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Abstract— This paper deals with robust-adaptive control of
Parallel Kinematic Manipulators (PKMs), where a novel super-
twisting L1 adaptive controller is proposed. The objective is
to increase the robustness towards uncertainties as well as
external disturbances of the standard L1 adaptive controller,
by incorporating a robust super-twisting term. The proposed
controller as well as the original L1 adaptive controller, are
detailed for robot manipulators. Next, the experimental testbed
is described, along with some implementation issues on FOEHN
parallel robot. The proposed control scheme is compared with
some existing literature controllers in two experimental scenar-
ios, highlighting notable improvements in tracking performance
reaching up to 75% with respect to the standard L1 adaptive
controller.

I. INTRODUCTION

Parallel Kinematic Manipulators (PKMs) offer several

advantages thanks to their architecture, compared to their

serial counterparts [1], [2]. As a result, numerous research

studies on PKMs have emerged during the last decades,

covering various topics such as mechanism optimization

[3], kinematic and dynamic modeling [4], trajectory plan-

ning [5], and control [6]. However, controlling PKMs has

consistently been regarded as a challenging task within the

control community due to their highly nonlinear dynamics,

their large uncertainties, and their time-varying parameters.

Consequently, to guarantee good tracking performance, these

complex nonlinearities should be meticulously considered in

the control scheme design [7]. Indeed, the literature features

several control schemes designed and effectively applied

to PKMs. Some of these control schemes, such as PID-

based controllers [8], [9], are non-adaptive. These decentral-

ized controllers are designed without considering knowledge

about the robot’s dynamic model, making them the most

widely adopted schemes in the industrial world thanks to

their simplicity. However, they may exhibit some perfor-

mance issues in the presence of uncertainties or external

disturbances. To improve the robustness of these controllers,

incorporating robustness terms (like in the Robust Integral

of the Sign of the Error-RISE) can be a potential candidate

solution. The resulting controllers are known as RISE-based

controllers [10].

For applications involving high velocities and acceler-

ations, most non-adaptive decentralized controllers often

exhibit significant degradation in the tracking performance.
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To address this issue, such controllers can be enhanced

by compensating for the robot’s dynamics, leveraging the

benefits of modeling and identification processes. Examples

of such enhanced schemes include computed torque control

[11], and augmented feedforward RISE feedback control

[12]. Alternatively, the robot’s dynamic model can be used

to develop optimization-based control schemes, such as LQR

(Linear Quadratic Regulator) [13], LQG (Linear Quadratic

Gaussian) [14], and MPC (Model Predictive Control) [15].

In the case of NMPC (nonlinear MPC), the prediction model

is nonlinear, which can result in a substantial computational

burden. Sliding mode controllers are model-based control

schemes known for their robustness against uncertainties and

external disturbances, achieved through the application of a

discontinuous control term [16], [17]. However, this term can

lead to a chattering phenomenon, especially in the case of

first-order sliding mode control. Non-adaptive model-based

control schemes are highly dependent on the dynamic model

and thereby require an accurate dynamic model with a good

knowledge of the dynamic parameters. Consequently, they

have limitations in certain industrial applications where the

dynamic model is frequently time-varying or unknown [7].

To overcome those limitations, adaptive control schemes

have been developed. The concept revolves around enhancing

the controller’s ability to adapt to changes in the system and

its environment. One design way is to incorporate real-time

estimation of dynamic parameters into the control scheme,

thereby enabling adaptive compensation within a model-

based framework [18], [19]. This approach results in the abil-

ity to compensate for uncertainties and time-varying dynamic

parameters in real time. However, it is worth noting that

implementing this control solution may require a substantial

tuning time of the control parameters and may need also a

significant computational burden. Adaptive control can also

be achieved by making the feedback gains adaptive. In [20],

the proposed controller combines a nominal feedforward

term for model-based compensation with a RISE feedback

control term featuring adaptive feedback gains. In [21], the

controller gains are designed to be adaptive in order to

enforce the behavior of the controlled robot to be as close as

possible to a reference model. This approach is commonly

referred to as Model Reference Adaptive Control (MRAC).

