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Abstract— This paper considers the interval consensus prob-
lem for a class of hybrid linear multi-agent systems with
periodic jumps over a signed digraph, without assuming
specific connectivity properties. By utilizing the concept of
independent strongly connected components, we provide a clear
characterization of network clusters and explicitly depict the
consensus behavior of a trajectory. A hybrid distributed state
feedback approach is developed to achieve the convergence of
agents under stabilizable condition in the hybrid time domain.
Importantly, our results establish the solvability of the interval
consensus problem for both discrete-time and sampled-data
continuous-time multi-agent systems under signed graphs. To
validate the theoretical findings, a practical interval consensus
of multiple bouncing disks is studied and simulated.

I. INTRODUCTION

In recent decades, there has been a growing interest in
multi-agent systems, which aim to achieve distributed co-
ordination using local information. These systems hold sig-
nificant potential across various applications, such as social
networks [2], smart grids [4], formation control [28], to name
just a few. Control problems in multi-agent systems often
revolve around developing a distributed control law to steer
all agents toward a consensus behavior. This consensus can
take two main forms: a global consensus, which is applicable
to all agents when the graph satisfies certain connectivity
conditions like strong connectivity and the spanning tree
condition [16], [22], or specific consensus behaviors that
emerge within distinct clusters where graph connectivity may
not be guaranteed [7], [13], [21]. Typically, these studies
assume cooperative interactions among agents.

The rise of applications like social networks, network
adversarial attacks, and the study of inhibitory effects of
neurons have promoted the necessity for a general consensus
that handles interactions with cooperative and antagonistic
relationships. For this purpose, a signed graph was intruded
in [26], where positive edges and negative edges represent
cooperation and antagonism, respectively. Extensive research
efforts have been devoted to the exploration of signed graphs.
For instance, in structurally balanced signed graphs, the final
convergence split into two values with opposite signs but
equal magnitudes, a phenomenon known as bipartite con-
sensus [1], [15]. Here, under structurally balanced condition,
agents can be divided into two opposing groups with cooper-
ative interactions within each group. However, this division
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does not hold for structurally balanced graphs. In such a case,
under strong connectivity, all agents asymptotically converge
to zero [1]. When a graph includes only a spanning tree or
even lacks connectivity, the convergence behaviors become
more diverse. For example, in a signed graph containing
a spanning tree, agents exhibit interval bipartite consensus
[15], [20], but they do not converge to a common trajectory.
Meanwhile, the containment tracking problem is explored
in [14], assuming each follower can be reached by at least
one leader in signed graphs without requiring connectivity
across the entire network. Various extensions of interval bi-
partite consensus have been studied for more general models,
including coupled harmonic oscillators [25] and higher-order
linear models [11].

All the aforementioned studies have primarily focused on
either continuous-time or discrete-time multi-agent systems.
However, practical scenarios such as bouncing balls and
control domains like sampled-data control and reset linear
control motivate a more reasonable consideration of systems
that exhibits characteristics of both continuous-time (flow)
dynamics and discrete-time (jump) dynamics. Such systems
are referred to as hybrid systems, with a more detailed dis-
cussion available in [8]. Recently, hybrid multi-agent systems
with cooperative networks have been addressed recently.
For instance, single consensus problems were tackled under
spanning trees condition [27], and multi-consensus problems
were solved without requiring connectivity conditions [5],
[6]. Notably, the consensus problem of hybrid multi-agent
systems with cooperative-antagonistic networks is not inves-
tigated yet.

