. A discrete-time version has been developed
[8], [14] and PMP has been adapted to other types of dif-
ferential equations, e.g. semilinear and quasiliniear parabolic
equations [15]. The minimum principle itself only delivers
necessary conditions. However, sufficient conditions using
convexity conditions are given in the literature [16], [17],
[11]. Furthermore, PMP can be used to derive the HJBE and
vice versa [18]. Despite all of the mentioned extensions and
applications, to the best knowledge of the author a version of
PMP which is applicable to output-feedback systems can not
be found in the literature except for one special case in the
appendix of [19]. The focus of this work is to generalize the
minimum principle to allow systems that include an output
function, see Section II. Furthermore, in Section III the new
results will be combined with the constraint case including
time-dependent equality and inequality constraints as well as
terminal constraints for the input and output. An illustrative
application example, the incline phase of a rocket launch,
will be given in Section IV. In Section V, the equations
derived in Section II are used to obtain the output-feedback
version of the HJBE and sufficient conditions are stated. An
outlook and concluding remarks will be given in Section VI.

II. PONTRYAGIN’S MINIMUM PRINCIPLE FOR
OUTPUT-FEEDBACK SYSTEMS

To obtain a version of PMP which is applicable to output-
feedback systems we will focus on a proof that is based
on the classical PMP equations and application of the chain
rule. Instead of this very simple and short calculation one
could, e.g., also follow the derivations in [1] using variation

x(0)

x(tf )

x(·)

(x+∆x)(·)

Fig. 1. Optimal solution (solid line) and suboptimal solutions (dashed
lines) in state space as well as the reachable region (hatched area) when
starting in x(0)
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methods. A proof using the variation approach can be found
in the appendix of [19] for the special case of a time-
independent system with an infinite horizon or in [20] for
the same setup as considered in this paper. With more effort
this proof can be extended to the cases that will be discussed
throughout this section. Nevertheless, the in this paper will
be on the derivation using the chair rule approach.
To prepare for the output-feedback version we first recap the
classical version which was derived for the following class
of optimal control problems.

min
u(·)

tf∫
0

ℓ
(
τ, x(τ), u(τ)

)
dτ + L

(
tf , x(tf )

)
(1a)

s.t. ∀t ∈ R≥0 : ẋ(t) = f
(
t, x(t), u(t)

)
(1b)

x(0) = x0 ∈ Rnx (1c)

Here f ∈ C1
(
R≥0 × Rnx × Rnu ;Rnx

)
is

the function representing the systems dynamics,
ℓ ∈ C1

(
R≥0 × Rnx × Rnu ;R

)
is the stage cost, and

L ∈ C1
(
R≥0 × Rnx ;R

)
the terminal cost function. The

numbers nx, nu ∈ N are the dimensions of the state and
input space, respectively, while the final time is denoted
with tf . For this setup Lev Semenovich Pontryagin and his
students derived the well known Pontryagin’s Minimum
Principle, which can be split up into four cases letting the
final time tf and the final state x(tf ) = xf be free or fixed.

Theorem 1: (Pontryagin’s Minimum Principle)
Given an optimal control problem (OCP) as in (1) with ℓ,
L, and f continuously differentiable. Then for an optimal
solution (x, u, λ) the following conditions must hold.

λ̇⊤(t) = −λ⊤(t) · ∇xf
(
t, x(t), u(t)

)
−∇xℓ

(
t, x(t), u(t)

)
,

0 = ∇uℓ
(
t, x(t), u(t)

)
+ λ⊤(t) · ∇uf

(
t, x(t), u(t)

)
,

ẋ(t) = f
(
t, x(t), u(t)

)
,

x(0) = x0

Hereby, λ ∈ C1
(
R≥0;Rnx

)
is a Lagrange multiplier which

in the field of control theory is often called co-state. If
in addition the final time and/or final state is free further
conditions apply.

a) Final time tf and final state xf are fixed: x(tf ) = xf

b) Final time tf is fixed and final state xf is free:

λ⊤(tf ) = ∇xL
(
tf , x(tf )