L1 Adaptive Control is recognized as an extension of

MRAC, featuring the inclusion of a state predictor and the

application of a low-pass filter to the control input [22]. The

purpose of this filter is to guarantee a decoupling between

robustness and adaptation. In contrast to MRAC scheme,

the L1 adaptive control strategy places its emphasis on
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ensuring the controller’s feasibility by partially compensating

for the uncertainties within the control channel bandwidth

[23]. Furthermore, the incorporation of a projection operator

ensures the boundedness of the estimated parameters. Be-

sides, L1 adaptive control does not need a dynamic model

of the system, making it particularly advantageous. Due to

these benefits, it has acquired an increasing interest and has

been successfully applied to a variety of uncertain nonlinear

systems [24], [25]. However, the inclusion of the filter can

introduce a delay in the controller’s reactivity, potentially

leading to a degradation in the tracking performance. Fur-

thermore, L1 adaptive control may exhibit sensitivity to

high-frequency disturbances. This sensitivity may need the

incorporation of additional control terms to ensure robustness

in such scenarios.

Super-twisting sliding mode control is known for its

robustness towards uncertainties and external disturbances,

as well as its ability to achieve finite-time convergence of

tracking errors [17]. In this paper, the design of a novel

non-model-based adaptive robust controller is proposed, by

the augmentation of the L1 adaptive controller with a

robust super-twisting term. The resulting controller should

enhance the tracking performance compared to the standard

L1 adaptive control, leading to an appropriate solution for

uncertain nonlinear systems. As a validation, the proposed

controller has been implemented and tested through real-time

experiments on a 6-DOF parallel manipulator. A comparative

study with respect to both the standard L1 adaptive and PID

controllers has been conducted.

The rest of the paper is structured as follows. In Section II,

a short background on L1 adaptive control along with the

proposed control scheme are detailed. Section III provides

the description and modeling of FOEHN parallel robot as

a potential application testbed, with some implementation

issues. Section IV presents and discusses the obtained real-

time experimental results. Finally, in Section V, some con-

cluding remarks are provided, along with a discussion of

potential future research directions.

II. PROPOSED CONTROL SCHEME

In this section, a short background on L1 adaptive con-

trol, followed by the design of the proposed controller, are

detailed.

A. Background on L1 Adaptive Control

In the robotic community, for an n-DOF robotic manip-

ulator, qd ∈ R
n represents the vector of the desired joint

positions, while q∈R
n represents the vector of the measured

joint positions. Typically, the desired joint trajectories can be

obtained from the Cartesian desired trajectories by solving

the inverse kinematics problem. The measured trajectories

of the controlled robot should closely follow the desired

trajectories, and thus, the control scheme is designed to

minimize the tracking error. To achieve this objective, let

us first define the combined tracking error as follows:

r = (q̇− q̇d)+λ (q−qd) (1)

where λ ∈ R
+ is a control design parameter. The control

input vector, denoted by Γ, can be designed as a combination

of a fixed state-feedback term, and an adaptive control term

as follows:

Γ = Amr+ΓAd (2)

where Am ∈ R
n×n is a Hurwitz matrix characterizing the

transient response of the system, and ΓAd ∈R
n is the adaptive

control term. The combined tracking error dynamics of a

robotic manipulator, under the control law presented in (2)

can be expressed as follows:

ṙ = Amr+ΓAd −η (t,r,q) , r(0) = r0 (3)

where η (t,r,q)∈R
n is a nonlinear function, representing the

nonlinear dynamics of the system, including uncertainties,

external disturbances, and non-modeled phenomena. In order

to develop an appropriate L1 adaptive controller, it is essen-

tial to parameterize this function within specific assumptions

that take into account the various types of uncertainties

[26]. These uncertainties may include unknown constant

parameters, uncertain input gain, and unmodeled actuator

dynamics within the controlled system [24]. As in [23],

where the truncated infinity norm of r is considered. The

nonlinear function η (t,r,q) can be parameterized as follows:

η (t,r,q) = θ(t)∥rτ∥L∞
+σ(t), ∀t ∈ [0,τ] (4)

where θ(t), σ(t) ∈ R
n are differentiable functions, and

∥(.)τ∥L∞
is the truncated L∞-norm of (.). To guarantee the

asymptotic convergence of r to zero at a rate depending on

the choice of Am, it is essential that the adaptive control term

ΓAd effectively cancel all the uncertainties and nonlinearities

within the system defined by the function η (t,r,q) [26].

