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Abstract—We construct a predictor-feedback cooperative
adaptive cruise control (CACC) design with integral action,
which achieves simultaneous compensation of long, actuation
and communication delays, for platoons of heterogeneous ve-
hicles whose dynamics are described by a third-order linear
system with input delay. The key ingredients in our design are
an underlying predictor-feedback law that achieves actuation
delay compensation and an integral term of the difference
between the delayed (by an amount equal to the respective
communication delay) and current speed of the preceding
vehicle. The latter, essentially, creates a virtual spacing variable,
which can be regulated utilizing only delayed position and
speed measurements from the preceding vehicle. We establish
individual vehicle stability, string stability, and regulation for
vehicular platoons, under the control design developed. The
proofs rely on combining an input-output approach (in the
frequency domain), with derivation of explicit solutions for the
closed-loop systems, and they are enabled by the actuation and
communication delays-compensating property of the design. We
demonstrate numerically the control and model parameters’
conditions of string stability, while we also present simulation
results, in a realistic scenario, considering a heterogeneous
platoon of ten vehicles, for validating the performance of the
design.

I. INTRODUCTION

String stability is a crucial requirement and serves as an
indicator of the safety and efficiency properties of platoons
consisting of vehicles equipped with Adaptive Cruise Control
(ACC) and CACC capabilities, see, for example, [8], [16],
[18]. This property is imperiled when delays affect actuation,
sensing, or communication of vehicular systems, see, for
example, [4], [6], [10], [15], [17], [22], [23], [27]. In particu-
lar, communication delay, stemming from vehicle-to-vehicle
(V2V) communication, poses a significant challenge to string
stability, particularly when both actuation and communication
delays coexist and they are large [7], [13], [16], [20], [25],
[27].

For this reason, compensation of such delays becomes an
essential mechanism that could be integrated with nominal,
ACC/CACC laws. This integration may lead to a substantial
enhancement in string stability properties of vehicular pla-
toons. This is already evident in works that address small
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actuation delays only [11], [22], or small communication
delays only [1], [7], [17], [19], or both [5], [10], [13], [16],
[25], [26]. To address larger actuation or communication
delays a predictor-based approach is required. Predictor-
based control designs addressing long actuation and com-
munication delays can be found in [3], [4], [6], [9], [14],
[15], [21], [23] and [24], respectively; while [27] presents
a predictor-based design to address both long actuation and
communication delays. Here we complement [27], develop-
ing an alternative, less complex predictor-feedback CACC
design with integral action, which enables development of a
systematic/constructive stability and string stability analysis
strategy, as well as it sheds further light on the mechanisms
that allow simultaneous actuation and communication delays
compensation.

In the present paper, we build upon the predictor-feedback
CACC law from [4], which is constructed to compensate
actuation delay only. While in [20] it is established that string
stability of the CACC law from [4] is robust to small commu-
nication delay, a predictor-feedback CACC design addressing
simultaneously, long actuation and communication delays is
not available. The main reason for this unavailability is the
fact that exact predictor states (over a prediction horizon
equal to the actuation delay) cannot be constructed anymore
in the presence of communication delays. Nevertheless, as we
establish here, to achieve string stability it is not necessarily
required to construct exact predictor states, but to rather
cancel the effect of communication delay by aiming at reg-
ulation of spacing and speed of the ego vehicle, essentially,
to the past (rather than the current) spacing and speed of the
preceding vehicle.

