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Abstract— This article demonstrates the application of a
recently proposed sliding mode observer concept for linear
time-invariant multivariable systems with unknown inputs.
In contrast to other sliding mode approaches, this observer
concept does neither unnecessarily increase the observer order
beyond the plant order nor requires bounded state variables
or some restrictive relative degree conditions. This work aims
for estimating the temperature profile along an aluminium rod,
which is excited with heat fluxes unknown to the observer. The
plant model is transformed into a suitable form for observer
design, facilitating a straightforward sliding mode observer
design. Experimentally obtained estimation results confirm the
effectiveness of the observer in a practical application.

I. INTRODUCTION

Estimating unknown system states from measured quanti-
ties is key for solving numerous practical control engineering
problems. Outside the domain of control systems design,
state estimation challenges emerge in various scenarios,
including real-time process monitoring, fault detection and
isolation, and soft sensing. Typically, designing a state ob-
server requires an accurate model of the plant. However,
model uncertainties and external disturbances, regarded as
unknown system inputs, introduce additional challenges.

Sliding mode based observers have attracted considerable
attention due to their ability of estimating the states theoreti-
cally exact in the presence of unknown inputs, provided that
certain conditions regarding the system and unknown inputs
are met. In recent years, several sliding mode based observer
concepts have been introduced based on the principle of the
so-called robust exact differentiator (RED) [1]. For example,
step-by-step sliding mode observers, see e.g [2], as well as
the direct application of the RED as a state observer, see
[3], are capable of estimating the plant’s state theoretically
exact provided that the states remain bounded. Observers
that do not require the boundedness of the states include
the cascaded observers proposed in [4], [5], [6]. These ob-
servers consist of a combination of the RED with a classical
Luenberger observer. The cascaded structure ensures global
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convergence of the estimation error to zero also in the
case of unbounded state variables. However, the cascaded
observers have at least twice the order of the plant model and
also a large number of interdependent tuning parameters. If
the so-called observer matching condition [7, Theorem 1.6]
is met, earlier approaches such as conventional first-order
sliding mode based methods [8], [9] as well as classical
Luenberger like observers [7], [10] provide exact estimates of
the states in the presence of unknown inputs. The observers
based on Luenberger’s classical observability canonical form
[11], [12] do not suffer from these drawbacks. However,
they require a restrictive relative degree condition w.r.t. the
unknown input to be satisfied, see, e.g., [12, Assumption 1].

While the aforementioned approaches, in principle, al-
low solving various problems, the conditions are frequently
overly restrictive or result in a substantial implementation
and tuning effort. To overcome these issues a novel observer
normal form for strongly observable linear time-invariant
(LTI) multivariable systems was proposed in [13]. It allows
for the straightforward construction of a higher-order sliding
mode observer, that ensures global convergence of the esti-
mation error within finite time in the presence of unknown
bounded inputs. However, the practical suitability of this
observer has not yet been shown.

The practical application of the approach proposed in
[13] is demonstrated in the present work. In particular the
temperature profile estimation in a thermal system subject
to unknown heat fluxes is considered. The plant dynamics
are modelled by means of the diffusion equation which is
a parabolic partial differential equation (PDE). Discretizing
the PDE and applying model order reduction provide an LTI
model suitable for observer design.

The paper is structured as follows: In Section II, the
observer normal form [13] is outlined. The considered ap-
plication is described and the state estimation problem is
formulated in Section III. In Section IV the plant model is
derived followed by the observer design in Section V. Exper-
imental results are provided in Section VI and Section VII
concludes the paper.

Nomenclature

Bold lowercase letters refer to vectors and bold uppercase
letters refer to matrices. The vector ei,n is the ith canonical
unit vector of dimension n. The elements of the matrices
0j×k and 1j×k of dimension j × k are zeros and ones,
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respectively. Furthermore, Ii is the i× i identity matrix and

J i =

[
0 Ii−1

0 0T

]
.

