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Abstract— We study event-triggered control for discrete sys-
tems with the HHH111 (induced `̀̀222) performance measure. We
construct event-triggered controllers generating sampling in-
tervals no smaller than those of the optimal time-triggered
controller under the same HHH111 performance bound 


 . The
design philosophy is based on a parametrization of discrete,
possibly nonlinear and time varying, 


-suboptimal controllers
and triggering events via the QQQ parameter that renders the
parametrization sampled-data. Although this is similar to our
previous event-triggered design for continuous-time systems,
the lack of continuity of discrete behaviors constitutes non-
trivial differences that require special treatment. In particular,
dynamic event-triggering is proposed to compensate for prema-
ture triggering, which can only be detected a posteriori. As a
result of the discrete-time nature of the problem, there appears
to be a wider class of signals that causes our event-triggered
controllers to generate the optimal time-triggered sampling
pattern. We characterize a narrow subclass, the continuous-time
counterpart, through the associated difference Riccati equation.

I. INTRODUCTION

Sampled-data controllers may be thought of as controllers
in which the information from sensors to actuators is sent
only at sampling instances, regular or intermittent. Classical
time-triggered control (TTC) has sampling instances gener-
ated in a process independent fashion, associated with either
an external clock [1] or process independent communication
opportunities [2]. In event-triggered control (ETC), sampling
generation depends on the controlled signals. A key motiva-
tion behind introducing event triggering is the potential to
reduce the communication burden without compromising the
attainable performance. This potential was first demonstrated
analytically [3] in the LQG setting and was exploited in
numerous publications during the last couple of decades,
see [4–6] and the references therein. Finding an optimal
event triggering may still be an open problem for general
linear time-invariant (LTI) systems. Yet for LQG, there are
ETC algorithms strictly outperforming TTC [7] in the sense
that it guarantees strictly sparser average sampling under the
same performance as the optimal TTC.

Choosing an event-triggered controller is justified if it
strictly outperforms TTC or, if not strictly, the conditions
rendering strict superiority unattainable are understood and
their restrictiveness quantified. To the best of our knowledge,
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the first H1 event-triggering solution outperforming the
optimal TTC was proposed in the analogue output-feedback
setting [8] (the first version with the same title was presented
at the 58th CDC in 2019). There, we exhaustively character-
ized a class of internal spoilers signals that prevent the ETC
scheme from strictly outperforming TTC. The spoiler class is
shown to belong to a finite-dimensional subspace of L2 and
may thus be regarded as atypical. A discrete state-feedback
ETC outperforming TTC was independently proposed [9]
using game-theoretic techniques, and was extended to the
output-feedback setting [10, Ch. 7].

In this paper we also address the discrete version of the
problem, but following the the technique of [8]. Apart from a
substantially dissimilar solution procedure, our result differs
from those in [10] in the following aspects. First, our setup is
less restrictive, as we do not impose any limiting assumption
on the ranks of the control penalty and measurement noise
weights, nor do we require the invertibility of the associated
Riccati solutions. Second, we characterize spoiler signals for
some situations, whereas [10] does not address this question.
Third, our control law is nontrivially different from those
in [10]. Specifically, we effectively implement an open-loop
worst-case disturbance generating the control signal during
the intersample, whereas the results of [9] use the zero-order
hold after some steps.

Our previous design philosophy is to start with a prefer-
ably complete parametrization of possibly nonlinear, time-
varying controllers solving a non-strict version of the H1

-suboptimal problem, where the closed-loop norm is no
larger than 
 . Next, all controllers that are sampled-data
within this parametrization are extracted by imposing a strict
causality constraint. The “central controller” of this sampled-
data family has a reset system as its Q parameter. It is
thus a convenient choice for outfitting an event-triggering
mechanism, where a reset is triggered whenever the input
and output signals of Q detect its 
-contractivity on the
current sampling interval. Moreover, this approach affords a
complete characterization of the spoiler class, barring which
we have a stronger claim of increased sampling sparsity per
sampling interval rather than on average.