Given the unknown nature of these uncertainties, the main

objective of ΓAd is then to estimate and compensate for these

nonlinearities. To achieve this goal, a state predictor of r is

designed as follows:

˙̂r = Amr̂+ΓAd −
(

θ̂(t)∥rτ∥L∞
+ σ̂(t)

)

−Kr̃(t), r̂(0) = r0 (5)

where K ∈ R
n×n is a high-frequency noise rejector matrix

gain [24], and r̃(t) = r̂(t)− r(t) is the prediction error. The

estimation of θ(t) and σ(t), respectively denoted by θ̂(t) and

σ̂(t), are obtained through the following adaptation laws:

˙̂θ(t) = ξ Pro j
(

θ̂(t),Pr̃(t)∥rτ∥L∞

)

, θ̂(0) = θ0 (6)

˙̂σ(t) = ξ Pro j (σ̂(t),Pr̃(t)) , σ̂(0) = σ0 (7)

where ξ ∈ R
+ is the adaptation gain, and P ∈ R

n×n is the

solution of the following static Lyapunov equation:

PAm +Am
T P+Q = 0 (8)
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with Q ∈ R
n×n is a diagonal positive-definite matrix. The

projection operator Pro j (θ ,y) is defined as follows:

Pro j (θ ,y)≜































y if f (θ)< 0

y if f (θ)≥ 0

and ∇ f T y ≤ 0

y− ∇ f
∥∇ f∥

〈

∇ f
∥∇∥ f

, y
〉

f (θ) if f (θ)≥ 0

and ∇ f T y > 0
(9)

where f : Rn → R is a smooth convex function, defined in

our case as:

f (θ) =
(1+ ε)θ T θ −θmax

2

εθmax
2

(10)

with θmax being the imposed norm bound, and ε is the

projection tolerance bound to be tuned. As the projection

operator is used, the estimated parameters should remain

within their admissible limits. To achieve this objective, two

respective norm upper bounds are defined, θb for θ̂(t), and

σb for σ̂(t), thereby the conditions ∥θ̂(t)∥< θb, ∥σ̂(t)∥< σb

are always satisfied [24]. Finally, the adaptive control term

ΓAd is the output in the time domain of ΓAd(s), defined as

follows:

ΓAd(s) =C(s)η̂(s) (11)

where C(s) is a diagonal matrix of BIBO1-stable strictly

proper transfer functions of the low-pass filter, and η̂(s) is

the Laplace transformation of η̂(t), defined as follows:

η̂(t) = θ̂(t)∥rτ∥L∞
+ σ̂(t) (12)

B. Proposed Controller: Super-twisting L1 Adaptive Control

(ST-L1 Adaptive)

The L1 adaptive control scheme is designed to effectively

compensate for uncertainties and nonlinearities, without the

need for a dynamic model during the control design process

[24]. It achieves this while maintaining a decoupling between

robustness and adaptation. Also, its adaptive mechanism,

coupled with the projection operator, ensures boundedness

of the estimated parameters [23]. As a result, it can be a

suitable control solution for PKMs, particularly where dy-

namic modeling is challenging, along with their applications

characterized by frequently changing dynamics.

However, the introduction of a low-pass filter in the

adaptive control law can introduce a time delay to the adap-

tation mechanism, potentially affecting the compensation

of nonlinearities and uncertainties. Furthermore, the satura-

tion of estimated parameters, with their unknown structure,

may result in a reduced controller efficiency towards high-

dynamic variations and high-frequency disturbances [24].