)
(2)

c) Final time tf is free and final state xf is fixed:
x(tf ) = xf and

0 = ℓ
(
tf , x(tf ), u(tf )

)
+ λ⊤(tf ) · f

(
tf , x(tf ), u(tf )

)
+

∂

∂t
L
(
tf , x(tf )

)
(3)

d) Final time tf and final state xf are free: (2) and (3)

Now we consider the output-feedback case, i.e. the OCP

min
u(·)

tf∫
0

ℓ
(
τ, y(τ), u(τ)

)
dτ + L

(
tf , y(tf )

)
(4a)

s.t. ∀t ∈ R≥0 : ẋ(t) = f
(
t, x(t), u(t)

)
(4b)

∀t ∈ R≥0 : y(t) = h
(
t, x(t)

)
(4c)

x(0) = x0 ∈ Rnx (4d)

In addition to the OCP (1) the output function
h ∈ C1

(
R≥0 ×Rnx ;Rny

)
is added. The stage cost function

ℓ as well as the terminal cost L now depend on the output
values y ∈ Rny instead of the states x but remain of class
C1. Furthermore, ny ∈ N is the dimension of the output.
If we now substitute (4c) into ℓ and L and define

ℓ̃
(
t, x(t), u(t)

)
:= ℓ

(
t, h

(
t, x(t)

)
, u(t)

)
,

L̃(tf , x(tf )
)
:= L

(
tf , h

(
tf , x(tf )

))
,

the OCP (4) is of the same type as (1). Applying the chain
rule now leads to the following:

Corollary 2: (PMP for output-feedback systems)
Suppose an OCP as in (4) with ℓ, L, f , and h continuously
differentiable. Then the following conditions for an optimal
solution (x, y, u, λ) must hold.

λ̇⊤(t) = −λ⊤(t) · ∇xf
(
t, x(t), u(t)

)
−∇yℓ

(
t, y(t), u(t)

)
· ∇xh

(
t, x(t)

) (5a)

0 = ∇uℓ
(
t, y(t), u(t)

)
+ λ⊤(t) · ∇uf

(
t, x(t), u(t)

)
(5b)

ẋ(t) = f
(
t, x(t), u(t)

)
(5c)

y(t) = h
(
t, x(t)

)
(5d)

x(0) = x0

Depending on whether or not the final time and final state
are fixed or free additional conditions apply.
a) Final time tf and final state xf are fixed: x(tf ) = xf

b) Final time tf is fixed and final state xf is free:

λ⊤(tf ) = ∇yL
(
tf , y(tf )

)
· ∇xh

(
tf , x(tf )

)
(6)

c) Final time tf is free and final state xf is fixed:
x(tf ) = xf and

0 = ℓ
(
tf , y(tf ), u(tf )

)
+ λ⊤(tf ) · f

(
tf , x(tf ), u(tf )

)
+

∂

∂t
L
(
tf , y(tf )

)
(7)

+∇yL
(
tf , y(tf )

)
· ∂

∂t
h
(
tf , x(tf )

)
d) Final time tf and final state xf are free: (6) and (7)

To obtain (7) it is crucial to notice that
∂

∂t
L̃
(
tf , y(tf )

)
=

∂

∂t
L
(
tf , h

(
tf , x(tf )

))
+∇yL

(
tf , h

(
tf , x(tf )

))
· ∂
∂t

h
(
tf , x(tf )

)
instead of ∂

∂tL(tf , h(tf , x(tf ))). The additional term - com-
pared to the state-feedback version - appears due to the
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t

y

∆yf
∆y(tf )

y(0)

y(tf )

(y+∆y)(tf )

(y+∆y)(tf+∆tf )

tf tf+∆tf

Fig. 2. Variation (y +∆y)(tf + δtf ) of the final output vector y(tf )

explicit dependency of the output function h on the time.
Using the chain rule is a very elegant way to derive Equations
(6) and (7) based on (2) and (3). The complexity of consid-
ering variations tf +∆tf of the final time tf and variations
(y+∆y)(tf+δtf ) of the final output yf = y(tf ) at the same
time remains well hidden. To be more precise, Equation (6)
is used to determine

∆yf = (y +∆y)(tf +∆tf )− y(tf )

= h
(
tf +∆tf , (x+∆x)(tf +∆tf )

)
− h

(
tf , y(tf )

)
!
= 0,

while (7) characterized tf . A visualisation of the different
end points is given in Fig. 2.