This paper aims to develop a hybrid distributed state
feedback approach to solve the interval consensus problem
for a class of hybrid linear multi-agent systems over a signed
graph without assuming specific connectivity properties. Our
contributions can be summarized in two aspects. Firstly,
we employ the decomposition of signed digraphs based
on independent strongly connected components (iSCCs) to
explicitly characterize the asymptotic behaviors of all agents.
Specifically, we demonstrate that agents within the same
iSCCs achieve either bipartite consensus or stability, de-
pending on whether the iSCCs exhibit structurally balanced
and structurally unbalanced, respectively, while the agents
outside iSCCs converge to convex hull spanned by the final
consensus values of those agents in iSCCs. Secondly, our
hybrid distributed state feedback provides the solvability
of the interval consensus problem for both discrete-time
and sampled-data continuous-time multi-agent systems under
signed graphs, extending the results in [12], [23], [29], [25]
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to general signed graphs without assuming any connectivity.
The rest of this paper is structured as follows: Section II

introduces signed graphs without connectivity and formulates
the associated problem. Section III explores the asymptotic
behavior and coordination analysis of hybrid multi-agent sys-
tems. An illustrative example demonstrating the effectiveness
of the theoretical results is provided in Section IV. Finally,
conclusions are summarized in Section V.

Notations: R denotes the set of all real numbers, Rn de-
notes the n dimensional Euclidean space, and Rn×n denotes
the set of all n×n matrices with real entries. Cn×n denotes
the set of all n×n matrices with complex entries. In denotes
the n×n identity matrix, and 1n denotes the n dimensional
column vector with every element being 1. Let N = {0,Z+}
where Z+ denotes the set of all positive integers. σ0(A)
denotes the set composed by all nonzero eigenvalues of a
square matrix A. For any positive integer p, Zp = {1, . . . , p}.
For a vector u ∈ Rp, if R = {i1 < · · · < ir} ⊆ Zp,
uR = [ui1 , . . . , uir ]

T ∈ Rr. Given a finite set R, #R denotes
the number of the elements.

II. PRELIMINARIES AND PROBLEM
FORMULATION

A. Signed Graphs

The communication network of multi-agent systems can
be modeled by a directed graph (digraph) G = (V, E), where
V represents the set of nodes and E ⊆ V × V denotes the
set of edges. A directed path from node i to node j in
G is a sequence of pairs (i, i1), (i1, i2), . . . , (ik, j) in E . A
digraph G is said to be strongly connected if for any i, j ∈ V
with i ̸= j, there exists a directed path from i to j. Let
A = [aij ] ∈ RN be a signed adjacency matrix of G, where
aij ̸= 0 if (j, i) ∈ E and aij = 0 if (j, i) /∈ E . G is termed
an unsigned digraph if aij ≥ 0 for all i, j ∈ V; otherwise,
it is considered a signed digraph. Following the terminology
in [1], a signed digraph G is structurally balanced if there
is a partition {V1,V2} of V , where V = V1 ∪ V2 and
V1 ∩ V2 = ∅, such that aij ≥ 0 when nodes i and j are
in the same subset and aij ≤ 0 otherwise. If this condition
is not satisfied, the signed digraph is considered structurally
unbalanced. Let L = [lij ] ∈ RN×N be signed Laplacian
matrix for G satisfying that lii =

∑
k ̸=i |aik| and lij = −aij

for any i ̸= j.
For any subset V ′ of V , GV′ = (V ′, EV′) is a subgraph of

G with its node set V ′ and edge set EV′ = E ∩ (V ′ ×V ′). A
subgraph is called a strongly connected component (SCC)
of G if it is a maximal subgraph that is strongly connected.
It is termed an independent strongly connected component
(iSCC) if it is a SCC and has no edge (i, j) with i /∈ V ′

and j ∈ V ′. Let us denote the family of node sets for all
iSCCs as {X1, . . . ,Xm}. Define Xm+1 = V\

⋃m
s=1 Xs. Set

Ns = #Xs for any s ∈ Zm+1. After suitably reordering the
nodes in V , the signed Laplacian matrix L can be rewritten

into the following form [14]:

L =


L1 0 · · · 0 0
0 L2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Lm 0
L∗
1 L∗

2 · · · L∗
m M

 (1)

where for each s ∈ Zm, Ls ∈ RNs×Ns is a signed Laplacian
matrix associated to the iSCC GXs

and L∗
s ∈ RNm+1×Ns de-

notes the connections from Xs to Xm+1; M ∈ RNm+1×Nm+1

define the internal connections in the Xm+1. For each s ∈
Zm, GXs

is strongly connected, and hence, according to
[1], [24], the associated signed Laplacian matrix Ls has the
following properties.