Towards this end, we construct a linear, predictor-feedback
CACC law augmented with an integral term of the difference
between the preceding vehicle’s, delayed, by an amount
equal to the respective communication delay, speed and
its current speed. We consider platoons of vehicles with
heterogeneous dynamics described by a third-order linear
system with actuation delay. The control design developed
achieves L2 string stability with respect to speed/acceleration
errors propagation (and with respect to spacing errors prop-
agation as well, in the particular case of homogeneous
vehicles). String stability is achieved relying on the following
two mechanisms embedded in the control law developed–
an underlying predictor-feedback CACC design that aims at
actuation delay compensation and the integral term of the
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difference between the delayed and current speed of the
preceding vehicle (which, in fact, may be viewed as a type
of spacing variable). The latter, essentially, modifies the
objective of the original control law to aiming at regulating
the spacing (and speed) of the ego vehicle accounting for
the delayed, rather than the current, position and speed of
the preceding vehicle. This, in a way, aligns the regulation
objectives of the controller with the available information
for the preceding vehicle’s state at the current time, which
is beneficial for string stability. Furthermore, the control
design achieves stability of individual vehicles (that is a
prerequisite for string stability) and zero, steady-state speed
and spacing tracking errors, for a constant leader’s speed.
To achieve zero, steady-state spacing tracking error it is
required to reduce the original time-headway by an amount
equal to the respective communication delay, which imposes
a condition that the desired time-headway is larger than the
respective communication delay. This, in fact, is reasonably
expected since the controller reacts to past rather than current
information of the preceding vehicle’s state. Nevertheless, the
values of actuation and communication delays themselves are
not restricted.

The proof of string stability relies on an input-output
approach, deriving the respective transfer functions between
the speed of the ego and the preceding vehicle, together
with deriving explicit conditions on control/model param-
eters and time-headway. The proofs of individual vehicle
stability and regulation rely on deriving explicit solutions of
the closed-loop systems, capitalizing on the ability of the
control design developed to achieve actuation and commu-
nication delays compensation. The analytical string stability
conditions are also illustrated numerically. Furthermore, we
present consistent simulation results of a platoon of ten
vehicles, for the practical scenario in which a vehicle cuts
in the platoon (described by considering initial condition
deviations from equilibrium) and it subsequently performs
an acceleration/deceleration maneuver.

II. PREDICTOR-FEEDBACK CACC FOR HETEROGENEOUS
PLATOONS WITH BOTH ACTUATOR AND

COMMUNICATION DELAYS

A. Vehicle Model and Nominal Delay-Free Design

a) Vehicle dynamics: We consider a heterogeneous string
of vehicles (see Fig. 1) each one modeled by the following
third-order, linear system with actuator delay that describes
vehicle dynamics (see, e.g., [1], [23], [24], [25])

ṡi(t) = vi−1(t)− vi(t), (1)
v̇i(t) = ai(t), (2)

ȧi(t) = − 1

τi
ai(t) +

1

τi
ui(t−D), (3)

i = 1, ..., N , where si = xi−1−xi−l and xi is the position of
vehicle i and l is its length, vi is vehicle speed, ai is vehicle
acceleration, τi is lag, capturing, engine dynamics, ui is the
individual vehicle’s control variable, D ≥ 0 is input delay,
and t ≥ 0 is time. Note that for the leading vehicle we assume
similarly that it has the same type of third-order dynamics

Fig. 1. Platoon of N +1 heterogeneous vehicles following each other in a
single lane without overtaking. The dynamics of each vehicle i = 1, ..., N
are governed by system (1)–(3). Each vehicle can measure its own speed,
the relative speed with the preceding vehicle, and the spacing with respect
to the preceding vehicle. The control input and acceleration of each vehicle
is communicated to the following vehicle via V2V communication.

as the rest of the vehicles. The difference is that ul acts as a
time-varying, exogenous input rather than as feedback control
input. We adopt the convention that v0 = vl and a0 = al are
the speed and acceleration of the string leader, respectively.
b) Available measurements: For CACC platoons the mea-
surements available to the ego vehicle i are its own spacing
si, speed vi, acceleration ai, and control input ui as well
as the speed of the preceding vehicle vi−1. It is possible
to obtain this information through on-board sensors. Fur-
thermore, the control input of the preceding vehicle, as
well as its acceleration and speed are also available and
are denoted by ui−1,m, ai−1,m, and vi−1,m respectively.
These measurements are transmitted from the preceding
vehicle, through V2V communication. Due to the presence
of communication delay these measurements are modeled by
vi−1,m(t) = vi−1(t−Dc,i−1), ai−1,m(t) = ai−1(t−Dc,i−1)
and ui−1,m(θ) = ui−1(θ − Dc,i−1), θ ∈ [t−D, t], respec-
tively, where Dc,i−1 ≥ 0, i = 1, ..., N , are communication
delays1.