The steps described above can in principle be carried over
to the discrete setting, but not without a few tweaks to adjust
to the discontinuous behavior of the signals. One implication
of discrete signals is that one cannot expect a system to
exactly reach a feasible norm bound. Another implication
is that the obstruction to a strictly larger sampling interval
includes not just the norm bound achieving inputs to Q like
in the L2 case. This means that a favorable conclusion for
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Fig. 1: Standard problems with generalized plants

ETC might not be as strong in the `2 case. Additionally, to
characterize even just the norm bound achieving inputs of Q
requires an alternative approach, as the previous method is
not readily portable.

It is therefore the objective of this note to highlight
our solutions to the technical problems unique to the `2
setting, besides the main program of designing performance
guaranteeing event-triggered controllers that are provably
more efficient in spending the sampling budget.

Notation: The set of all non-negative integers is denoted
as ZC and Zi1::i2 ´ fi 2 Z j i1 � i � i2g. The dimension of
a signal x is denoted as nx . By `2.I/ we denote the space
of square integrable signals x W I ! Rnx for some I � ZC
and k�k2 denotes the `2.I/ signal norm. When a system G

is considered on the interval Z0::h�1 for some h 2 ZC, we
write Gh. The `2.Z0::h�1/-induced norm of Gh is also denoted
kGhk1. It is the minimal 
 � 0 such that kyk22 � 
2kuk22 for
all u 2 `2.Z0::h�1/. Given a � 2 ZC, the truncation operator
P� acts on a discrete signal x as

.P�x/Œt � D
(
xŒt � t < �

0 otherwise:

The lower linear-fractional transformation (LFT) of ˝ by the
generator ˚ is defined as

Fl.˚;˝/ WD ˚11 C ˚12˝.I � ˚22˝/�1˚21:
II. PROBLEM SETUP

The setups in Fig. 1 represent the standard problem of
designing a controller for a generalized plant in discrete time.
The generalized plant is a linear shift-invariant (LSI) system,
whose transfer function is given by its state-space realization

G.´/ D
�
G´w.´/ G´u.´/

Gyw.´/ Gyu.´/

�
D
24 A Bw Bu
C´ D´w D´u

Cy Dyw Dyu

35 ;
satisfying standard assumptions on stabilizability and well-
posedness, viz.
A1: .Cy ; A; Bu/ is stabilizable and detectable,

A2:
h
A�e j�I Bu
C´ D´u

i
is left invertible 8� 2 Œ��; ��,

A3:
h
A�e j�I Bw
Cy Dyw

i
is right invertible 8� 2 Œ��; ��.

What distinguishes the setup in Fig. 1(b) from that in 1(a)
is the sampling instances at which the information flows from
the sensor Rs to the actuator Ra. A sampling sequence fsig
is composed of strictly increasing sampling instances si 2
ZC; the differences between consecutive sampling instances

are sampling intervals hi WD siC1 � si . The restriction of a
controller’s information transfer to a sampling sequence fsig
can be formalized by a causality constraint

Cfsi g WD
˚
R j P�R D P�RPsi ; � 2 ZsiC1::siC1 ; i 2 ZC

	
:

Controllers belonging to Cfsi g are termed sampled-data and
are strictly causal, that is, the control signal u in the current
interval depends only on measurement y received during
previous intervals. (Note that there is no loss of generality in
dealing with strictly causal controllers, as we do not assume
Dyu D 0 as is conventionally done.) The sampling sequence
in Fig. 1(a) is the baseline periodic sampling fig D ZC,
whereas the one in Fig. 1(b) is a possibly intermittent and
sparser fsig. The latter may be event or time-triggered; in
other words, it may be process dependent or independent.
In the case of event-triggered controllers, we note that the
sampling instances si generated by the controller depends
only on signals in previous intervals as well.

The goal of the 
-suboptimal H1 problem associated with
fsig, denoted OPfsi g, is to find sampled-data controllers R 2
Cfsi g that internally stabilize G while keeping the `2 gain of
the closed-loop system T´w from the exogenous input w to
the regulated output ´ under a specified performance level 
 .
It is more restrictive than OPfig associated with the sampling
sequence fig in the sense that the sampled-data controller
R 2 Cfsi g needs to wait longer to send information from the
sensor to the actuator.

