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Abstract— Autonomous multi-agent systems are increasingly
being deployed in environments where winds and ocean cur-
rents have a significant influence. Recent work has developed
control policies for single agents that leverage flows to achieve
their objectives in dynamic environments. However, in multi-
agent systems, these flows can cause agents to collide or drift
apart and lose direct inter-agent communications, especially
when agents have low propulsion capabilities. To address these
challenges, we propose a hierarchical multi-agent control ap-
proach that allows arbitrary single-agent performance policies
that are unaware of other agents to be used in multi-agent
systems while ensuring safe operation. We first develop a safety
controller using potential functions, solely dedicated to avoiding
collisions and maintaining inter-agent communication. Next, we
design a low-interference safe interaction (LISIC) policy that
trades off the performance policy and the safety control to
ensure safe and performant operation. Specifically, when the
agents are at an appropriate distance, LISIC prioritizes the per-
formance policy while smoothly increasing the safety controller
when necessary. We prove that under mild assumptions on the
flows experienced by the agents, our approach can guarantee
safety. Additionally, we demonstrate the effectiveness of our
method in realistic settings through an extensive empirical
analysis with simulations of fleets of underactuated autonomous
surface vehicles operating in dynamic ocean currents where
these assumptions do not always hold.

I. INTRODUCTION

Autonomous multi-agent systems, from drones to balloons

and ocean surface vessels, are increasingly being explored for

various applications, including inspection, collecting data, or

scaling ocean aquaculture [1], [2]. In many applications, the

agents communicate with each other for various purposes: to

achieve a joint objective, to ensure internet coverage [3], or to

share information amongst each other to improve operations.

Local communication often relies on limited-range systems,

e.g., sonar or radar, requiring agents to stay close to each

other for network connectivity (see Fig. 1).

When a robotic system operates in the oceans and air, it

is exposed to winds and currents. Most control approaches

consider these as disturbances for which an overactuated

control needs to compensate. What if, instead, the agent takes

advantage of these flows? Recent work demonstrated that by

going with the flow and using small actuation strategically
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Fig. 1: Our Low Interference Safe Interaction Controller (LISIC)
policy blends a single-agent performance control input with a
flocking-based safety control input to avoid connectivity losses and
collisions in a multi-agent network while minimally interfering
with the performance objective of each agent. This ensures safe
performance in ocean environments with strong ocean currents
affecting the low-powered agents.

to nudge itself into favorable flows, an agent can achieve its

objective with very little energy [4]–[8].

Given such individual agent performance controllers [4],

we aim to develop a method that extends to multi-agent

systems operating in complex flows while ensuring network

connectivity and avoiding collision among agents. From the

control perspective, this is challenging because of two key

reasons. First, disconnections are sometimes unavoidable

in the underactuated setting, where the agent’s individual

propulsion is smaller than the surrounding flows, as the

nonlinear, time-varying flows can push agents in opposing

directions. The safe interaction controller needs to be

resilient and recover connectivity after losing it. Second,

constraint satisfaction needs to be traded off intelligently

with the performance objective of each agent. For example,

a time-optimal controller for an agent would prefer staying

in strong flows, which can conflict with the network

connectivity objective. Our insight is that we can simplify

this multi-agent problem using three different controllers in

a Hierarchical Control of Multi-Agent-Systems (H-MAS)

approach (Fig. 1).

Related Literature. In H-MAS, agents are organized into

multiple levels of hierarchy, with higher-level agents having

more authority and control over lower-level agents, desig-

nated as followers [9]. For instance, [10] solves path planning

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 1915



and ocean vehicle coordination separately with a leader-

follower structure. For distance-based control tasks, such as

for the Safety Controller in Fig. 1, flocking techniques can

maintain connectivity by influencing the agent’s behavior

to follow the movement of their neighbors while avoiding

collisions [11], [12]. Recent advancements in Model Pre-

dictive Control (MPC) have also achieved connectivity and

collision-free operation within Multi-Agent-Systems (MAS)

[13], [14] and successfully approached control of varying-

topology networks [15]. Nevertheless, a notable limitation

of these approaches is their reliance on the assumptions

of position invariance [13], fixed neighbor sets [14] and

time invariance [13]–[15] of the flows, which do not apply

in dynamic ocean environments. Thus far, the mentioned

literature offers limited applicability to time-varying, un-

certain flows predicted by forecasts. Since the agents are

often underactuated, they cannot reliably compensate for

disturbances. In this context, optimization-based approaches

such as MPC frequently lead to increased computational

complexity, convergence to local minima, and infeasibility

with respect to the constraints. Hence, we opt for compu-

tationally efficient flocking approaches to achieve distance-

based safety control, which are always feasible and, when

coupled with effective single-agent planners [4], can be run at

high update rates. While many flocking schemes only assume

simple double integrator dynamics, adaptive flocking has

also been applied to nonlinear dynamics [16]–[19]. However,

due to the time-varying dynamics, adaptive approaches may

not generalize well, especially given the diverse nature of

currents.