c) Nominal control design: Without input delay, the fol-
lowing control strategy is constructed

ui(t) = τiαi

(
si(t)

hi
− vi(t)

)
+ τibi(vi−1(t)− vi(t))

+ τiciai(t),

(4)

where αi > 0, bi > 0, and ci ∈ R are design parameters,
and hi > 0 is time-headway.

B. Communication Delay-Compensating Predictor-Feedback
Control Design

The predictor-based control laws with communication de-
lay compensation for system (1)–(3) are given by

ui(t) =
τiαi
hi

qi,1(t)− τi(αi + bi)qi,2(t) + τibiqi,3(t)

+ τiciqi,4(t) +
τiαi
hi

σi(t), (5)

σ̇i(t) = vi−1,m(t)− vi−1(t), (6)

qi(t) = eΓiDx̄i(t) +

∫ t

t−D
eΓi(t−θ)Biui(θ) dθ

+

∫ t

t−D
eΓi(t−θ)B1iui−1,m(θ) dθ, (7)

1The initial conditions vi−1(s) = vi−10 (s), s ∈ [−Dc,i−1, 0],
ai−1(s) = ai−10 (s), s ∈ [−Dc,i−1, 0] and ui−1(s) = ui−10 (s),
s ∈ [−D −Dc,i−1, 0) are assumed to be continuous functions.
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where

qi =
[
qi,1 qi,2 qi,3 qi,4 qi,5

]T
, (8)

x̄i =
[
si vi vi−1,m ai ai−1,m

]T
, (9)

Bi =
[
0 0 0 1

τi
0
]T
, B1i =

[
0 0 0 0 1

τi−1

]T
,

(10)

Γi =


0 −1 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 − 1

τi
0

0 0 0 0 − 1
τi−1

 . (11)

Implementation of control laws (5) requires measurements
of the ego vehicle’s spacing si, speed vi, acceleration ai,
and control input ui as well as the relative speed with the
preceding vehicle. Utilizing on-board sensors, this informa-
tion can be obtained. The preceding vehicle’s speed vi−1,m,
acceleration ai−1,m, and control input ui−1,m, which are
also required, can be obtained through V2V communication
that, however, they are subject to communication delay. It is
important to note that we employ in our control design two
different measurements for the preceding vehicle speed, one
from on-board sensors vi−1 and one from V2V communica-
tion vi−1,m. Note that for control implementation the value
of the communication delay is not needed, because vi−1,m

can be obtained directly from V2V communication. If Dc,i−1

is known to vehicle i, then one could, alternatively, employ
vi−1,m(t) via vi−1,m(t) = vi−1(t−Dc,i−1).

III. STRING STABILITY DESPITE ACTUATION AND
COMMUNICATION DELAYS

We start providing the definition of string stability em-
ployed. A platoon of vehicles indexed by i = 1, ..., N,
following each other within one lane without overtaking, is
L2 string stable with reference to speed errors if the following
condition holds

sup
ω
|Gi(jω)| ≤ 1, i = 1, ..., N, (12)

where Gi(jω) denotes the transfer function between the i-
th vehicle’s speed and the speed of its preceding vehicle
i − 1 (see, e.g., [8], [10]). Note that the respective transfer
functions, corresponding to acceleration states, are identical
to those for speed states. We now state our main result.