Let the minimal performance measure attainable by OPfig
be denoted 
1. If OPfig is solvable, that is 
 � 
1, then
there is a complete parametrization of LSI strictly causal
controllers. The solution [11] is in terms of the parameters
of G.´/, the stable and 
-contractive system Q, and the
solutions to the standard H1 discrete algebraic Riccati
equations [12] associated with the necessary and sufficient
solvability conditions of OPfig

X D ˚xx �
�
˚xw ˚xu

� � ˚ww ˚wu
˚uw ˚uu

��1 �
˚wx
˚ux

�
; (1a)

Y D 	xx �
�
	x´ 	xy

� � 	´´ 	´y
	y´ 	yy

��1 �
	´x
	yx

�
; (1b)

where24 ˚xx ˚xw ˚xu
˚wx ˚ww ˚wu
˚ux ˚uw ˚uu

35 WD �
24 0 0 0

0 
2I 0

0 0 0

35
C
24 A0 C 0´
B 0w D0´w
B 0u D0´u

35� X 0

0 I

� �
A Bw Bu
C´ D´w D´u

�
and 24 	xx 	x´ 	xy	´x 	´´ 	´y

	yx 	y´ 	yy

35 WD �
24 0 0 0

0 
2I 0

0 0 0

35
C
24 A Bw
C´ D´w

Cy Dyw

35� Y 0

0 I

� �
A0 C 0´ C 0y
B 0w D0´w D0yw

�
:
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For the more restrictive OPfsi g to be solvable, 
 must be
strictly larger than 
1. As such, the Riccati equations (1)
have stabilizing solutions, namely, X � 0 and Y � 0 such
that the matrices AK WD A C BwKw C BuKu and AL WD
AC L´C´ C LyCy are Schur, where�

Kw
Ku

�
´ �

�
˚ww ˚wu
˚uw ˚uu

��1 �
˚wx
˚ux

�
;

�
L´ Ly

�´ � � 	x´ 	xy � � 	´´ 	´y
	y´ 	yy

��1
:

Moreover, Z WD .I � 
�2YX/�1 is nonsingular and

x�
��

X1=2AY 1=2 X1=2Bw
C´Y

1=2 D´w

��
< 
:

where x�.�/ denotes the largest singular value of a matrix.

III. H1 EVENT-TRIGGERED CONTROL

The ETC designs proposed in this note shares the basic
controller architecture with the TTC solution to OPfsi g.
The solvability of the TTC problem both serves as a pre-
requisite for that of the ETC problem and provides a basis for
comparing sampling sparsity of the two designs. The existing
time-triggered intermittent controllers solving OPfsi g given
in [13, (8)] are extracted from the complete parametrization
of linear time-varying controllers solving OPfig. It is not
directly usable, as event-triggered controllers are nonlinear
time-varying, which necessitates a dedicated solution. We
therefore first enlarge the search space of OPfig to account
for general nonlinear controllers before arriving at a sampled-
data one in �III-A. We then propose two ETC strategies that
can outperform the optimal TTC in �III-B, and comment on
characteristics unique to the discrete-time problem. In �III-
C, we identify a class of signals reducing the ETC sampling
pattern to that generated by the optimal TTC.

A. Controller architecture

We adopt our previous approach of extracting sampled-
data controllers from the parametrization for OPfig by im-
posing the causality constraint Cfsi g on the 
-contractive
Q parameter [14]. In order to end up with a controller
architecture friendly to our previous ETC design idea of
triggering events by resetting the Q parameter, we derive the
following parametrization for OPfig. Define the LSI system
J W .y; �/ 7! .u; �/

J.´/ D
24 AK CZLy QCy �ZLy Z QBuS�1u

Ku 0 S�1u
�S�1y QCy S�1y �S�1y QDyuS�1u

35 (2)

where QBu´ BuCL´D´uCLyDyu, QCy ´ Cy CDywKw C
DyuKu, and Su and Sy are any square matrices satisfying�

S 0uSu
QD0yuQDyu SyS
0
y

�
´

�
˚uu D0yu
Dyu 0

�
C
�
˚uxY ˚uw
CyY Dyw

�
�
�

2I � ˚xxY �˚xw
�˚wxY �˚ww

��1 �
˚xu C 0y
˚wu D

0
yw

�
:

Lemma 3.1: Given A1–3 and 
 > 
1, then all parameters
of J in (2) are well defined and a class of strictly causal stabi-
lizing controllers that ensures kT´wk1 � 
 is parametrized as
R D Fl.J;Q/ for all strictly causal Q such that kQk1 � 
 .