Contributions. To address the above shortcomings, we

propose a Low Interference Safe Interaction Controller (Fig.

1). This framework is more general in three dimensions.

First, it takes an arbitrary performance policy, in contrast to

[12], [20], [21], where the flock can only track reference

trajectories of single or multiple virtual leaders. In fact,

a feedback control policy can optimize objectives besides

navigation and, in complex flows, leads to significantly

better results than tracking a reference trajectory [4]. This

enables the use of Dynamic Programming (DP) approaches

where the value function yields optimal individual agent

controls for an arbitrarily high number of agents without

additional cost beyond a cheap gradient computation. This

is especially powerful for multi-agent problems where the

objective can be decomposed into the sum of independent

single-agent objectives. Second, we provide design choices

to modulate the aggressiveness of pursuing safety versus

performance. Third, our approach also enables recoveries

in case of connectivity losses. Finally, we investigate our

method in the context of a promising approach to Carbon

Dioxide Removal (CDR): utilizing robotic seaweed farms

[2].

Organization. Section II introduces relevant background

and metrics to evaluate our LISIC in complex flows. In

Section III, we present our LISIC approach, whereas in

Section IV, we prove that our method guarantees safe net-

work interactions under certain conditions on the maximum

magnitude of the control and flow field velocities across the

agents. Finally, we assess the performance of our approach

in realistic ocean currents where these conditions are not

always met with the metrics defined in SectionII.

II. PROBLEM FORMULATION

In this section, we first describe the system’s dynamics and

briefly summarize connectedness in communication graphs.

Then, we define our problem statement and the metrics we

use to measure constraint violation.

A. System Dynamics

We consider a swarm of N agents and use V to describe

the set of all agents. Let the actuation signal of each agent

i be denoted by ui from a bounded set U ∈ R
nu where nu

is the dimensionality of the control. Then, the dynamics for

each agent i ∈ V are given by:

q̇i = v(qi, t) + g(qi,ui, t), t ∈ [0, T ] (1)

qi ∈ R
n denotes the position of agent i in the n dimensional

state space, where n = 2 for a surface vessel on the

ocean. The movement of agent i depends on the time-

varying non-linear flow field v(qi, t) → R
n and its control

g(qi,ui, t). Although our method works for arbitrary g, we

will focus on situations where the agent can directly actuate

in each dimension, i.e., g(qi,ui, t) = ui, in line with our

experiments discussed in Section V. Let the agent trajectory

resulting from Eq. (1) be described by ξi with ξi(t) the

state qi at t. For the global system of all N agents, we use

q = [q¦
1 , q

¦
2 , . . . , q

¦
N ]¦, u = [u¦

1 ,u
¦
2 , . . . ,u

¦
N ]¦, and ξ

respectively to describe the state, control, and trajectory.

Remark 1. While our method also works in known currents,

we focus on realistic settings, where only coarse forecasts v̂
are available to the planner, which differ significantly from

the true flows v.

B. Communication Graph Preliminaries

The network topology of our MAS with state q can be

represented by an undirected communication graph G(t),
allowing information to flow bidirectionally between agents.

The set of finite vertices V = {1, 2 . . . N} denotes indi-

vidual agents, while the time-varying set of edges E(t) ¦
{(i, j) ∈ (V × V), j ̸= i} represents direct communication

between agents. Given Rcom an upper communication

threshold, (i, j) ∈ E(t) ⇐⇒ d(qi, qj) < Rcom. In other

words, agents i and j can communicate directly with each

other if they are spatially close with respect to a distance

measure d(qi, qj). The graph G(t) is said to be connected

if an undirected path exists between every pair of distinct

vertices. Next, we define the the N × N adjacency matrix

A(G(t)) = [aij(t)] ∈ {0, 1} encoding the connectivity

between vertices, i.e. aij(t) = 1 ⇐⇒ (i, j) ∈ E(t).

The degree of a vertex i at time t, deg(i, t) =
∑N
j=1Aij(t)

represents the number of incident edges to vertex i. The

degree matrix D is then defined as the diagonal matrix

D(G(t)) = diag (deg(i, t)). To measure the graph’s con-

nectivity, we can compute the eigenvalues of the Laplacian
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positive semi-definite matrix L = D(G(t)) − A(G(t)). The

second smallest eigenvalue ¼2(L(G(t)), commonly referred

to as the algebraic connectivity or Fiedler value, captures the

robustness of the network to link failures. In particular, G(t)
is connected if and only ¼2(L(G(t))) > 0 [11].

C. Problem Statement

We focus on multi-agent problems where the joint objec-

tive is the sum of independent objectives Pi, which can be

sketched out as:

min
π

N∑

i=1

Pi(ξi,ui(·)) (2a)

s.t. ∀ t ∈ [t0, T ]

ξ̇(t) = v(ξ(t), t) + Ã(ξ(t)) global dynamics (1)

d(ξi(t), ξj(t)) > Rcoll (i, j) ∈ V × V , i ̸= j (2b)

¼2(L(G(ξ(t), Rcom))) > 0 (2c)

We aim to find a control policy Ã that approximately

solves Eq. (2) while being computationally cheap and always

feasible. The agents are coupled in only two constraints:

the collision constraint (2b) where d(qi, qj) represents the

distance between agent i and j and Rcoll the minimum safe

distance, and second, Eq. (2c), in maintaining a graph where

all agents are connected based on the communication range

Rcom.