An extended L1 adaptive controller, designed for PKMs,

may significantly enhance the tracking performance while

reducing the impact of its drawbacks. To this end, our study

proposes the incorporation of a robust super-twisting term

into the L1 adaptive control scheme. The primary objective

of this design is to take benefit from the super-twisting

1BIBO: Bounded input bounded output.

Fig. 1. Block diagram of the proposed control solution, ST-L1 Adaptive
Controller.

algorithm advantages, which typically are not addressed by

the conventional L1 adaptive controller [27]. The super-

twisting algorithm is known for its robustness towards dis-

turbances, particularly in the context of nonlinear systems

[27]. Additionally, it has the capability to ensure finite-time

convergence of both position and velocity tracking errors

[27]. Furthermore, its adaptability to various types of system

dynamics is a key feature, as it can be fine-tuned by adjusting

its control parameters, according to specific characteristics

of the PKM and its operating environment. To this end,

the proposed controller in this paper combines L1 adaptive

controller with a robust super-twisting term as follows:

Γ = Amr+ΓAd −
(

K1|r|
1
2 sign(r)+ω

)

(13)

ω̇ = K2sign(r) (14)

where K1, K2 ∈ R
n×n are two positive definite diagonal ma-

trices. The resulting control design can be effectively applied

to PKMs, ensuring robustness against both uncertainties

and external disturbances. The L1 adaptive control term

serves to compensate for uncertainties and nonlinear dy-

namics, while the robust super-twisting term is incorporated

to provide enhanced robustness. As a result, the proposed

controller, which combines adaptive and robust feedback

terms, should benefit from both L1 adaptive control and

robust super-twisting algorithm advantages. This strategy

should offer an improved performance in terms of adapt-

ability and robustness against uncertainties as well as high-

frequency disturbances, with enhanced tracking performance.

Consequently, the proposed controller can be considered as

a highly efficient combined adaptive-robust control solution

for PKMs. To sum up, the block diagram of the proposed

control scheme is depicted in Fig. 1.

III. ROBOT DESCRIPTION AND IMPLEMENTATION ISSUES

In this section, the experimental testbed is described,

along with the parallel robot dynamic model, and some

implementation issues.

A. Experimental Platform

FOEHN is a non-redundant Gough-Stewart platform man-

ufactured by the company SYMETRIE. It’s a 6-DOF paral-

lel kinematic manipulator equipped with six independently
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actuated legs powered by DC motors [2]. Its movement

is controlled by adjusting the lengths of its legs, allowing

precise manipulation of the moving platform. FOEHN has

several advantages, including high accuracy, repeatability,

and stiffness, making it a potential tool for a wide range of

applications. These applications include motion simulations

of vehicles, and naval and aeronautic systems. Also, this

robot is particularly ideal for micro-positioning tasks [2].

FOEHN can carry payloads of up to 500kg. The robot oper-

ational workspace includes translations of up to ±280mm

and rotations of up to ±34.2◦. It can achieve maximum

speeds of 500mm/s and 50◦/s, and maximum accelerations

of 8600mm/s2 and 550◦/s2, respectively.

FOEHN parallel robot is equipped with high-dynamic

brushless DC motors and absolute EnDat 2.2 encoders. These

motors can deliver a maximum torque of 18N.m and a

maximum rotation speed of 3500rpm. The encoders play

a crucial role in the system, precisely measuring the angular

positions of the motors (220 counts per revolution) and facil-

itating the calculation of prismatic joint lengths. For control

purposes, the motors are controlled by two multi-axis servo

drives, each one is responsible for controlling three motors.

The control torque inputs are transmitted to the drives from

an OMRON CK3E controller, which operates at a servo

cycle of 2kHz via an EtherCAT fieldbus. The servo control

strategy is formulated in joint space, incorporating real-time

calculated feedback on prismatic joint length. The applied

controller is implemented using MATLAB/Simulink from

MathWorks, and subsequently converted to the C language.