The parametrization in Lemma 3.1 admits nonlinearity
in the Q parameter and is extended to non-strict norm
bound, as is better suited to the ETC design later on. If Q
is restricted to be linear, the result is still both necessary
and sufficient with the non-strict norm bound. The proof
steps of Lemma 3.1 parallels that of the continuous time
counterpart [8, Prop. A.3], and is omitted because of space
limitation.

Compared to the parametrization in [12], Lemma 3.1
parametrizes strictly causal rather than causal controllers;
compared to the one used in [13], the present parametrization
yields a sampled-data controller in the next proposition that
allows us to reset the Q parameter directly rather than an
augmented version of it.

Proposition 3.1: The controller Fl.J;Qstat/ satisfies the
sampled-data causality constraint Cfsi g, and is 
-suboptimal
if and only if kQstatk � 
 , where QstatW � 7! � is

QstatW
(
xqŒt C 1� D AqxqŒt �CZLySy�Œt �; xqŒsi � D 0

�Œt � D SuKuxqŒt �;
(3)

with Aq D AK �Z. QBu � Ly QDyu/Ku.
With this choice, we can directly control the norm bound

on Qstat by resetting its state xq . The proof follows the same
logic as that of [15, Lem. 5] and is omitted due to space
limitation.

Remark 3.1: In the time-triggered case, Fl.J;Qstat/ is lin-
ear, and by the linear version of Lemma 3.1, the parametriza-
tion Fl.J;Qstat/ for kQstatk � 
 in Prop. 3.1 is complete.
The optimal TTC sampling period h
 is then the maximum
hi such that kQstatk � 
 (or equivalently, that the condition
expressed using a difference Riccati solution in [13, Thm. 1]
is satisfied). Consequently, the optimal TTC controller is the
optimal periodic controller with sampling period h
 , and we
need only compare the ETC sampling sequence with fih
g.

For implementation, substituting (3) into (2) yields the
controller with the sensor-side part Rs given by

xsŒt C 1� D .AK CZLy QCy �Z QBuKu/xsŒt �
�ZLyyŒt �CZ QBuuŒt � (4a)

and the actuator-side part Ra given by

xaŒt C 1� D AKxaŒt �; xaŒsi � D xsŒsi � (4b)
uŒt � D KuxaŒt �: (4c)

where xs D xj , xa D xj Cxq , and xj is the state of J in (2).

B. Event-triggering algorithm design

In the TTC setting, given an intermittent sampling se-
quence, Qstat resets at every si . Consequently, kQstatk is
determined by the largest sampling interval of the given
sequence, which must respect h
 . Otherwise if h > h
 , there
exists an input � 2 `2.Z0::h�1/ such that kQstat;hk exceeds

 , and we can no longer guarantee closed-loop performance.
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However, there is no need to guard against such an input by
limiting the sampling period to h
 if the controller is capable
of inferring its absence. In fact, the controller can do so by
monitoring whether k�k2=k�k2 � 
 for given �; � 2 `2.Zsi ::t /
at the current time t , or equivalently eŒt � � 0 where

eŒt � WD
tX

iDsi

k�Œi �k2 � 
2
tX

iDsi

k�Œi �k22: (5)

Better yet, it is possible to detect whether eŒt C 1� might
exceed 0 with currently available information and to trigger
a warning to reset Qstat. A mechanism for doing that is

siC1 D 1Cmin
˚
t � si j eCŒt � > 0

	
; 8i; (6)

where

eCŒt � WD
tC1X
iDsi

k�Œi �k2 � 
2
tX

iDsi

k�Œi �k22: (7)

The computation of �Œt C 1� is what enables the controller
to predict at the current time step if the finite-horizon `2
gain on the current interval might exceed 
 at the next time
step. The information needed for computing �ŒtC1� is made
available by the strict causality of Qstat, see (3). At time t ,
xqŒt C 1� is known, so �Œt C 1� can be obtained from the
output equation. Although we do not have knowledge about
�Œt C 1� at time t , the worst possible increase of the `2 gain
happens for �Œt C 1� D 0. To see this, note that

eŒt C 1� D eCŒt � � 
2k�Œt C 1�k22 � eCŒt �:
These considerations reflect the first distinct features of
our discrete-time ETC design, which are absent in the
continuous-time case. When the signals are in continuous-
time, there are no jump from eŒt � to eŒtC1� before any reset
occurs, so the continuous-time triggering only needs to be
conditioned on e.t/ reaching exactly 0.