Having a PMP for systems with output-feedback of the
form (4c) one naturally has the idea to try the same procedure
with input dependent output, e.g.

y(t) = h
(
t, x(t), u(t)

)
.

Using this setup one problem, namely, the presence of u(tf )
in the terminal cost L, arises. This issue could be solved
by keeping u(tf ) fixed and restricting the input space using
terminal constraints very similar to what will be shown in the
next section. On the other hand if the final time and the final
state are fixed the terminal cost L is unnecessary and can be
removed from (4). Thus, the minimum principle simplifies
to (5) with h

(
t, x(t)

)
→ h

(
t, x(t), u(t)

)
.

Before investigating how constraints can be incorporated
it shall be noted that in Corollary 2 all functions could
also depend on some parameters p ∈ Rnp (np ∈ N)
leading to a parametric version of PMP and a family of
solutions (xp, yp, up, λp). The parametric version of PMP
for an infinite horizon can be found in the appendix of [19].

III. CONSTRAINTS

The goal in this section is to extend the OCP (4) by the
following constraints and again derive necessary conditions
for a minimum.

∀t ∈ R≥0 : g1
(
t, y(t), u(t)

)
≤ 0 (8a)

g2
(
t, y(t), u(t)

)
= 0 (8b)

G1

(
tf , y(tf )

)
≤ 0 (8c)

G2

(
tf , y(tf )

)
= 0 (8d)

y(0)
y(tf )

G2 ≡ 0
g1 ≤ 0

g1 > 0

Fig. 3. Optimal solution (solid line) and suboptimal solutions (dashed
lines) in output space as well as the feasible region (hatched area, g1 ≤ 0)
and terminal equality constraints G2 ≡ 0

As all functions in (4), gi : R≥0 × Rny × Rnu → Rngi ,
Gi : R≥0 × Rny → RnGi (i ∈ {1, 2}) need to be at least
continuously differentiable. The numbers of constraints of
each type are denoted with ngi and nGi

(i ∈ {1, 2}). Such
rather general inequality and equality constraints have been
already considered for state-feedback systems, see [16], [9]
and others. Nevertheless, mostly constraints containing only
the states or input or final state are considered, see [5],
[11], [13]. An illustration of the feasible region in which all
possible output trajectories must be contained is shown in
Fig. 2. Additionally, the final output vector y(tf ) has to be
in a hyperplane defined by terminal equality constraints β2.

To incorporate the constraints (8) Lagrange multipliers
αi ∈ C1

(
R≥0;Rngi

)
with α1(·) ≥ 0 as well as

βi ∈ C1
(
R≥0;RnGi

)
(i ∈ {1, 2}) with β1 ≥ 0 are

introduced. To state the final theorem of this section the
constraints g1 and g2 as well as G1 and G2 need one more
property. A more general version of this property is stated
in [9].

Definition 3: (Uniformly positively linear independence)
Functions Ai, Bj ∈ C1

(
R≥0;R

)
(i ∈ {1, . . . , na},

j ∈ {1, . . . , nb}, na, nb ∈ N) are called uniformly in t
positively linear independent if there exists δ > 0 such that
for any ai, bj ∈ C1

(
R≥0;R

)
with ai(·) ≥ 0 and

∀t ≥ 0 :

na∑
i=1

ai(t) +

nb∑
j=1

|bj(t)| = 1

it holds: ∣∣∣∣∣∣
na∑
i=1

ai(t) ·Ai(t) +

nb∑
j=1

bj(t) ·Bj(t)

∣∣∣∣∣∣ ≥ δ.