If the dimensions of the previously introduced matrices and
vectors are clear anyway, the respective index might be
skipped. For sign preserving power functions the notation
⌊·⌉γ = |·|γsign(·) and particularly ⌊·⌉0 = sign(·) is used. The
time-derivatives d

dtx and d2
dt2x are also denoted by ẋ and ẍ,

respectively. Furthermore, diag(A1, . . . ,Ai) refers to a block
diagonal matrix with elements A1, . . . ,Ai. The solutions of
differential equations with discontinuous right-hand side are
understood in the sense of Filippov [14].

II. UNKNOWN INPUT OBSERVER DESIGN FOR LTI
MULTIVARIABLE SYSTEMS

Consider the LTI system

ẋ = Ax+Dw, y = Cx, (1)

with the state vector x =
[
x1 x2 . . . xn

]T
, m un-

known inputs w =
[
w1 w2 . . . wm

]T
, p measured out-

puts y =
[
y1 y2 . . . yp

]T
and the constant matrices

A ∈ Rn×n, D ∈ Rn×m and C ∈ Rp×n. Without loss of
generality, it is assumed that D and C consist of linear
independent columns and rows, respectively. The aim is the
estimation of x from the output y in the presence of the
possibly time-varying unknown input w.

Definition 2.1 (strong observability [7]): System (1) is
called strongly observable, if y(t) = 0 for all t ≥ 0 implies
x(t) = 0 for all t ≥ 0.
If the system is strongly observable, higher-order sliding
mode techniques can be applied to estimate the state vector
in finite time despite the unknown input w.

In the following, a recently proposed sliding mode ap-
proach [13] is recalled, which relies on a new normal form
for LTI multivariable systems with unknown inputs. Due to
this suitable choice of coordinates, all drawbacks mentioned
in the introduction are avoided and the subsequent observer
design is straightforward.

A. An Observer Normal Form for LTI Multivariable Systems
with Unknown Inputs

The observer normal form is briefly recapped in
Definition 2.2 (observer normal form [13]): The system

.
x̄ = Āx̄+ D̄w, ȳ = C̄x̄, (2a)

is said to be in observer normal form if the system matrices
take the form1

Ā = Ā
⋆
+ Π̄C̄ + P̄ M̄ ,

D̄ = P̄
[
d̄1 d̄2 . . . d̄p

]T
,

C̄ = diag(eT1,µ1
, eT1,µ2

, . . . , eT1,µp
),

(2b)

1See [13] for a less compact but more insightful representation.

where

Ā
⋆
= diag(Jµ1

,Jµ2
, . . . ,Jµp

),

P̄ = diag(eµ1,µ1
, eµ2,µ2

, . . . , eµp,µp
),

M̄ =


0 0T 0 0T · · · 0 0T

0 βT
1,2 0 0T · · · 0 0T

0 βT
1,3 0 βT

2,3 0 0T

...
...

. . .
...

0 βT
1,p · · · 0 βT

p−1,p 0 0T

 =


0T

βT
2

βT
3
...

βT
p

,

Π̄ ∈ Rn×p, d̄j ∈ Rm, βi,j ∈ Rµi−1, (2c)

are constant and µ1, µ2, . . . , µp ∈ N satisfy
p∑

j=1

µj = n.

In observer normal form, the system is composed of
p coupled chains of integrators of orders µ1, µ2, . . . , µp, each
with a single output. The dynamic matrix Ā consists of three
parts:

• The matrix Ā
⋆ refers to p chains of integrators.

• The matrix Π̄C̄ can be considered as an output injection
and, thus, can be easily taken into account by an
observer.

• The matrix P̄ M̄ contains the remaining couplings that
can not be considered as an output injection. However,
thanks to the suitable block structure - all elements on
and above the block main diagonal are zero - these can
be taken into account by an observer.