A further observation reveals why the strategy in (6) may
be naive. Enforcing (6) likely does not result in k�k2=k�k2
equal precisely to 
 (in this paragraph the signals are con-
sidered on Zsi ::t ). One step before triggering due to positive
eCŒsiC1 � 1�, the actual norm difference eŒsiC1 � 1� may fall
short of 0. From the viewpoint of prolonging the sampling
intervals as much as possible until k�k2=k�k2 reaches 
 , one
might wish to reset at siC1 only when eŒsiC1� > 0. But this
scheme is not causally implementable, and on top of that the
possibility of eŒsiC1�1� < 0 remains unchanged. The conser-
vatism introduced by the undershoot is thus unavoidable on
any given sampling interval. Fortunately, with not just one
but a sequence of sampling intervals, we can improve (6) by
relaxing the triggering threshold on hiC1 to compensate for
the undershoot incurred on hi :

siC1 D 1Cmin
˚
t � si j eCŒt � > ˇi

	
; 8i (8)

with

ˇ0 D 0
ˇiC1 D ˇi � eŒsiC1 � 1�:

(9)

The phenomenon of undershooting a specified norm bound,
and thus the remedy applied to reduce the unrealized po-
tential, are another aspect unique to the discrete-time ETC
design. In contrast, the continuous-time event-triggered con-
troller devised in [8, (12)] reaches the 
-bound on kQstatk
on every sampling interval. As a small side effect, a safety
check must be in place to ensure that the equality there is
not caused by zero � to avoid needless (potentially Zeno)
triggering, which need not be considered here.

With the ETC strategies, whether static (6) or dynamic (8),
kQstatk � 
 is a consequence of kQstat;hi k � 
 for every i .
As a matter of fact, in both (6) and (8), the search space
can be equivalently restricted to t � si C h
 � 1. This means
that the sampling sequences generated by both algorithms
cannot have sampling intervals smaller than the optimal TTC
sampling period.

On the implementation side, the controller architecture is
based on the sensor-actuator separation structure (4). The
triggering signals that prevents Qstat from overstepping the

-bound shall be computed using signals available to (4).

�Œt � D S�1y
�
yŒt � � . QCy � QDyuKu/xsŒt � � QDyuuŒt �

�
�Œt � D Su .uŒt � �KuxsŒt �/ :

(10)

The main result of this subsection is then summarized.
Theorem 3.2: Let assumptions A1–3 hold and 
 > 
1.

The ETC controller comprising the control architecture (4)
and the event-triggering rule (6) or (8) with the triggering
signal (7) realized as (10), internally stabilizes the system in
Fig. 1(b), guarantees that kT´wk1 � 
 and that hi � h
 for
every i .

Proof: As both (6) and (8) ensures 
-contractive Qstat

by construction, the part about solving the 
-suboptimal
sampled-data H1 problem follows from Prop. 3.1. It remains
to be shown that hi � h
 , which we prove only for the
static triggering condition (6), as the case for the dynamic
one (8) is implied by the former. This is because the dynamic
thresholding of (8) allows larger sampling periods, since it is
harder (takes more time) for eCŒt � to be greater than ˇ � 0
than the 0 threshold.

Recall that Prop. 3.1 specialized to the TTC case means
that kQstatk � 
 is also necessary for the 
-suboptimal H1
problem to be solvable. It follows (restricting to the first
sampling interval without loss of generality) that kQstat;h
 k �

 , or alternatively, eŒh
 � 1� � 0. Suppose that there exists
an h < h
 generated by the ETC controller with the static
triggering rule (6). This can only happen when eCŒh � 1� >
0, which means that k�k22 � 
2k�k22 > 0 (these signals are
over Z0::h�1). Construct an input .�Œ0�; : : : ; �Œh � 1�; 0; : : :/
which is padded by h
 �h zeros, the output of Qstat must be
.�Œ0�; : : : ; �Œh�; �.hC1/; : : : /. Thus, eŒh
�1� � eCŒh�1� > 0,
which is a contradiction.