Finally, the code is compiled and uploaded onto the CK3E

controller. The desired trajectories are communicated to the

CK3E controller via the SYM_Motion software, developed

by SYMETRIE. This software serves as a Human-Machine

Interface (HMI), enabling the creation, validation, and execu-

tion of multiple types of movements. It establishes seamless

communication with the controller through a TCP/IP Ether-

net connection.

B. Dynamic Model

The dynamic modeling of FOEHN parallel robot is con-

ducted in both joint and moving platform spaces, using

the Euler-Lagrange formulation. To simplify this dynamic

model, the following assumptions have been considered:

• Assumption 1: Elastic phenomena are neglected, given

the materials employed in the robot’s design and fabri-

cation, which exhibit minimal elastic effects.

• Assumption 2: The dry and viscous friction effects can

be neglected in the passive universal joints, thanks to

their optimal design.

Thanks to the differential kinematic model, and through

its Jacobian matrix J ∈R
6×6 [6], FOEHN’s inverse dynamic

model can be expressed in the joint space as follows:

M(q)q̈+C (q, q̇) q̇+G(q)+Γ f (q̇) = Γ (15)

where q, q̇, q̈ ∈ R
6 are vectors of the joint positions, veloci-

ties, and accelerations, respectively, M(q)∈R
6×6 is the robot

total mass and inertia matrix, C (q, q̇) ∈ R
6×6 is the Coriolis

Fig. 2. Side view of experimental testbed (FOEHN parallel robot).

TABLE I

SUMMARY OF FOEHN ROBOT DYNAMIC PARAMETERS.

Parameter Description Value

mp Moving platform mass 66Kg

Ix x axis moving platform inertia 6.44kg.m2

Iy y axis moving platform inertia 6.44kg.m2

Iz z axis moving platform inertia 12.86kg.m2

Im Actuator inertia 0.001018kg.m2

fv Viscous friction coefficient 1.3283N.s/m

fs Dry friction coefficient 51.8714N

and centrifugal forces matrix, G(q) ∈R
6 is the gravitational

forces vector, Γ f (q̇)∈R
6 is the friction vector, and Γ∈R

6 is

the vector of the control input torques. The dynamic param-

eters of FOEHN parallel robot are summarized in TABLE I.

These parameters are determined through a series of distinct

procedures. The mass of the moving platform was measured

experimentally, while its inertia matrix was calculated using

SolidWorks CAD software. Besides, the actuator inertia and

friction coefficients were obtained through an experimental

identification procedure [28].

C. Implementation Issues and Experimental Scenarios

To illustrate the effectiveness of the proposed ST-L1

Adaptive controller, a comparative study has been conducted,

involving the standard L1 Adaptive controller [23], and a

PID controller [8]. To facilitate this comparison, all three

controllers are implemented on FOEHN parallel robot and

tested under identical conditions. To this end, the following

two experimental scenarios are considered:

• Scenario 1 – nominal case: Under nominal conditions,

the three controllers are applied to the robot without the

presence of uncertainties and external disturbances.
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Fig. 3. 3D-view of the reference trajectory A-B-C-D-E-A.

• Scenario 2 – robustness towards payload changes:

The controllers’ robustness is tested by introducing an

additional payload to the robot’s moving platform. To

this end, three distinct payloads, weighing respectively

100kg, 150kg, and 200kg, were individually attached.

The reference desired trajectory for the moving platform

translations is illustrated in Fig. 3. The platform starts motion

with a point-to-point movement, traversing from A to B

and subsequently to C (cf. illustration of Fig. 3). Next, it

executes an elliptical trajectory from C to D. Finally, the

moving platform mules from D to E, before returning to the

starting point, A. For the rotational components, a sinusoidal

trajectory is proposed, featuring an amplitude of 3◦ and a

frequency of 0.3Hz. A phase shift of 120◦ is maintained

between the rotational angles (φ , θ , ψ). The whole duration

of the reference trajectory is 50 seconds.