Lemma 1: Consider a signed digraph G with its signed
Laplacian matrix being given by (1), then

1) When GXs
is structurally balanced, there exists a diago-

nal matrix Ds = diag{ds1, . . . , dsNs
} with dsj ∈ {±1}

for 1 ≤ j ≤ Ns such that DsLsDs has property that
all the off-diagonal entries are nonpositive and all row
sums are zero. Moreover, zero is a simple eigenvalue of
DsLsDs.

2) When GXs
is structurally unbalanced, all eigenvalues of

Ls have positive real parts.
Through the decomposition (1), for any j ∈ Xm+1, there
always exists i ∈

⋃m
s=1 Xs such that a directed path from

node i to node j exists. Consequently, the subsequent result
can be directly deduced from [14, Lemma 4], clarifying the
characteristics of the submatrix M.

Lemma 2: Consider a signed digraph G with its signed
Laplacian matrix being given by (1). All eigenvalues of M
have positive real parts.

B. Problem Statement

Consider a class of hybrid linear multi-agent systems
governed by the flow dynamics

τ̇ = 1, ẋi = Axi +BuFi, i = 1, . . . , N (2a)

whether (τ, xi) ∈ [0, τd]× Rn and the jump dynamics

τ+ = 0, x+
i = Exi + FuJi, i = 1, . . . , N (2b)

whether (τ, xi) ∈ {τd} × Rn, where τ ∈ R, xi ∈ Rn,
uFi ∈ Rm1 , and uJi ∈ Rm2 are the clock variable, state, flow
input, and jump input of the i-th subsystem, respectively.
A ∈ Rn×n, B ∈ Rn×m1 , E ∈ Rn×n, and F ∈ Rn×m2

are all constant matrices. τd > 0 is a known constant that
represents the dwell-time between two consecutive jumps.
All solutions to system (2a)-(2b) are defined on the common
hybrid time domain T := {(t, k) : t ∈ [tk, tk+1], k ∈
N, tk := kτd}. In this paper, the topology of network (2) is
described by a signed graph G with V = ZN being the node
set, A = [aij ] ∈ RN×N being a signed adjacency matrix,
and L = [lij ] ∈ RN×N being a signed Laplacian matrix.

Remark 1: System (2) characterizes a class of hybrid
dynamics involving periodic time jumps, exhibiting char-
acteristics of both continuous-time (flow) dynamics and

2362



discrete-time (jump) dynamics. In this scenario, for any
t ∈ [kτd, (k+1)τd), the dynamics are driven by continuous-
time (flow) dynamics (2a), while a jump occurs at t = kτd,
transitioning to discrete-time (jump) dynamics (2b).

Remark 2: As highlighted in [27], system (2) is able to
characterize various practical engineering systems, say spin-
ning and bouncing disk and RC circuits, and practical control
systems like sampled-data control systems and periodic lin-
ear impulsive systems. It is noteworthy that each subsystem
of (2) operates within a common hybrid time domain denoted
as T where all the subsystems jump simultaneously. This
condition is not just reasonable but necessary since achieving
consensus requires synchronization of all subsystem states
at steady-state, mandating simultaneous jumps. A similar
discussion is available in [3].

As is usually considered for hybrid linear systems [17],
[27], each subsystem is assumed to be stabilizable throughout
this paper.

Assumption 1: Each subsystem of the hybrid linear multi-
agent system (2) is stabilizable.