The existence of transformations to observer normal (2) is
ensured by

Theorem 2.1 (transformation to obs. normal form [13]):
Let system (1) be strongly observable. Then, there exist non-
singular transformation matrices T ∈ Rn×n and Γ ∈ Rp×p

such that the state transformation x̄ = T−1x and the output
transformation ȳ = Γy yield the system in observer normal
form (2). The orders of the subsystems given by the integers
µj , j = 1, . . . , p, are sorted in descending order, i.e.,

µ1 ≥ µ2 ≥ · · · ≥ µp > 0. (3)
In addition to the proof of Theorem 2.1, also a construc-
tive algorithm for the transformation matrices T and Γ is
presented in [13].

B. Observer Design in Observer Normal Form

Typically, sliding-mode based observers require
Assumption 2.1: The unknown inputs are bounded, i.e.,

|wi(t)| ≤ Li ∀t, 0 ≤ Li < ∞, i = 1, . . . ,m. (4)
The observer for system (2) is given by

ˆ̄x
.
= Āˆ̄x+ Π̄σȳ + l̄(σȳ), ˆ̄y = C̄ ˆ̄x, (5a)

where

σȳ = ȳ − ˆ̄y =
[
σ1 σµ1+1 . . . σµ1+···+µp−1+1

]T
(5b)

is the output error and l̄(σȳ) is some possibly nonlinear
output injection. A reasonable choice of l̄(σȳ) relying on
Levant’s RED is proposed in
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Theorem 2.2 (finite-time observer [13]): Consider the
observer (5) for the estimation of the state vector x̄ of
system (2), the choice

l̄(σȳ) =



κ1,µ1−1⌊σ1⌉
µ1−1
µ1

...
κ1,1⌊σ1⌉

1
µ1

κ1,0⌊σ1⌉0
...

κp,µp−1⌊σµ1+···+µp−1+1⌉
µp−1

µp

...
κp,0⌊σµ1+···+µp−1+1⌉0


(6)

for the nonlinear output injection and the bounds Li for the
unknown inputs given in (4). Then, there exist parameters
κj,k, j = 1, . . . , p, k = 0, . . . , µj−1, such that the estimation
error σ = x̄ − ˆ̄x converges to zero within finite time
despite the unknown input for any initial states. Moreover,
convergence of the observer for all admissible unknown
input signals in terms of Assumption 2.1 is achieved only
if κj,0 >

[
L1 . . . Lm

]
|d̄j |.

The proof is given in [13]. □
Therein, it is shown that the dynamics of the estimation

error σ =
[
σ1 . . . σn

]T
are composed of p subsystems,

each corresponding to the estimation error dynamics of an
RED. For example, the j-th subsystem is given by

σ̇µ1+···+µj−1+1 = σµ1+···+µj−1+2−

κj,µj−1⌊σµ1+···+µj−1+1⌉
µj−1

µj

...

σ̇µ1+···+µj−1 = σµ1+···+µj − κj,1⌊σµ1+···+µj−1+1⌉
1
µj

σ̇µ1+···+µj = −κj,0⌊σµ1+···+µj−1+1⌉0 + βT
j σ + d̄

T
j w, (7)

where βT
j σ + d̄

T
j w acts as unknown input. If this unknown

input is bounded, then there exist parameters κj,k such that
the respective error variables converge to zero within finite
time [1]. Due to the advantageous structure of βT

j , see
(2c), βT

j σ vanishes when all preceding subsystems have
converged. Hence, the choice of κj,k depends on the bounds
of d̄T

j w only, which is bounded due to Assumption 2.1.
Note that in the case that d̄j = 0, i.e., the corresponding

subsystem is not affected by w, the respective elements of
l̄(σȳ) may also be chosen in a different way. For instance, a
linear choice leads to a linear observer for the respective
subsystem which provides asymptotic convergence of the
error variables.

III. LABORATORY SETUP AND PROBLEM STATEMENT

In the following, the laboratory setup is presented and the
estimation problem is formulated.

RodTEM 1 TEM 12
Water-cooled Substructure

Fig. 1. The laboratory setup used for the experiments discussed in this
paper. Twelve thermoelectric modules (TEMs) are mounted underneath
an aluminium rod. The lower surface of the TEMs is kept at ambient
temperature.