To quantify the tracking performance of the three con-

trollers, the following RMS-based (Root Mean Square) cri-

teria are proposed:

RMSt =

√

1

N

N

∑
i=1

(ex
2(i)+ ey

2(i)+ ez
2(i)) (16)

RMSr =

√

1

N

N

∑
i=1

(

eφ
2(i)+ eθ

2(i)+ eψ
2(i)
)

(17)

RMSq =

√

√

√

√

1

N

N

∑
i=1

(

6

∑
j=1

e2
q j
(i)

)

(18)

where ex, ey, ez, eφ , eθ , and eψ are the Cartesian tracking

errors, eq j
, j = 1,6 are the joint tracking errors, and N is the

total number of samples.

The feedback gains of the three controllers have been

experimentally tuned using a trial-and-error technique. For

the proposed controller, the super-twisting gain was initially

set to zero, and the tuning process began with the L1

adaptive control part. Subsequently, the gains of the super-

twisting algorithm were tuned. The trial-and-error method

TABLE II

SUMMARY OF THE CONTROL DESIGN PARAMETERS.

L1 Adaptive PID ST-L1 Adaptive

Am =−56I6, Q = I6 Kp = 8500I6 Am =−56I6, Q = I6

λ = 150 Ki = 2000I6 λ = 120

ξ = 103, K = 500I6 Kd = 56I6 ξ = 104, K = 500I6

θb = 0.5, σb = 0.5 θb = 0.5, σb = 0.5, ε = 0.1
ε = 0.1 K1 = 2I6, K2 = 33I6

involves systematically trying different sets of control gains

in a real-time framework, and continuously adjusting them

until the best control performance is achieved. The results

of this tuning process for all controllers are summarized in

TABLE II. It is worth noting that the estimated parameters

for the adaptive controllers were initialized to zero.

IV. REAL-TIME EXPERIMENTAL RESULTS

In this section, the obtained real-time experiment results

are presented and discussed for the two proposed experimen-

tal scenarios.

A. Scenario 1 – Nominal Case

The evolution of the joint tracking errors is depicted in

Fig. 4. To accentuate the distinction between the controllers,

the plot is zoomed in on the time interval between 10s and

12s. Notably, the proposed control solution outperforms both

the standard L1 adaptive and PID controllers, thanks to the

incorporation of the super-twisting term alongside the non-

model-based L1 adaptive control term. These improvements

are further confirmed by the numerical calculation of the

proposed evaluation metrics, as summarized in TABLE III.

The evolution of the estimated parameters is depicted in

Figs. 5 and 6. The incorporation of the projection operator

ensures that these parameters remain within their admissible

ranges. As a result of the proposed additional term, the

estimated parameters for the proposed controller exhibit

smaller amplitudes and mitigated oscillations. This outcome

can be attributed to the compensation of certain dynamic

effects and nonlinearities by the proposed super-twisting

term. Consequently, a substantial difference between the

adaptive terms of the original and the proposed controllers

is evident.

The evolution of the generated control input torques is

depicted in Fig. 7. To enhance the visual clarity, the plot

has been zoomed in on the interval between 40s and 41s.

The generated torques remain within their admissible range,

and the energy consumption is nearly identical for all the

three controllers. However, it’s worth mentioning that some

overshoots are observed in the case of the L1 adaptive

controller, primarily linked to the pronounced oscillations of

the estimated parameters.

B. Scenario 2 – Robustness Towards Payload Changes

The joint tracking errors obtained with 200kg payload are

displayed in Fig. 8. To better highlight the difference between

the controllers, the plot is zoomed in within the range

[15s,18s]. Similar to the previous scenario, the proposed

solution outperforms the other controllers, with a minor
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Fig. 4. Scenario 1: Evolution of joint tracking errors versus time.

Fig. 5. Scenario 1: Evolution of the estimated function θ̂(t) versus time.

TABLE III

SCENARIO 1: TRACKING PERFORMANCE EVALUATION WITH THE

ACHIEVED IMPROVEMENTS.