In what follows, a technical lemma related to Assumption
1 are recalled. To begin with, we define

Ã = eAτdE, B̃ =
[
eAτdF RA,B

]
(3)

where RA,B =
[
B AB · · · An−1B

]
. According to

Lemma 1 of [27], there exists a nonsingular matrix Vc ∈
R(nm1+m2)×(nm1+m2) such that B̃Vc = [B̃v, 0], where B̃v

has full column rank. Moreover, Assumption 1 is equivalent
to the stabilizability of (Ã, B̃v) (in the discrete-time sense).
The following lemma delineates the methodology for select-
ing K such that Ã+ λB̃vK is Schur.

Lemma 3 (Lemma 3 of [27]): Consider the modified H∞
type Riccati inequality

ÃTPÃ− P − (1− δ2)ÃTPB̃v(B̃
T
vPB̃v)

−1B̃T
vPÃ < 0.

(4)

Let

δc = sup
δ>0

{δ|∃P s.t. the inequality (4) holds}. (5)

Given a complex number λ ̸= 0. If there exists α ∈ R such
that |1 − αλ| < δc, then, under Assumption 1, there exists
a positive definite matrix P solving (4) with δ = |1 − αλ|.
Moreover, K = −α(B̃T

vPB̃v)
−1B̃vPÃ is such that Ã +

λB̃vK is Schur.
Remark 3: As indicated in [9], under Assumption 1, a

lower bound for δc always exists since (Ã, B̃v) is stabilizable
(in the discrete-time sense). This lower bound is associated
with the unstable eigenvalues of Ã. Specifically, when Ã
contains no unstable eigenvalues, it is always possible to
select δc as 1.

To be specific, we consider the following dynamic feed-
back controller, with flow dynamics

τ̇ = 1, v̇i = −ATvi (6a)

whether (τ, xi, vi) ∈ [0, τd]× Rn × Rn, jump dynamics

τ+ = 0, v+i = eA
TτdK̄F

∑
j ̸=i

aij(sgn(aij)xi − xj) (6b)

whether (τ, xi, vi) ∈ {τd} ×Rn ×Rn, and controller output

uFi = BTvi, uJi = KJ

∑
j ̸=i

aij(sgn(aij)xi − xj) (6c)

where K̄F and KJ are determined by Algorithm 1.

Algorithm 1 The design for matrices K̄F and KJ

Require: Assumption 1 is satisfied.
1: Input τd, A, B, E, F
2: Define Ã and B̃ by (3)
3: Find the matrix Vc such that B̃Vc = [B̃v, 0], where B̃v

has full column rank (see Lemma 1 of [27])
4: Given δc satisfying (5), find αc ∈ R such that

|1− αcλ| < δc, ∀ λ ∈ σ0(L). (7)

5: Find a positive definite matrix P satisfying (4) with δ =
δ(αc) ≜ maxλ∈σ0(L) |1− αcλ|

6: Define [KT
J ,K

T
F ]

T = [KT
v , 0]

TV T
c , where Kv =

−αc(B̃
T
vPB̃v)

−1B̃T
vPÃ

7: Obtain K̄F by solving RA,BKF = G(τd)K̄F with
G(τd) =

∫ τd
0

eA(τd−τ)BBTeA
T(τd−τ)dτ

8: Output K̄F , KJ

This paper aims to explore the asymptotic behaviors for a
class of hybrid linear multi-agent systems (2) under dynamic
state controller (6), interacting through signed digraphs
without connectivity. Additionally, a comprehensive conver-
gence analysis is presented.

III. MAIN RESULTS

In this section, we discuss the asymptotic behaviors of
hybrid closed-loop system composed by (2) and (6) based
on the decomposition of Laplacian matrix as in (1).