Theorem 1: Consider a platoon of vehicles with heteroge-
neous dynamics modeled by (1)–(3), under control laws (5)
with (6)–(11). Let the leading vehicle’s speed be uniformly
bounded and continuous. For any D ≥ 0, hi > 0, the
platoon is L2 string stable with respect to speed errors
propagation provided that the following conditions hold:
1
τi
− ci > 0,

(
1
τi
− ci

)
(αi + bi) − αi

hi
> 0,

(
ci − 1

τi

)2

−

2(αi + bi) > 0 , and 2
hi

(
ci − 1

τi

)
+ 2bi + αi > 0,

i = 1, ..., N . Furthermore, all states remain bounded and,
for a constant leading vehicle’s speed, say v∗, regulation
is achieved with limt→+∞ ai(t) = 0, limt→∞ vi(t) =
v∗, and limt→+∞ si(t) = hiv

∗ − limt→+∞ σi(t), where

limt→+∞ σi(t) = σi(0) +
∫ 0

−Dc,i−1
vi−10

(s)ds − Dc,i−1v
∗,

i = 1, ..., N .

Proof: The proof can be found in Appendix A.

Remark 1: Communication delay is compensated by reg-
ulating the speed of the ego vehicle to match the speed
of the preceding vehicle, also accounting for the respective
communication delay. This regulatory action in the presence
of communication delays alters the equilibrium point, result-
ing in the loss of zero, steady-state tracking error, as the
controller aims to regulate si + σi (rather than si) to hivi
(this phenomenon also appears in, e.g., [24]). To address
steady-state error when communication delay is known (e.g.,
as a known, average network delay), we can set σi(0) =

−
∫ 0

−Dc,i−1
vi−10

(s)ds and hi = hi,des − Dc,i−1 (assuming
hi,des > Dc,i−1, which is a reasonable requirement given that
the controller reacts with Dc,i−1 delay and that, typically,
the values of communication delay are much smaller that
the desired headways), which results in a steady-state value
for si to be hi,desv

∗. Note that the choice for σi(0) can be
implemented at t = 0 using the past measurements of vi−1,
which are available. On the other hand, if Dc,i−1 is unknown,
we can set σi(0) = 0. This results in a steady-state error
for si of Dc,i−1v

∗ −
∫ 0

−Dc,i−1
vi−10

(s)ds. Nevertheless, it
is worth noting that in practice, Dc,i−1 is typically much
smaller than hi, and thus, the steady-state error is expected
not to be large, particularly when the initial condition for
speed is close to the leader’s equilibrium speed or, at least,
an estimate D̂c,i−1 of actual communication delay Dc,i−1 is
available.

Remark 2: The first two conditions of Theorem 1 come
from the Routh-Hurwitz criterion and they are a prerequisite
for string stability of the platoon. While the remaining two
conditions are derived from the string stability criterion in
speed error propagation. Feasibility of simultaneous satisfac-
tion of the four conditions in Theorem 1 is explained noting,
for example, that, since αi and bi are positive, the first three
conditions can be satisfied with a proper choice of 1

τi
− ci

(via a proper choice of ci); while the last condition can be
satisfied, subsequently, with a proper choice of αi and bi.

IV. NUMERICAL ILLUSTRATION OF STRING STABILITY

In this section, we numerically analyze the string stability
properties of the closed-loop system, according to Theorem 1.
The transfer function Gi = Vi

Vi−1
, which corresponds to the

closed-loop systems described by equations (1)–(3), (5)–(11),
along with choices (made for simplicity of illustration)

αi = − hip3
i , (13)

bi = hip
3
i + 3p2

i , (14)

ci =
1

τi
+ 3pi, (15)

for some pi < 0 and all i, is determined as

Gi(s) =
Vi(s)

Vi−1(s)
=
−p3

i + p2
i (pihi + 3)s

(s− pi)3
e−sDc,i−1 . (16)
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The numerical performance of the predictor-feedback CACC
design (5) is showcased, focusing on L2 string stability
definition in relation to (16). Fig. 2 depicts supω |Gi(jω)|
as a function of pi and hi, where Gi is defined in (16). The
conditions in Theorem 1, reduce to condition h2

i p
2
i +6hipi+

6 < 0, which should hold to guarantee string stability. In
Fig. 2, the region between the red curves indicates where
condition h2

i p
2
i + 6hipi + 6 < 0 is satisfied.