Controllers RMSq(µm) RMSt(µm) RMSr(mdeg)
L1 Adaptive 111.8656 92.2464 3.1772

PID 55.8083 46.8785 1.7687
ST-L1 Adaptive 35.0423 26.4935 1.4096

Imp./L1 Adaptive 68.67% 71.28% 55.63%
Imp./PID 37.21% 43.48% 20.30%

Fig. 6. Scenario 1: Evolution of the estimated function σ̂(t) versus time.
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Fig. 7. Scenario 1: Evolution of input torques versus time.

degradation compared to the nominal case. This demonstrates

the capability of the proposed design to provide an enhanced

control solution for PKMs, increasing the robustness against

uncertainties and external disturbances. These improvements

are further corroborated by the RMS values, summarized

in TABLEs IV, V, and VI. The evolution of the estimated

parameters is depicted in Figs. 9 and 10. As in the previous

scenario, the inclusion of the projection operator ensures

the boundedness of estimated parameters. In contrast to the

original controller, the proposed solution does not exhibit

high amplitudes with overshoots, where the adaptive control
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Fig. 8. Scenario 2 (200 kg payload): Evolution of joint tracking errors
versus time.

Fig. 9. Scenario 2 (200 kg payload): Evolution of the estimated function
θ̂(t) versus time.

term of the original controller compensates for all structured

and unstructured uncertainties. The evolution of the control

input torques is depicted in Fig. 11, and for better visibility,

the plot has been zoomed in within the range [20s,21s].
Notably, the generated torques remain within the admissible

limits, and all controllers require almost the same quantity

of energy.

V. CONCLUSION AND FUTURE WORK

In this paper, a novel super-twisting L1 adaptive controller

is proposed to improve the tracking performance of PKMs,

Fig. 10. Scenario 2 (200 kg payload): Evolution of the estimated function
σ̂(t) versus time.
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Fig. 11. Scenario 2 (200 kg payload): Evolution of input torques versus
time.

TABLE IV

SCENARIO 2 (100 KG PAYLOAD): TRACKING PERFORMANCE

EVALUATION WITH THE ACHIEVED IMPROVEMENTS.

Controllers RMSq(µm) RMSt(µm) RMSr(mdeg)
L1 Adaptive 152.9350 124.4302 4.2197

PID 71.3322 60.1363 2.2515
ST-L1 Adaptive 42.7647 33.0331 1.6708

Imp./L1 Adaptive 72.03% 73.45% 60.40%
Imp./PID 40.05% 45.06% 25.79%
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TABLE V

SCENARIO 2 (150 KG PAYLOAD): TRACKING PERFORMANCE

EVALUATION WITH THE ACHIEVED IMPROVEMENTS.

Controllers RMSq(µm) RMSt(µm) RMSr(mdeg)
L1 Adaptive 182.1214 146.9965 4.7940

PID 84.6723 72.3997 2.5423
ST-L1 Adaptive 47.2451 36.4234 1.8486

Imp./L1 Adaptive 74.05% 75.22% 61.43%
Imp./PID 44.20% 49.69% 27.28%

TABLE VI

SCENARIO 2 (200 KG PAYLOAD): TRACKING PERFORMANCE

EVALUATION WITH THE ACHIEVED IMPROVEMENTS.

Controllers RMSq(µm) RMSt(µm) RMSr(mdeg)
L1 Adaptive 197.6922 160.5205 4.9999

PID 91.4751 78.9590 2.6493
ST-L1 Adaptive 50.6191 39.7406 1.8921

Imp./L1 Adaptive 74.39% 75.24% 62.15%
Imp./PID 44.66% 49.67% 28.58%

especially in terms of robustness towards uncertainties and

external disturbances. A short background on L1 adaptive

control is introduced, along with the proposed contribution.

Then, the experimental platform (FOEHN parallel robot) is

presented with its dynamics and some implementation issues.

The proposed controller has been experimentally validated

and compared with the standard L1 adaptive controller as

well as a PID controller in different operating conditions,

demonstrating clear improvements in the tracking perfor-

mance. In future work, the proposed control solution might

be enhanced by designing a time-delay super-twisting algo-

rithm. Additionally, its applicability extension to different

platforms of PKMs can also be investigated, along with

a thorough stability analysis of the resulting closed-loop

system.
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