Having this PMP for output-feedback including input
and output as well as terminal equality and inequality
constraints can be obtained using the results stated in [9]
and the procedure outlined in Section II.
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Corollary 4: (PMP for output-feedback systems with
equality and inequality constraints)
Suppose an OCP as in (4) together with the con-
straints (8), where all functions are at least contin-
uously differentiable and t 7→ g1

(
t, y(t), u(t)

)
and

t 7→ g2
(
t, y(t), u(t)

)
as well as t 7→ Gi

(
t, y(t)

)
and

t 7→ Gi

(
t, y(t)

)
(i ∈ {1, 2}) are uniformly in t positively

linear independent. Then for (x, y, u, λ, α1, α2, β1, β2) to be
an optimal solution the following conditions must hold for
all t ≥ 0.

λ̇⊤(t) = −λ⊤(t) · ∇xf
(
t, x(t), u(t)

)
−∇yℓ

(
t, y(t), u(t)

)
· ∇xh

(
t, x(t)

)
(9a)

−
2∑

i=1

α⊤
i (t) · ∇ygi

(
t, y(t), u(t)

)
· ∇xh

(
t, x(t)

)
0 = ∇uℓ

(
t, y(t), u(t)

)
+ λ⊤(t) · ∇uf

(
t, x(t), u(t)

)
+

2∑
i=1

α⊤
i (t) · ∇ugi

(
t, y(t), u(t)

)
(9b)

ẋ(t) = f
(
t, x(t), u(t)

)
(9c)

y(t) = h
(
t, x(t)

)
(9d)

0 = α⊤
1 (t) · g1

(
t, y(t), u(t)

)
(9e)

0 ≥ g1
(
t, y(t), u(t)

)
(9f)

α1(t) ≥ 0, β1 ≥ 0 (9g)

0 = g2
(
t, y(t), u(t)

)
(9h)

x(0) = x0 (9i)

Depending on whether or not the final time and final state
are fixed or free again additional conditions apply.
a) Final time tf and final state xf are fixed: x(tf ) = xf

b) Final time tf is fixed and final state xf is free:

λ⊤(tf ) = ∇yL
(
tf , y(tf )

)
· ∇xh

(
tf , x(tf )

)
(10)

+

2∑
i=1

β⊤
i ·∇yGi

(
tf , y(tf )

)
·∇xh

(
tf , x(tf )

)
c) Final time tf is free and final state xf is fixed:

x(tf ) = xf and

0 = ℓ
(
tf , y(tf ), u(tf )

)
+ λ⊤(tf ) · f

(
tf , x(tf ), u(tf )

)
+

∂

∂t
L
(
tf , y(tf )

)
+∇yL

(
tf , y(tf )

)
· ∂

∂t
h
(
tf , x(tf )

)
(11)

+

2∑
i=1

β⊤
i ·∇yGi

(
tf , y(tf )

)
· ∂
∂t

h
(
tf , x(tf )

)
+

2∑
i=1

β⊤
i · ∂

∂t
Gi

(
tf , y(tf )

)
d) Final time tf and final state xf are free: (10) and (11)

The following two final remarks of this section indicate
alternative versions of Corollary 4.

i) If one of the functions ℓ, f , g1, or g2 is not differen-
tiable with respect to the input u, Equation (9b) can
be replaced by the more general formulation

u = argmin
ũ(·)

{
ℓ
(
t, y(t), ũ(t)

)
+ λ⊤(t)·f

(
t, x(t), ũ(t)

)
s.t. (8a) and (8b).

ii) As in Section II again h
(
t, x(t)

)
can be replaced with

h
(
t, x(t), u(t)

)
in case the final time and final state is

fixed.

IV. EXAMPLE

To illustrate how to use the obtained conditions (9) an
example representing the optimization of the speed profile
v(·) and slope γ(·) to minimize the fuel consumption and
time during a rocket launch is utilized. The states are the
altitude h(·) and total mass m(·), while it is assumed that
only the consumed fuel y(·) = m(0)−m(·) is measured. The
final time and mass are free, while the final altitude should be
9144m. Given some constraints for the speed, i.e. the veloc-
ity shall never be below the initial value of 128.6m s−1 and
should not exceed 300m s−1. The slope should stay between
0 deg and 15 deg. The constraint optimization problem now
states as follows.