Rod

Active TEMs

b
zl

0 zy,1

zy,3
zy,2

Fig. 2. The goal is to estimate the temperature profile of the rod along
the z-axis from the temperature measurements at the positions zy,1, zy,2
and zy,3 in the presence of unknown heat fluxes caused by TEM 3 and
TEM 11. The figure is taken from [17, p. 11] and slightly modified with
the author’s permission.

A. Description of the Laboratory Setup

A detailed view of the considered laboratory setup is given
in Fig. 1. The centrepiece is a uniformly shaped rod made
of aluminium alloy EN AW-6060 with length l = 315 mm,
width b = 25 mm and thickness d = 3 mm. Along the
rod, different thermal phenomena can be observed, such as
heat conduction, convective heat loss and heat loss due to
radiation.

In order to thermally excite the rod, NTEM = 12 so-
called thermoelectric modules (TEMs) [15] are mounted
at the bottom. Each TEM houses several thermocouples
which, with the help of the Peltier effect [16], allow to
introduce a heat flux into the rod at the mounting location.
Depending on the direction of the applied electric current, the
rod is either heated or cooled. A water-cooled substructure
keeps the lower surface of the TEMs at ambient temperature
Tamb, which enlarges the achievable temperature range of
the TEMs. A thermal imaging camera with a resolutions of
120×160 pixels is installed on top, which allows to measure
the rod temperature at any desired position at a rate of 10
frames per second.

B. Problem Statement

The estimation problem is sketched in Fig. 2. The objec-
tive is to estimate the rod’s temperature profile along the z-
axis from three punctual temperature measurements located
at

zy,1 = 53.5 mm, zy,2 = 186.8 mm, zy,3 = 285.7 mm. (8)
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These measurements correspond to three single pixels of the
thermal imaging camera.

Furthermore, only TEM 3 and TEM 11 are actuated.
The actuation, i.e., the supplied electric currents and the
resulting generated heat fluxes, are considered unknown for
the estimation algorithm to be designed. All other TEMs are
not actuated.

To sum up, the goal is to design an observer that estimates
the temperature profile from p = 3 available measurements
in the presence of m = 2 unknown inputs corresponding to
the heat fluxes of both actuated TEMs.

IV. MODELLING

In order to describe the thermal behaviour along the
aluminium rod, the physical effects of heat conduction, heat
losses and the external heat input generated by the TEMs are
considered. The resulting model takes the form of a PDE,
which is then spatially discretized on a regular grid and, thus,
is transferred into a finite-dimensional state-space model for
the subsequent observer design.

A. Physical Modelling of the Rod

Due to symmetry of the system in transverse direction and
because the rod is narrow compared to its length, i.e., l ≫ b
and l ≫ d, the heat transfer mainly takes place along the
longitudinal direction (the z-axis introduced in Fig. 2) of
the rod. Hence, the temperature is assumed to be constant
over the cross-sectional. Further assuming constant material
parameters, the temperature T of the rod is described by the
one-dimensional heat equation, see [18, eqn. (2.244)]

∂T (z, t)

∂t
=

k

cρ

∂2T (z, t)

∂z2
+

1

cρ
q̇V (z, t) (9)

where k is the thermal conductivity, c is the specific heat
capacity, ρ is the density of the rod material with the
volumetric heat flux

q̇V (z, t) = q̇V,loss(z, t) +

NTEM∑
j=1

q̇V,TEM,j(z, t) (10)

consisting of ambient heat losses q̇V,loss and volumetric heat
fluxes q̇V,TEM,j generated by the TEMs. Since radiation
losses play a negligible role at the temperatures considered,
a purely convective heat transfer is assumed for the ambient
losses, i.e.,

q̇V,loss(z, t) = −h
A

V

(
T (z, t)− Tamb

)
, (11)

where h describes the average heat transfer coefficient, A is
the rod’s surface area, V denotes the volume of the rod and
Tamb is the ambient temperature. The heat generated by the
TEMs is assumed to be uniformly distributed over the entire
contact area. Thus, the volumetric heat flux of the j-th TEM
is given by

q̇V,TEM,j(z, t) = ˙̄qV,TEM,j(t)fj(z), (12)