For the sake of compactness and without loss of generality,
suppose that the signed Laplacian matrix is of the form
(1), and the node sets Xs with s ∈ Zp (p ≤ m) and
Xs with s = Zm\Zp correspond to structurally balanced
and structurally unbalanced iSCCs, respectively. Denote x =
[xT

1, . . . , x
T
N ]T ∈ RnN . Then, by a reordering of states, one

has x = [xT
1, . . . ,x

T
m,xT

m+1]
T ∈ RnN where xs = xXs

for
any s ∈ Zm+1. Let Ds with s ∈ Zp be given by Lemma 1.
We are now in a position to present our main results.

Theorem 1: Consider a class of hybrid linear multi-agent
system (2) with a signed digraph G. Let δc satisfying (5).
If there exists a αc ∈ R satisfying the inequality (7), then,
under Assumption 1, for any initial conditions, the solution
of the closed-loop system composed by (2) and (6) satisfies:

1) For any s ∈ Zp, limt+k→∞ xs(t, k) = (Ds1Ns
rT
sDs ⊗

EeA(t−tk))xs(tk, k) with rT
s ∈ RNs satisfying

rT
sDsLsDs = 0 and rT

s1Ns = 1;
2) For any s ∈ Zm\Zp, limt+k→∞ xs(t, k) = 0;
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3) limt+k→∞ xm+1(t, k) = −
∑m

s=1(M
−1L∗

s ⊗
In)xs(t, k) with M and L∗

s being given by (1).
Proof: The proof is divided into the following four steps:

Step 1: The decomposition of closed-loop system. Let
x = [xT

1, . . . , x
T
N ]T and v = [vT

1 , . . . , v
T
N ]T. Partition the

state x and v as x = [xT
1, . . . ,x

T
m,xT

m+1]
T ∈ RnN and

v = [vT
1 , . . . ,v

T
m,vT

m+1]
T ∈ RnN , respectively, where xs =

xXs
and vs = vXs

for any s ∈ Zm+1. Correspondingly, the
closed-loop system composed by (2) and (6) is equivalent to
the following form:

τ̇ = 1, (8a)

ẋs = (INs
⊗A)xs + (INs

⊗BBT)vs, ∀ s ∈ Zm, (8b)

v̇s = −(INs ⊗AT)vs, ∀ s ∈ Zm, (8c)

ẋm+1 = (INm+1
⊗A)xm+1 + (INm+1

⊗BBT)vm+1,
(8d)

v̇m+1 = −(INm+1 ⊗AT)vm+1 (8e)

whether (τ,x,v) ∈ [0, τd]× RnN × RnN , and

τ+ = 0, (8f)

x+
s = (INs ⊗ E)xs + (Ls ⊗ FKJ)xs, ∀ s ∈ Zm, (8g)

v+
s = (Ls ⊗ eA

TτdK̄F )xs, ∀ s ∈ Zm, (8h)

x+
m+1 = (INm+1

⊗ E)xm+1 + (M⊗ FKJ)xm+1

+

m∑
s=1

(L∗
s ⊗ FKJ)xs, (8i)

v+
m+1 = (M⊗ eA

TτdK̄F )xm+1

+

m∑
s=1

(L∗
s ⊗ eA

TτdK̄F )xs (8j)

whether (τ,x,v) ∈ {τd}×RnN ×RnN . In what follows, we
use the notation ηs = [xT

s ,v
T
s ]

T and yield that

τ̇ = 1, η̇s = Aηs
ηs (9a)

whether (τ, ηs) ∈ [0, τd]× R2nNs , and

τ+ = 0, η+s = Eηs
ηs (9b)

whether (τ, ηs) ∈ {τd}×R2nNs , where the matrices Aηs and
Eηs are of the following form

Aηs =

[
INs

⊗A INs
⊗BBT

0 −(INs ⊗AT)

]
,

Eηs
=

[
INs ⊗ E + Ls ⊗ FKJ 0

Ls ⊗ eA
TτdK̄F 0

]
.