C. How to spoil the ETC advantage

We have shown that on every sampling interval, both static
and dynamic ETC designs generate sampling intervals no
smaller than the optimal TTC sampling period. The question
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is then what adversarial inputs to Qstat will force hi D h
 ;8i
to render the ETC designs less attractive.

In the L2 case, the spoiler signals are a narrow class of
inputs to Qstat defined on the interval Œ0; h
 /, which exactly
achieve the norm bound on Qstat;h
 . This would correspond
to eŒh � 1� D 0 in the `2 case, which however, does not
determine the next sampling instance in either (6) or (8).
Unlike the L2 design where events are generated upon an
equality, the deciding factor in the static algorithm (6) is a
strictly positive eC. The class of `2 spoiler signals analogous
to the L2 counterpart is thus defined as

f� W Z0::h
�1 ! Rny j eŒh
 �1� D 0 & eCŒh
 �1� > 0g: (11)

This class works against the dynamic design (8) too, as eŒh�
1� D 0 on every sampling interval leaves ˇi D 0 for all i ,
see (9).

To characterize (11), we focus on .h; 
h/ pairs, where 
h
is the minimally attainable performance measure for a given
sampling period h. This is done without loss of generality
from the TTC perspective, as there is no reason to choose

 > 
h when both provide the same optimal TTC period.
Let .Aq; Bq; Cq/ denote the parameters of the strictly causal
reset system Qstat in (3). The associated difference Riccati
equation is

P Œt C 1� D A0qP Œt�Aq C C 0qCq
� A0qP Œt�Bq.B 0qP Œt�Bq � 
2hI /�1B 0qP Œt�Aq (12)

with initial condition P Œ0� D 0.
Proposition 3.3: Given h D h
 , the class of spoilers (11)

can be computed as

Q�Œt � D .
2hI�B 0qP Œh�1�t �Bq/�1B 0qP Œh�1�t �AqxqŒt � (13)

for all t 2 Z1::h�1, with any Q�Œ0� 2 ker.
2
h
I �B 0qP Œh� 1�Bq/,

where P Œt� is the solution to (12), iff

Q�h WD CqAr Œh � 1� � � �Ar Œ1�Bq Q�Œ0� ¤ 0;
where Ar Œt � D .I � 
�2h BqB

0
qP Œh � 1 � t �/�1Aq .

Proof: It is based on the finite-horizon Bounded Real
Lemma A.1. Details are omitted due to space limitation.

The condition Q�h ¤ 0 in Proposition 3.3 does not have a
counterpart in the continuous-time spoiler class characteriza-
tion. This is a consequence of triggering based on a next-step
estimate in the discrete-time mechanism rather than on the
current-time status in the continuous-time mechanism.

The derivation of the spoiler class (11) goes through
characterizing a finite horizon operator Q, whose `2-induced
norm is 
 . In the continuous-time case, this was done by
identifying the singularity condition of the system with two
point boundary conditions I �
�2Q0Q, where Q0 stands for
the adjoint operator, see [8, Lem. B.1] for details. However,
the adjoint of a discrete system is not representable by stan-
dard state-space model, unless one assumes a nonsingular
“A” matrix. This could be circumvented by the use of the
descriptor systems formalism. Yet solving state equations in
the descriptor form would require a special state transforma-
tion, which would destroy the structure of the problem. This

motivated us to take an alternative approach, where we use
the difference Riccati equation.

Remark 3.2: Note that the class Q� exists only for h > 1,
as ker.
2

h
I �B 0qP Œh� 1�Bq/ is trivial for h D 1. This is also

consistent with the fact that resetting Qstat at every time step
results in �Œt � � 0. Consequently, eŒh � 1� < 0, which falls
outside the set (11).

Remark 3.3: The behavior of Q� at the end of the sampling
interval is Q�Œh�1� D 0, which also features in the continuous
time spoiler signals.

To summarize this section, one way to prevent our ETC
controllers from strictly outperforming the optimal TTC is
the following.

Corollary 3.4: For h D h
 > 1, if �Œt � D Q�Œt � defined in
(13) for all t 2 Zsi ::siCh�1 on every sampling interval i and
Q�h ¤ 0, then fsig D fih
g for both static (6) and dynamic (8)
ETC controllers.