min
v(·),γ(·)

α · tf + (1− α) · y(tf )

ḣ = v · sin(γ)

ṁ = −Cs1,T1 ·
(
1 +

v

Cs2

)
·
(
1− h

CT2
+ CT3 · h2

)
y = m0 −m

128.6− v ≤ 0, v − 300 ≤ 0,

−γ ≤ 0, γ − 0.262 ≤ 0,

h0 = 3480, m0 = 69 000,

hf = 9144, mf free

Here the coefficient α ∈ [0, 1] can be used to weight the
two different objectives of minimizing, i.e. the time and
the total fuel consumption. The values of the coefficients
Cs1,T1 := Cs1 ·CT1, Cs2, CT2, and CT3 can be found in the
following Table I and are like the entire example taken from
[21]. The running cost ℓ(·) is zero, while four constraints

TABLE I
HAUL PARAMETERS

Cs1,T1 1.487 697 7 kg s−1

Cs2 441.54m s−1

CT2 14 909.9m
CT3 6.997× 10−10 m2

regarding the input variables must be fulfilled. Furthermore,
one final state is fixed while the other one is free. Using the
abbreviations
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v̄ := 1 +
v

Cs2
,

h̄ := 1− h

CT2
+ CT3 · h2,

and h̄′ := − 1

CT2
+ 2CT3 · h,

additionally to the equalities and inequalities in the optimiza-
tion problem (9)-(11) lead to(
λ̇1 λ̇2

) (9a)
= −

(
λ1 λ2

)
·
(

0 0
−Cs1,T1 · v̄ · h̄′ 0

)
,

0
(9b)
=

(
λ1 λ2

)
·

 sin(γ) v · cos(γ)

−
Cs1,T1

Cs2
· h̄ 0


+
(
−α1 + α2 −α3 + α4

)
,

0
(9e)
= α1 · (128.6− v),

0
(9e)
= α2 · (v − 300),

0
(9e)
= α3 · γ,

0
(9e)
= α4 · (γ − 0.262),

0
(9g)
≤ α1, α2, α3, α4,

λ2(tf )
(10)
= α− 1,

−α
(11)
=

(
λ1(tf ) λ2(tf )

)
·
(

v(tf ) · sin
(
γ(tf )

)
−Cs1,T1 ·v̄(tf )·h̄(tf )

)
,

which can only be solved numerically. For the numerical
solution we choose α = 0.01, thus, preferring to limit the
fuel consumption over the time to reach the target altitude.
The optimizer Gurobi 10 [22] was used to obtain the solution.
The time step for the discretization was set to 0.1 s. The
slope γ is constant and equals its upper boundary value of
0.262 rad. For the second co-state it holds λ2(·) ≡ α − 1
as can be seen directly from the equations. The evolution of
the altitude h, output y = m0 −m, velocity v, and co-state
λ1 is shown in Fig. 4. The desired altitude is reached in 90 s
burning ≈ 182 kg of fuel.

V. RELATION TO THE HJBE AND SUFFICIENCY

In this section it will be outlined how the results of
Corollary 2 can be used to easily derive the HJBE ([3], [2])
for output-feedback systems. In [18] the other direction, i.e.
how the HJBE can be transformed into PMP in case of state-
feedback, has been shown.
The main idea is to start from equation (5a) and substitute
λ⊤(t) with

∇yV
(
t, h(t, x(t))

)
· ∇xh

(
t, x(t)

)
= ∇xV

(
t, h(t, x(t))

)
,

where V ∈ C1
(
R≥0×Rny ;R

)
is the so-called value function

of the OCP (4).

V
(
t, y(t)

)
:= min

u(·)

tf∫
t

ℓ
(
τ, y(τ), u(τ)

)
dτ + L

(
tf , y(tf )

)
(12)
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Fig. 4. Numerical solution of the rocket launch optimization problem

Keeping (5c) and (5d) in mind condition (5a) transforms into
a gradient.