Fig. 3. Partitioning of the rod into a grid of N nodes inside of the rod for
the spatial discretization of the PDE (9).

where ˙̄qV,TEM,j(t) is the time-dependent volumetric heat flux
and

fj(z) =

{
1 if (j − 1) l

NTEM
< z < j l

NTEM

0 else
(13)

defines the position of the contact surface. It is noted
that ˙̄qV,TEM,j(t) could be considered as a function of the
applied electric current, the rod temperature at the contact
surface and the bottom temperature of the respective TEM.
However, these dependencies are not modelled here. Both the
volumetric heat flux and the electric current are unknown
to the observer being designed. Therefore, modelling this
relation would not add any further value for observer design
purposes.

At the boundaries, a convective heat transfer to the ambient
air according to [18, eqn. (2.23)] is considered, which yields

∂T (z, t)

∂z

∣∣∣∣
z=0

=
h̃

k

(
T (0, t)− Tamb

)
,

∂T (z, t)

∂z

∣∣∣∣
z=l

= − h̃

k

(
T (l, t)− Tamb

)
,

(14)

where h̃ is the corresponding heat transfer coefficient2.

B. Spatial Discretization of the Partial Differential Equation
The distributed parameter system (9)–(14) is spatially

discretized following [18, Chapter 2.4.1]3. As depicted in
Fig. 3, temperatures Ti(t) = T (zi, t) at N + 2 discrete
positions

zi = −∆z

2
+ i ·∆z, i = 0, . . . , N + 1, (15)

are considered, where ∆z = l
N .

In each position, the spatial derivatives are substituted by
difference quotients. This, together with the discretization of
the boundary conditions, results in a system of N first-order
ordinary differential equations (ODEs).4

2Note that the heat transfer coefficients h and h̃ do not coincide. On the
one hand, h additionally takes into account the rod’s bottom side with the
heat transfer to the TEMs. On the other hand, the orientation of the surface
also plays a significant role in the heat transfer. In contrast to the top surface
of the rod, the heated air can rise along the side surfaces. This behaviour
leads to an increased heat transfer at the side surfaces.

3In contrast to [18, Chapter 2.4.1], no discretization in time but only
spatial discretization is considered here.

4The nodes located at z0 and zN+1 outside the rod are used for the
discretization the boundary conditions. This reduces the number of ODEs
to N .
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C. Model Parameters

The number of nodes for the spatial discretization is
chosen as N = 156, which has proven to be sufficiently
large w.r.t. the resulting discretization error, see Section VI-
B. Furthermore, due to the position and the resolution of the
thermal imaging camera, the distance between two adjacent
pixels corresponds exactly to the discretization width ∆z,
which allows for a straightforward validation of the node
temperatures estimated by the observer to be designed.

The density ρ = 2700 kg/m3, the thermal conductiv-
ity k = 209 W/(m · K) and the specific heat capac-
ity c = 898 J/(kg · K) of the rod material5 were taken
from tables in the literature [19, pp. 634 and 637]
and a data sheet [20]6. The heat transfer coefficients
h = 48.2 W/(m2 · K) and h̃ = 1982 W/(m2 · K) were de-
termined from a cool-down experiment by minimiz-
ing a quadratic cost function. The ambient temperature
Tamb = 25◦C was measured at the beginning of the experi-
ment and is assumed constant hereafter.

D. Representation as Continuous-Time State-Space Model

The spatially discretized PDE model is summarized in the
form of an LTI continuous-time state space model. To get
rid of the dependency of the model on the constant ambient
temperature Tamb the state state vector

θ =
[
θ1 . . . θ156

]T
=

[
T1 − Tamb . . . T156 − Tamb

]T
(16)

is defined. Furthermore, the vector of unknown
inputs w =

[
˙̄qV,TEM,3 ˙̄qV,TEM,11

]T
, the output vector

y
(8)
=

[
θ27 θ93 θ142

]T
and insertion of the model

parameters in coherent SI-units yields the LTI system

dθ
dt

= Aθθ +Dθw, y = Cθθ, (17a)

with the dynamic matrix7

Aθ =



−21.61 21.20 0 . . . . . . 0

21.14 −42.30 21.14
. . .