Step 2: Bipartite consensuses for the subsystems asso-
ciated with structurally balanced iSCCs, where s ∈ Zp.
By the assumption, for each s ∈ Zp, GXs

is structurally
balanced. According to Lemma 1, there exists a diagonal
matrix Ds = diag{ds1, . . . , dsNs} with dsj ∈ {±1} for
1 ≤ j ≤ Ns such that L̄s = DsLsDs can be viewed as a
Laplacian matrix of a strongly connected unsigned digraph.
Notice that D−1

s = Ds. Define x̄s = (Ds ⊗ In)xs and

v̄s = (Ds ⊗ In)vs. Then, system (8a) – (8c) with s ∈ Zp is
equivalent to the following form:

τ̇ = 1

˙̄xs = (INs
⊗A)x̄s + (INs

⊗BBT)v̄s,

˙̄vs = −(INs ⊗AT)v̄s

whether (τ, x̄s, v̄s) ∈ [0, τd] × RnNs × RnNs , and system
(8g) – (8h) with s ∈ Zp is equivalent to the following form:

τ+ = 0,

x̄+
s = (INs

⊗ E)x̄s + (L̄s ⊗ FKJ)x̄s,

v̄+
s = (L̄s ⊗ eA

TτdK̄F )x̄s

whether (τ, x̄s, v̄s) ∈ {τd} ×RnNs ×RnNs . Notice that the
unsigned graph associated with L̄s is strongly connected.
The result in [27] can be directly used to obtain that if given
δc satisfying (5), there exists a αc ∈ R such that|1−αcλ| <
δc, ∀λ ∈ σ0(Ls), then, under Assumption 1, by taking Kv =
−αc(B̃

T
vPB̃v)

−1B̃T
vPÃ, limt+k→∞ x̄s(t, k) = (1Ns

rT
s ⊗

EeA(t−tk))x̄s(tk, k). Since Ds is nonsingular, we have
limt+k→∞ xs(t, k) = (Ds1Nsr

T
s ⊗ EeA(t−tk)Ds)xs(tk, k).

This shows part 1).
Step 3: Stability for the subsystem associated with struc-

turally unbalanced iSCCs, where s ∈ Zm\Zp. According to
(9), for all k ∈ N, ηs(tk+1) = Eηse

Aηsτdηs(tk), where t0 =
0 and ηs(tk) ≜ ηs(tk, k) for simplicity. One can choose a
nonsingular matrix Vs ∈ CNs×Ns such that L̂s = V −1

s LsVs

be an upper triangular matrix where the diagonal entries are
all eigenvalues of Ls. Let

η̃s(tk) =

[
V −1
s ⊗ In 0

0 V −1
s ⊗ In

]
η̄s(tk).

where η̄s(tk) = eAηsτdηs(tk). Then, it holds that

η̃s(tk+1) =

[
INs ⊗ Ã+ L̂s ⊗ B̃K 0

L̂s ⊗ K̄F 0

]
η̃s(tk). (10)

By part 2) of Lemma 1, INs
⊗Ã+L̂s⊗B̃K is a block upper

triangular matrix whose diagonal matrices are Ã+ λB̃K =
Ã+λB̃vKv, λ ∈ σ0(Ls) with s ∈ Zm\Zp. From Lemma 3,
under Assumption 1, if given δc satisfying (5), there exists
a αc ∈ R such that |1− αcλ| < δc, ∀ λ ∈ σ0(Ls) with s ∈
Zm\Zp, then, by taking Kv = −αc(B̃

T
vPB̃v)

−1B̃T
vPÃ, Ã+

λB̃vKv and hence Ã+λB̃K is Schur. Thus, system (10) is
asymptotically stable. Then we have limk→∞ ||η̃s(tk)|| = 0
and hence limk→∞ ||ηs(tk)|| = 0. Consequently, from (9a),

lim
t+k→∞

||ηs(t, k)|| ≤ e||Aηs ||τd lim
k→∞

||ηs(tk)|| = 0,

which, in turn, implies that limt+k→∞ xs(t, k) = 0 with
s ∈ Zm\Zp. This shows part 2).