0 =
d

dt

(
∇xV

(
t, h(t, x(t))

))
+∇xV

(
t, h(t, x(t))

)
· ∇xf

(
t, x(t), u(t)

)
+∇yℓ

(
t, h(t, x(t)), u(t)

)
· ∇xh

(
t, x(t)

)
= ∇x

[
∂

∂t
V
(
t, h(t, x(t))

)]
+∇x

[
∇yV

(
t, h(t, x(t))

)
· ∂

∂t
h
(
t, x(t)

)]
(13)

+∇x

[
∇yV

(
t, h(t, x(t))

)
·∇xh

(
t, x(t)

)
·f
(
t, x(t), u(t)

)]
+∇xℓ

(
t, h(t, x(t)), u(t)

)
The order of derivatives with respect to x and t can not
simply be exchanged. The substitution of the derivative ẋ(t)
with the dynamics function f

(
t, x(t), u(t)

)
leads to an extra

dependency on the states. This issue is solved via incorpo-
rating the term ∇xV

(
t, h(t, x(t))

)
· ∇xf

(
t, x(t), u(t)

)
into

523



the gradient. Integration with respect to x together with the
terminal condition (7) yields

0 =
∂

∂t
V
(
t, y(t)

)
+∇yV

(
t, y(t)

)
· ∂

∂t
h
(
t, x(t)

)
+∇yV

(
t, y(t)

)
· ∇xh

(
t, x(t)

)
· f

(
t, x(t), u(t)

)
(14)

+ ℓ
(
t, y(t), u(t)

)
,

which is the HJBE for the output-feedback and time-
dependent case. The second terminal condition (6) is in-
cluded in the definition of the value function (12) since
V
(
tf , y(tf )

)
= L

(
tf , y(tf )

)
. Finally, the derivative of (14)

with respect to u leads to

0 = ∇yV
(
t, y(t)

)
· ∇xh

(
t, x(t)

)
· ∇uf

(
t, x(t), u(t)

)
+∇uℓ

(
t, y(t), u(t)

) (15)

the first order optimality condition which is identical with
(5b).

Corollary 4: (HJBE for output-feedback systems)
Consider an OCP (4) with ℓ, L, f , and h continuously
differentiable. Then the Hamilton-Jacobi-Bellman equation
is given by (14) and a first order optimality criteria by (15).

Having the HJBE which is a necessary and sufficient
condition it is the our last goal to obtain the same for PMP.
The reason why PMP and HJBE are not fully equivalent can
be seen in the derivation. We integrated (13) to obtain (14)
but had to chose a constant which in this case determines a
specific trajectory x(·). However, sufficient conditions can be
found in the literature, compare [17], [16], [11]. Following
the strategies therein, we let H∗(t, x, λ) be the minimized
Hamiltonian function, i.e.

H∗(t, x, λ) = min
u(·)

{
ℓ
(
t, h

(
t, x(t)

)
, u(t)

)
+ λ(t) · f

(
t, x(t), u(t)

)}
and easily adapt the known theory to include the output-
feedback case.

Corollary 5: (Sufficient conditions)
Suppose an OCP (4) and the constraints (8). If H∗(t, x, λ)
is convex in x for all λ ≥ 0 and there exists a solution
(tf , x, y, u, λ, α1, α2, β1, β2) for (9)-(11) with

λ(·) ≥ 0,

then (tf , x, y, u, λ, α1, α2, β1, β2) is a global minimizer.

VI. CONCLUSIONS

In this work, Pontryagin’s Minimum Principle has been
generalized to output-feedback systems. Optimality criteria
for four cases arising from whether or not the final time and
the final output respectively state are fixed or free have been
derived. It has also been investigated under which conditions
the output function may depend on the input. Furthermore,
the output-feedback case has been combined with the known
results time-dependent equality and inequality constraints for
the input and output variables as well as time-dependent
terminal equality and inequality constraints. An example

representing a rocket launch is provided to indicate how the
theory could be applied. In the end, the generalized version of
Pontryagin’s Minimum Principle has been used to derive the
Hamilton-Jacobi-Bellman equation for the output-feedback
case and sufficient conditions were given.
Future work may focus on a discrete-time output-feedback
version of Pontryagin’s Minimum Principle.
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