...

0 21.14 −42.30 21.14
. . .

...
...

. . . . . . . . . . . . 0
...

. . . 21.14 −42.30 21.14
0 . . . . . . 0 21.20 −21.61


, (17b)

the unknown-input matrix

Dθ = 41.24 · 10−6 ·
[
dθ,1 dθ,2

]
, (17c)

with columns dθ,1 =
[
01×26 11×13 01×117

]T
and

dθ,2 =
[
01×130 11×13 01×13

]T
, and the output matrix

Cθ =

 eT27
eT93
eT142

 . (17d)

5Aluminium alloy with material number EN AW-6060.
6Due to an obviously wrong value, the specific heat capacity could not

be taken from [19, p. 639].
7The values are rounded to two decimal places.

V. OBSERVER DESIGN FOR ESTIMATION OF THE
TEMPERATURE PROFILE

Prior to the observer design, a model order reduction is
applied to (17). The resulting lower-order system is trans-
formed into the observer normal form and the observer is
designed.

A. Modal Model Order Reduction

The high order renders system (17) numerically unsuitable
for the observer design. Hence, a modal model order reduc-
tion is applied that keeps the slow parts of the dynamics only.
A transformation ξ =

[
ξ1 ξ2

]T
= T ξθ to diagonal form

represents the system by means of N = 156 decoupled first
order dynamics, where ξ1 corresponds to the slow modes8

to be kept and ξ2 refers to the fast decaying modes to be
approximated. The four slowest modes are assigned to ξ1
whereas the remaining ones are approximated with a quasi-
static approximation as discussed in [21, p. 285] and [22].
To reconstruct ξ it is not sufficient to estimate ξ1 only, but
also ξ2 which requires an estimate of w. Hence, the state
vector of the reduced order system is augmented with w and
its derivative ẇ.

B. Transformation to Observer Normal Form

The resulting system of order n = 8 is transformed to
observer normal form (2), which yields

˙̄x = Āx̄+ D̄ẅ, ȳ = C̄x̄, (18a)

where

Ā =



0.0367 1 0 0 −0.5349 0 6.4194 0
0.0105 0 1 0 0.0076 0 1.7116 0
−0.0135 0 0 1 0.0111 0 0.0602 0
−0.0010 0 0 0 0.0004 0 −0.0027 0
0.1009 0 0 0 0.1616 1 0.2309 0
−0.0247 0 −0.4470 2.2258 0.0173 0 −0.6042 0
0.0063 0 0 0 0.0280 0 −0.4080 1
−0.0005 0 −0.0681 0.0592 −0.0003 0 −0.1104 0


,

D̄ = 10−4 ·



0 0
0 0
0 0
0 0
0 0

52.4 −3.0
0 0
7.7 3.7


, C̄ =

 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

 .

(18b)

The system in observer normal form (18a) has m = 2
unknown inputs ẅ and p = 3 outputs. It consists of p = 3
coupled subsystems, each with a single output. The second
and the third subsystem of order µ2 = µ3 = 2 are directly
affected by ẅ, whereas the first subsystem of order µ1 = 4
is not.

8Characterized by the eigenvalues of the asymptotically stable system
with the smallest absolute value of the real part.
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C. Unknown Input Observer Design

As proposed in Section II, an observer of the form (5) is
designed. The remaining task deals with the choice of the
nonlinear output injection l̄(σȳ). As discussed previously,
the first subsystem is not directly affected by the unknown
inputs. For this reason, the application of a linear observer
for this subsystem is sufficient for asymptotic convergence,
whereas an RED-based output injection is applied to the
second and the third subsystem, which yields

l̄(σȳ) =



κ1,3σ1

κ1,2σ1

κ1,1σ1

κ1,0σ1

κ2,1⌊σ5⌉
1
2

κ2,0⌊σ5⌉0

κ3,1⌊σ7⌉
1
2

κ3,0⌊σ7⌉0


. (19)

VI. EXPERIMENTAL RESULTS

The discrete-time implementation of the observer applied
in the laboratory follows the ideas of the so-called matching
approach for the discretization of homogenous differentia-
tors [23], [24], which allows for eliminating the discretization
chattering phenomenon.