Step 4: The asymptotic behaviors of subsystem
corresponding to subset Xm+1. Define x̄m+1 =
xm+1 +

∑m
s=1(M−1L∗

s ⊗ In)xs and v̄m+1 = vm+1 +∑m
s=1(M−1L∗

s ⊗ In)vs. Letting ξm+1 = [x̄T
m+1, v̄

T
m+1]

T

yields that

τ̇ = 1, ξ̇m+1 = Aξξm+1 (11a)
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whether (τ, ξm+1) ∈ [0, τd]× R2nNm+1 , and

τ+ = 0, ξ+m+1 = Eξξm+1 +

m∑
s=1

Fξsηs (11b)

whether (τ, ξm+1) ∈ {τd} × R2nNm+1 , where the matrices
Aξ, Eξ, and Fξs are of the following form

Aξ =

[
INm+1 ⊗A INm+1 ⊗BBT

0 −(INm+1
⊗AT)

]
,

Eξ =

[
INm+1

⊗ E +M⊗ FKJ 0

M⊗ eA
TτdK̄F 0

]
,

Fξs =

[
M−1L∗

sLs ⊗ FKJ 0

M−1L∗
sLs ⊗ eA

TτdK̄F 0

]
.

Thus, ξm+1(tk+1) = Eξe
Aξτdξ(tk)+

∑m
s=1 Fξse

Aηsτdηs(tk)
where t0 = 0 and ξm+1(tk) ≜ ξm+1(tk, k) for simplicity.
We can choose a nonsingular matrix V ∈ CNm+1×Nm+1 such
that M̂ = V −1MV be an upper triangular matrix where the
diagonal entries are all eigenvalues of M. Let

ξ̃m+1(tk) =

[
V −1 ⊗ In 0

0 V −1 ⊗ In

]
ξ̄m+1(tk).

where ξ̄m+1(tk) = eAξτdξm+1(tk). Then, it holds that

ξ̃m+1(tk+1) =

[
INm+1

⊗ Ã+ M̂ ⊗ B̃K 0

M̂ ⊗ K̄F 0

]
ξ̃m+1(tk)

+

[
V −1 ⊗ In 0

0 V −1 ⊗ In

]
eAξτd

m∑
s=1

Fξse
Aηsτdηs(tk).

By Lemma 2, INm+1
⊗Ã+V −1MV ⊗B̃K is a block upper

triangular matrix whose diagonal matrices are

Ã+ λB̃K = Ã+ λB̃vKv, λ ∈ σ0(M).

From Lemma 3, under Assumption 1, if given δc satisfying
(5), there exists αc ∈ R such that |1 − αcλ| < δc, ∀ λ ∈
σ0(M), then, by taking Kv = −αc(B̃

T
vPB̃v)

−1B̃T
vPÃ, Ã+

λB̃vKv and hence Ã+ λB̃K is Schur.
From Step 2, for any s ∈ Zp, limk→∞ xs(tk) =

limk→∞(Ds1Ns
rT
sDs ⊗ EeAτd)xs(tk−1) and

limk→∞ vs(tk) = 0. From Step 3, for any s ∈ Zm\Zp,
limk→∞ xs(tk) = 0 and limk→∞ vs(tk) = 0. These both
give that limk→∞(Ls ⊗ In)xs(tk) = 0 and limk→∞(Ls ⊗
In)vs(tk) = 0. Then, by a simple calculation, we have
limk→∞ Fξse

Aηsτdηs(tk) = 0. Thus, we can deduce with
the application of the input-to-state stability theory [10,
Lemma 3.8] that limk→∞ ∥ξ̃m+1(tk)∥ = 0, and hence,
limk→∞ ∥ξm+1(tk)∥ = 0. Consequently, from (11a),
limt+k→∞ ∥ξm+1(t, k)∥ ≤ e∥Aξ∥τd limk→∞ ∥ξm+1(tk)∥ =
0, which, in turn, implies that limt+k→∞ x̄m+1(t, k) = 0.
This shows part 3). □