Fig. 2. The values of function supω |Gi(jω)| corresponding to transfer
function (16) for heterogeneous vehicles, for different values of time-
headway hi and control parameter pi.

V. SIMULATION RESULTS

We demonstrate the performance of the actua-
tion/communication delays-compensating predictor-feedback
CACC law. We consider a heterogeneous platoon of ten
vehicles in order to make the numerical example more
practical. For a heterogeneous platoon of ten vehicles with
third-order dynamics given by (1)–(3), we consider a case
in which τi = 0.1s, i = 1, 2, 6, 9; τi = 0.2s, i = 0, 3, 5;
and τi = 0.25s, i = 4, 7, 8. The desired time-headways
are hi,des = 0.75, i = 3, 4, 7, 9; hi,des = 0.9, i = 2, 5;
hi,des = 1.2, i = 1, 6, 8. The actuation delay is set to
D = 0.7 and communication delays are Dc,i−1 = 0.1,
i = 1, 4, 6; Dc,i−1 = 0.15, i = 5, 8; Dc,i−1 = 0.2, i = 3;
Dc,i−1 = 0.25, i = 2, 9; and Dc,i−1 = 0.35, i = 7.
Following Remark 1, we assume that the communication
delay is known. To address steady-state error, we employ
in (5) time-headways hi = hdes,i − Dc,i−1 (all hi,
i = 1, 2, ..., 9, satisfy the conditions in Theorem 1; see
Fig. 2) and choose σi0 = −

∫ 0

−Dc,i−1
vi−10

(s)ds for all
vehicles. Moreover, zero, steady-state spacing tracking errors
are achieved as limt→+∞ si(t) = hi,desv

∗, i = 1, 2, ..., N
(see Remark 1). We choose control gains according to
(13)–(15) with pi = −2.5

hi
, i = 1, 2, ..., 9 which satisfy

the conditions in Theorem 1. Moreover, we consider a
scenario in which ai−1(s) = 0, s ∈ [−Dc,i−1, 0] and
ui(s) = 0, s ∈ [−D −Dc,i−1, 0) for each vehicle i.
While we set vi0 = 15

(
m
s

)
, i = 1, 2, ..., 9 and

vl0 =
4vi0

5 = 12
(
m
s

)
; vl(s) = 12, s ∈ [−Dc,0, 0]

Fig. 3. Acceleration (top), speed (middle), and spacing (bottom) of ten
vehicles, with dynamics described by (1)–(3), where D = 0.7, τi = 0.1s,
i = 1, 2, 6, 9; τi = 0.2s, i = 0, 3, 5; and τi = 0.25s, i = 4, 7, 8,
following a leader that performs an acceleration/deceleration maneuver,
under the CACC control laws (5), where Dc,i−1 = 0.1, i = 1, 4, 6;
Dc,i−1 = 0.15, i = 5, 8; Dc,i−1 = 0.2, i = 3; Dc,i−1 = 0.25,
i = 2, 9; and Dc,i−1 = 0.35, i = 7. The desired time-headways are
hi,des = 0.75, i = 3, 4, 7, 9; hi,des = 0.9, i = 2, 5; hi,des = 1.2,
i = 1, 6, 8; while control parameters are chosen according to (13)–(15) with
pi =