A. Experimental Procedure

The electric currents (in Ampere) of TEM 3 and TEM 11
were chosen

i3(t) = −0.6 + 0.4 sin

(
2π

221
(t+ t0)

)
,

i11(t) = 0.6 + 0.15 cos

(
2π

100
(t+ t0)

)
,

(20)

respectively, where t0 is some random time shift. Since the
respective electrical current i3 is negative, TEM 3 is in
cooling mode, whereas TEM 11 is in heating mode. As the
electrical currents and their derivatives are bounded, also the
unknown inputs are bounded, which follows from [15].

For the linear observer of subsystem 1, purely real
eigenvalues were assigned, which are uniformly distributed
between −0.3 and −0.2, which yields κ1,0 = 0.0037,
κ1,1 = 0.0611, κ1,2 = 0.3722 and κ1,3 = 1. The RED-based
observers for subsystems 2 and 3 were chosen according
to [25, Section 6.7]. As the bounds for the unknown inputs
ẅ are unknown, the scaling parameter has been increased
until convergence of the respective output errors σ5 and σ7,
which yields κ2,0 = 0.44, κ2,1 = 0.9487, κ3,0 = 0.22 and
κ3,1 = 0.6708. The initial estimate of the temperature profile
T̂i is set to T̂i(t = 0) = 18◦C, i = 1, . . . , 156. The initial
values for the estimate ŵ and its derivative ˆ̇w are set to
ŵ(t = 0) = ˆ̇w(t = 0) = 0. Individual pixels of the thermal
camera, which are located in the centre of the rod, serve as
measurements for the observer as well as for its validation.

Measured
Positions of measurements
used by the observer

Estimated

Fig. 4. Comparison of the measured and the estimated temperature profile
along the aluminium rod at t = 0 s, t = 2 s, t = 29 s, t = 77 s and
t = 82 s. After approximately 82 s the temperature profile estimate has
converged to the actual temperature profile.
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B. Estimation Results
Fig. 4 depicts the convergence of the observer estimates T̂i

to the actually measured temperatures Ti. Since the thermal
imaging camera provides two-dimensional pictures, the mea-
sured rod temperature is represented as surface, where the
height indicates the local temperature. In order to comparably
represent the observer estimates, which actually correspond
to a line in longitudinal direction, they are stretched in
transverse direction. The position of the measurements used
by the observer are indicated by black lines. Due to the
applied model order reduction, the initial estimate can not
be represented as a constant temperature of 18◦C, but shows
some small deviations. Furthermore, the initial estimation
is far off the actual temperature profile, also on average,
which leads to strong transients. After approximately 82 s
the observer provides an accurate estimation. Fig. 5 shows
a comparison of the temperature measurements Ti and its
respective estimates T̂i at two exemplary positions distributed
along the rod. Again, it becomes apparent that the estimates
approximate the actual temperatures well after the transients
phase. It is noticeable that the estimate of T9 located close to
the rod boundary has a lower accuracy than the one located
further inside.
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Fig. 5. Comparison of measurements Ti and estimates T̂i at two exemplary
positions (out of N = 156 node positions in total) along the rod.

VII. CONCLUSION

The recently proposed observer design method [13] for
LTI multivariable systems with unknown inputs has been
successfully applied for the temperature profile estimation of
an aluminium rod which is exposed to unknown heat fluxes.
It was demonstrated that, due the advantageous structure of
the observer normal form, the observer design is simple and
intuitive. The experimental results validate both the accuracy
of the provided observer in estimating the rod’s temperature
profile and the practicality of the proposed observer design
method.
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