Remark 4: In signed networks, akin to the analysis in un-
signed networks [5], [6], the asymptotic behaviors are intri-
cately linked to the underlying digraph’s structure, as detailed
in Theorem 1. When dealing with signed networks lacking
connectivity, their Laplacian matrix can be rewritten as the

1 2 3 4 5 6 7

Fig. 1. The signed digraph G (Solid blue and dashed red lines are associated
with positive and negative edges, respectively).
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Fig. 2. Trajectories of x1i and x2i for control law (6)

form of (1). This decomposition facilitates a correspond-
ing classification of dynamics. In particular, as shown in
Theorem 1, dynamics associated with structurally balanced
iSCCs reach bipartite consensus, while those associated with
structurally unbalanced iSCCs asymptotically converge to
zero. Additionally, the dynamics related to follower group
(i.e., Xm+1) converge towards the convex hull spanned by
agents within iSCCs.

Remark 5: When E = In and F = 0, system (2) reduces
to the continuous-time linear multi-agent system

ẋi = Axi +BuFi, i = 1, . . . , N. (12)

In this case, controller (6) reduces to a distributed
sampled state feedback controller uFi(t) =

BTe−AT(t−kτd)eA
TτdK̄F

∑N
j=1 aij(sgn(aij)xi(kτd) −

xj(kτd)). Therefore, Theorem 1 provides a sampled-data
control for interval consensus problem of system (12), which
extends the previous results [25] beyond the requirement
of a spanning tree (which only contains unique iSCC) to
signed digraphs with lacking connectivity.

Remark 6: When A = 0 and B = 0, system (2) reduces
to the discrete-time linear multi-agent system

x+
i = Exi + FuJi, i = 1, . . . , N (13)

In this case, controller (6) reduces to a distributed
discrete-time state feedback controller uJi(k) =
KJ

∑N
j=1 aij(sgn(aij)xi(k) − xj(k)) that is consistent

with that in some existing results, see [12], [29] for
first-order system and [23] for general linear system. Thus,
Theorem 1 also extends the results of system (13) in [12],
[23], [29] to signed digraphs with lacking connectivity.

IV. SIMULATION

We consider seven infinitely massive disks in motion
on a horizontal plane placed between parallel walls, with
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Fig. 3. Trajectories of x3i and x4i for control law (6)

identical state-space equations and parameters as given in
[27]. The signed digraph G is described in Fig. 1, which
does not satisfies any connectivity. It is evident that there
exist two iSCCs: X1 = {1, 2} and X2 = {5, 6, 7}. In
this scenario, GX1

is structurally unbalanced, while GX2

is structurally balanced. Moreover, with edge weight 0.5,
σ0(L) = {1.5, 1, 0.5 + 0.5ι, 0.5− 0.5ι, 1, 1, 1} with ι being
the imaginary unit. According to Algorithm 1, for given
δc = 1, we can take αc = 1 so that condition (7) holds
with δ(αc) = 1/2. The simulation results under control
law (6) are shown in Figs. 2–3. It shows that the states
of agents within X1 converge to zero, and those within X2

reach a bipartite consensus. Additionally, agents 3 and 4
asymptotically converge to the convex hull spanned by the
agents belonging to the iSCCs.

V. CONCLUSIONS

The interval consensus problem of hybrid linear multi-
agent systems with cooperative-antagonistic networks was
investigated. A distributed dynamic state feedback has been
presented to solve this problem, extending the consensus
studies under signed digraph from purely continuous-time
and discrete-time multi-agent systems to hybrid multi-agent
systems. The theoretical results was demonstrated through
the interval consensus of seven bouncing disks moving
on a horizontal plane between parallel walls. Future work
will aim to extend these results to systems with switching
communication graphs.
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