−2.5
hi

and hi = hi,des−Dc,i−1. Initial conditions are vi0 = 15
(
m
s

)
,

i = 1, 2, ..., 9, vl0 =
4vi0
5

= 12
(
m
s

)
; si0 = hi,desvi0 = hi,des×15 m,

i = 2, 3, ..., 9, s10 = 16m; σi0 = −
∫ 0
−Dc,i−1

vi−10 (s)ds and ui0 ≡ 0,
for i = 1, 2, ..., 9.
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and vi−1(s) = 15, s ∈ [−Dc,i−1, 0], i = 2, ..., 9;
si0 = hdes,ivi0 = hdes,i × 15 m, i = 2, 3, ..., 9, s10

= 16 m.
Furthermore, the leading vehicle performs both deceleration
and acceleration maneuvers. As depicted in Fig. 3, the
speed and acceleration responses to these maneuvers by the
leading vehicle exhibit characteristics devoid of oscillations
and overshoot. Furthermore, it is interesting to note that
all states diverged with the nominal control law (4) in the
presence of actuation/communication delays.

We note that if communication delays are not known
exactly then we could still employ the choices hi = hi,des−
D̂c,i−1 and σi0 = −

∫ 0

−D̂c,i−1
vi−10

(s)ds, with an estimate
D̂c,i−1 of Dc,i−1. It is anticipated that steady-state, spacing
tracking errors would remain small. The only case in which
steady-state spacing errors would be large is when Dc,i−1

are both completely unknown and large which, in practice,
may not be as realistic.

VI. CONCLUSIONS

In the present paper, we design a predictor-feedback CACC
law with integral action, which achieves simultaneous actu-
ation and communication delays compensation. We consider
heterogeneous platoons with vehicles whose dynamics are
described by a linear, third-order model with delayed actu-
ation. The control design developed achieves string stability
with respect to speed errors propagation, individual vehicle
stability, and zero steady-state tracking errors. We provide
constructive proof strategies that rely on a combination of
an input-output approach and on deriving explicit solutions
of the closed-loop systems. We demonstrate numerically the
string stability conditions obtained and we provide simulation
results for a platoon of ten vehicles, considering a realistic
scenario of a vehicle cutting in the platoon and performing
acceleration/deceleration maneuvers. As next step we aim
at validating the performance of the design developed in
simulation, using vehicles’ trajectories from real traffic data.

APPENDIX A

Due to space limitations we provide only elements of
the complete proof. In order to studying stability and string
stability of speed error propagation, we first compute the
transfer functions

Gi(s) =
Vi(s)

Vi−1(s)
, i = 1, ..., N, (A.1)

viewing as input the preceding vehicle’s speed and as output
the current vehicle’s speed. Taking Laplace transform of the
predictor states (7) we get

Qi(s) = eΓiDX̄i(s) +M1,i(s)Ui(s)

+M2,i(s)Ui−1(s)e−sDc,i−1 , (A.2)

where

M1,i(s) = (sI5×5 − Γi)
−1
(
I5×5 − eΓiDe−sD

)
Bi, (A.3)

M2,i(s) = (sI5×5 − Γi)
−1

×
(
I5×5 − eΓiDe−sD

)
B1i. (A.4)

Using the i-th vehicle’s model (1)–(3), to express X̄i(s)
as a function of Ui and Ui−1, and computing eΓiD and
(sI5×5 − Γi)

−1 we derive Ui

Ui−1
, which, multiplying it by

sτi−1+1
sτi+1 , gives

Gi(s) =

(
bis+ αi

hi

)
e−Dc,i−1s

s3 +
(

1
τi
− ci

)
s2 + (αi + bi)s+ αi

hi

. (A.5)

String stability in L2 is guaranteed when |Gi(jω)| ≤ 1,
for all ω ≥ 0. The condition is satisfied for ω = 0
since |Gi(0)| = 1. With straightforward computations, we
conclude that, under the conditions on the parameters ai, bi,
ci, τi, hi of Theorem 1, relation |Gi(jω)| ≤ 1, for all ω ≥ 0,
holds.