There are all sorts of ways to force the optimal TTC sam-
pling pattern other than having � belonging to the class (11)
on every sampling interval. One obvious choice for the static
triggering strategy is

f� W Z0::h
�1 ! Rny j eŒh
 � 1� < 0 & eCŒh
 � 1� > 0g:
Although the dynamic triggering strategy is expressly de-
signed to mitigate the effect of this type of signals, one can
similarly define the above class with varying threshold ˇi for
each sampling interval. Therefore, considered on the entire
horizon, there appears to be a wider class of input signals
�.ZC/ that forces fsig D fih
g for both (6) and (8).

IV. ILLUSTRATIVE EXAMPLE

We consider a discrete-time single integrator with a base-
line sampling period h0 D 0:1

G.´/ D

2664
1 h0 0 h0
1 0 0 0

0 0 0
p
%

1 0
p
& 0

3775 :
It is obtained by the standard step-invariant discretization of
the continuous-time single integrator example in [8, �V] with
% D 1 and & D 0:0025. For a given sampling period of h D 6
steps, the optimally attainable performance 
h is found to be

6 D 1:209.

Inject into the closed-loop system wŒt� D .d Œt �; nŒt �/,
where the input disturbance dŒt � is sinusoidal with an in-
creasing frequency in the range of Œ0:2�; �� and the mea-
surement noise nŒt � is zero-mean wide-band with the `2
norm equal to

p
& . The moving horizon `2 gains of Qstat

(black) and T´w (blue) on the time interval Œ0; 20�, defined
respectively as 
QŒt � D kPtC1�k2=kPtC1�k2 and 
T Œt � D
kPtC1´k2=kPtC1wk2, are depicted in Fig. 2.

Compared to the optimal uniform sampling period in
Fig. 2(a), the average sampling periods of the ETC con-
trollers are increased by 25% for the static design in Fig. 2(b)
and 37% for the dynamic design in Fig. 2(c). Not pictured
here is another experiment with a measurement noise from
a different seed for the random number generator, where we

2602



0 20
0




t



T



Q

(a) optimal periodic control

0 20
0




t



T



Q

(b) static ETC (6)

0 20
0




t



T



Q

(c) dynamic ETC (8)
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(d) dynamic ETC under a spoiler attack (13)

Fig. 2: Moving horizon `2 energy gains of Qstat and T´w for

 D 1:209; time axis ticks indicate sampling instances fsig.

see a more significant 73% reduction of sampling instances,
demonstrating the potential of our ETC designs.

The periodic sampling sequence in Fig. 2(d) identical to
the one in Fig. 2(a) is obtained by introducing exogenous
signals rendering � D Q� according to the spoiler formula (13)
on every sampling interval. The two blue curves represent
the closed-loop responses to two choices of wŒt� such that
at each sampling instance si D ih
 , Q�Œsi � D 1 which belongs
to ker 
2

h
I � B 0qP Œh � 1�Bq D R.
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APPENDIX

We present a discrete-time finite-horizon Bounded Real
Lemma. A similar result appears in [16, Lem. 4] for time-
varying systems, though the difference Riccati equation
therein contains a pseudo-inverse, and no characterization of
the minimal horizon achieving the norm bound is provided.

Consider the system

GW
(
xŒt C 1� D AxŒt �C BuŒt �; xŒ0� D 0

yŒt � D CxŒt �CDuŒt� (14)

operating over the horizon Z0::h�1 and introduce the differ-
ence Riccati equation

P Œt C 1� D QŒh � t � � S 0Œh � t �R�1Œh � t �SŒh � t �
for P Œ0� D 0, where�

QŒt� S 0Œt �

SŒt � RŒt �

�
´

�
A B

C D

�0 �
P Œh � t � 0

0 I

� �
A B

C D

�
�
�
0 0

0 
2I

�
for all t 2 Z1::h.

Lemma A.1: The finite-horizon `2 gain of G in (14) satis-
fies kGhk1 < 
 iff RŒh�t � < 0 for all t 2 Z0::h�1. Moreover,
if kGhk1 < 
 , then kGhC1k1 D 
 iff �max.RŒ0�/ D 0 and
every input u for which kyk22 D 
2kuk22 is of the form

uŒt � D
(
u0 if t D 0
�R�1Œt �SŒt �xŒt � otherwise

for an arbitrary u0 2 kerRŒ0�.
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