We next show that boundedness of all states is achieved.
Using the delay-compensating property of predictor feedback
(see e.g., [2]), we can write (5) as

ui(t) =
τiαi
hi

si(t+D)− τi(αi + bi)vi(t+D)

+ τiciai(t+D) +
τiαi
hi

σi(t+D)

+ τibivi−1,m(t+D). (A.6)

Thus, for t ≥ max
{
D,max

i
{Dc,i−1}

}
= D̄ it holdsṡi(t)v̇i(t)

ȧi(t)

 =

 0 −1 0
0 0 1
ai
hi
−(ai + bi) ci − 1

τi

si(t)vi(t)
ai(t)


+

1
0
0

 vi−1(t) +

0
0
bi

 vi−1,m(t) +

 0
0
ai
hi

σi(t),
(A.7)

σ̇i(t) =vi−1,m(t)− vi−1(t). (A.8)

The solution to (A.7), (A.8) is given assi(t)vi(t)
ai(t)

 =eĀi(t−D̄)

si (D̄)vi
(
D̄
)

ai
(
D̄
)


+

∫ t

D̄

eĀi(t−s)

1
0
0

 vi−1(s) +

0
0
bi

 vi−1,m(s)

+

 0
0
ai
hi

σi(s)
 ds, (A.9)

σi(t) =σi
(
D̄
)

+

∫ t

D̄

(vi−1,m(s)− vi−1(s)) ds, (A.10)

where Āi =

 0 −1 0
0 0 1
ai
hi
−(ai + bi) ci − 1

τi

. Under the condi-

tions in Theorem 1, Āi always has eigenvalues with strictly
negative real part, which means that the states si, vi, ai
remain bounded, provided that σi and vi−1 are bounded. We
establish next the boundedness of σ1 under the assumption
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that the leader’s speed, denoted as v0, is bounded by, say,
Mv0 , i.e., |v0(t)| ≤ Mv0, for all t ≥ −Dc,0. We derive

σ1(t) =σ1(0) +

∫ 0

−Dc,0

v0(s)ds−
∫ t

t−Dc,0

v0(s)ds. (A.11)

Considering the assumption on the leader’s speed being
bounded we can derive that∫ t

t−Dc,0

|v0(s)| ds ≤
∫ t

t−Dc,0

Mv0ds = Mv0Dc,0. (A.12)

Thus, considering (A.11), (A.12), it follows that σ1 is
uniformly bounded, with |σ1(t)| ≤ Mσ1 , where Mσ1 =
σ1(0)+2Mv0Dc,0, t ≥ 0. For showing boundedness of v1 we
proceed as follows. By using (A.9) for i = 1, with the fact
that

∣∣∣eĀ1(t−D̄)
∣∣∣ ≤ k1e−λ1(t−D̄), for some positive constants

k1, λ1 (because A1 is Hurwitz, see, e.g., [12]) we get for
t ≥ D̄

|v1(t)| ≤ v̄1(t), (A.13)

where

v̄1(t) =r1,1(t) +
(1 + b1) k1

λ1
Mv0 +

k1α1

λ1h1
Mσ1

, (A.14)

r1,1(t) =k1e−λ1(t−D̄) (∣∣s1

(
D̄
)∣∣+

∣∣v1

(
D̄
)∣∣+

∣∣a1

(
D̄
)∣∣) .

(A.15)

Relations (A.13)–(A.15) imply that v1 is uniformly bounded
with |v1(t)| ≤ Mv1 , t ≥ −Dc,1. In a similar manner given
the boundedness of v1, we conclude that σ2 is uniformly
bounded, and thus, from (A.9) that v2 is also bounded. This
pattern continues iteratively up to i = N . Consequently, we
can deduce by induction that vi and σi, i = 1, ..., N , are
bounded. From (A.9) and the fact that the Āi matrices are
Hurwitz we conclude that the system’s states si and ai are
also bounded.

For constant leader’s speed v0 ≡ v∗, regulation is proved
using (A.7), (A.9), and the fact that Āi, i = 1, ..., N , are
Hurwitz. In particular, we deduce that limt→+∞ vi(t) =
limt→+∞ vi−1(t) = v∗. Moreover, we conclude that
limt→+∞ si(t) = limt→+∞ (hivi(t)− σi(t)), where (see
(A.11) for i = 1)

lim
t→+∞

σi(t) = σi(0) +

∫ 0

−Dc,i−1

vi−10
(s)ds−Dc,i−1v

∗.

(A.16)
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[16] S. Öncü, J. Ploeg, N. van de Wouw, and H. Nijmeijer, “Cooperative
adaptive cruise control: Network-aware analysis of string stability”,
IEEE Trans. Intell. Transp. Syst., vol. 15, pp. 1527–1537, 2014.

[17] A. Petrillo, A. Salvi, S. Santini, and A. S. Valente, “Adaptive multi-
agents synchronization for collaborative driving of autonomous vehi-
cles with multiple communication delays”, Transportation Research
Part C: Emerging Technologies, vol. 86, pp. 372–392, 2018.

[18] J. Ploeg, N. van de Wouw, and H. Nijmeijer, “Lp string stability of cas-
caded systems: application to vehicle platooning”, IEEE Transactions
on Control Systems Technology, vol. 22, pp. 786–793, 2014.

[19] A. Salvi, S. Santini, and A. S. Valente, “Design, analysis and perfor-
mance evaluation of a third order distributed protocol for platooning
in the presence of time-varying delays and switching topologies”,
Transportation Research Part C: Emerging Technologies, vol. 80, pp.
360–383, 2017.

[20] A. Samii and N. Bekiaris-Liberis, “Robustness of string stability of
linear predictor-feedback CACC to communication delay”, IEEE In-
ternational Conference on Intelligent Transportation Systems, Bilbao,
Spain, 2023.

[21] M. Wang, S. P. Hoogendoorn, W. Daamen, B. van Arem, B. Shyrokau,
and R. Happee, “Delay-compensating strategy to enhance string sta-
bilityof autonomous vehicle platoons”, Transportmetrica B: Transport
Dynamics, vol. 6, pp. 211–229, 2016.

[22] L. Xiao and F. Gao, “Practical string stability of platoon of adaptive
cruise control vehicles”, IEEE Transactions on intelligent transporta-
tion systems, vol. 12, pp. 1184–1194, 2011.

[23] H. Xing, J. Ploeg, and H. Nijmeijer, “Smith predictor compensating
for vehicle actuator delays in cooperative ACC systems”, IEEE Trans-
actions on Vehicular Technology, vol. 68, pp. 1106–1115, 2018.

[24] H. Xing, J. Ploeg, and H. Nijmeijer, “Compensation of communication
delays in a cooperative ACC system”, IEEE Transactions on Vehicular
Technology, vol. 69, pp. 1177–1189, 2019.

[25] H. Xing, J. Ploeg, and H. Nijmeijer, “Robust CACC in the presence
of uncertain delays”, IEEE Transactions on Vehicular Technology, vol.
71, pp. 3507–3518, 2022.

[26] Y. Zhang, Y. Bai, J. Hu, and M. Wang, “Control design, stability analy-
sis, and traffic flow implications for cooperative adaptive cruise control
systems with compensation of communication delay”, Transportation
Research Record, vol. 2674, pp. 638-–652, 2020.

[27] Y. Zhang, Y. Bai, J. Hu, D. Cao, and M. Wang, “Memory-anticipation
strategy to compensate for communication and actuation delays for
strings-stable platooning”, IEEE Transactions on Intelligent Vehicles,
vol. 8, pp. 1145–1155, 2022.

1678