Assumption 1. In real-world scenarios, the initial network

may begin in a disconnected state or transition to a dis-

connected state when underactuated agents are involved.

Hence, it is assumed that each agent possesses an emergency

communication backup to a central unit, e.g., via satellite, in

case its closest distance to any other agent exceeds Rcom.

The objective is to minimize such instances, as these forms

of communication are typically expensive.

Our insight is that in this setting, we can decompose

the problem and handle the objectives and constraints on

different levels with (1) a performance controller Ãperf for

each agent, (2) a safety controller Ãsafe, and (3) a low-

interference safe interaction controller ÃLISIC trading-off

the two (Fig. 1).

The performance controller of an agent i minimizes its

(Ãperf )i = argminπi
Pi(ξi,ui(·)) only considering its own

dynamics (1). Ãperf can be an arbitrary control policy from a

fixed control signal to a feedback controller based on learn-

ing or dynamic programming (Section V). In challenging

settings like ours with non-linear, time-varying dynamics,

it is easier to design single-agent feedback controllers than

solving the coupled multi-agent problem above, e.g., for

time-optimal navigation, reference tracking, or optimizing

seaweed growth [5]. The safety controller, Ãsafe, determines

the control for all agents to ensure the interaction constraints

(2b), (2c) are satisfied. Lastly, based on the control inputs

uperf and usafe from the respective policies, the safe

interaction controller decides the agents final control inputs

u = ÃLISIC(uperf ,usafe). To achieve good performance,

the safe interaction controller should not interfere too much

with uperf while still ensuring connectivity and avoiding

collisions. This work focuses on designing Ãsafe and ÃLISIC
for an arbitrary Ãperf .

D. Evaluation Metrics

Due to the underactuated nature of the agents, it is

impossible to guarantee network connectivity or collision

avoidance in some scenarios. Hence, we define evaluation

metrics to assess the safety of our control schema with

respect to Eq. (2c) and (2b). A collision happens between

any of the agents in the swarm if ∃t ∈ [0, T ] at which

Eq. (2b) is violated. We denote this with the collision

indicator Icoll ∈ {0, 1}. To measure various aspects of

losing connectivity, we use three metrics. First, for a binary

measure, if disconnections occur, we define the disconnection

indicator Idisconn ∈ {0, 1} which is 1 if ∃t ∈ [0, T ] at which

Eq. (2c) is violated and zero otherwise. Additionally, we

measure the minimum Fiedler value over time; the higher,

the more robust the communication network (Section II-B):

¼min2 = min
t∈[0,T ]

¼2(L(G(ξ(t), Rcom)) (3)

Lastly, as single-agent backup communication is costly, it

matters how long an agent is isolated from all other agents.

Therefore, we are introducing a new measure called Isolated

Platform Metric (IPM).

IPM =
1

T

∫ T

t=0

M(deg(i, t) = 0) dt (4)

where M(deg(i, t) = 0) counts the number of disconnected

vertices, which corresponds to the number of zeros in the di-

agonal of the graph degree matrix D(G(ξ(t), Rcom) (Section

II-B).

In Section V, we compare different controllers empirically

over a large, representative set of missions M by evaluating

the collision rate Eq(t0),t0∼M [Icoll], the disconnection rate

Eq(t0),t0∼M [Idisconn], as well as the distributions of IPM and

¼min2 . In our setting where the performance objectives Pi are

minimum time-to-target for each agent i, the connectivity

constraint often leads to a trade-off with the performance

objective. Hence, we also quantify the degradation of the

performance controller by quantifying the minimum distance

the swarm center got to the target area T over the mission

time t ∈ [0, T ] as dmin(T ).

III. METHOD

Our method tackles the multi-agent problem with a hierar-

chical control approach. The low interference safe interaction

controller ÃLISIC ensures performance and safe control

based on an arbitrary performance controller Ãperf and a

safety controller Ãsafe (see Fig. 1). As explained in Section

I, our approach is more general than [20]–[22], as an arbitrary

performance policy is chosen and our framework allows

for designing the aggressiveness of the safety flocking-

based controller following the magnitude of the performance

control input. We first introduce our flocking-inspired safety

controller based on potential functions and then detail our

design for ÃLISIC . Note that this control scheme is applica-

ble in fully actuated agents, even though our primary focus
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lies in applications involving underactuated agents, which

initially motivated a feasible reactive approach to collision

avoidance and connectivity.

A. Flocking-Inspired Safety Controller

The sole objective of the safety controller is to ensure

adequate distances between the agents without prescribing

a formation. Hence, we design our safety controller Ãsafe
based on the gradients of a potential function È.

To explain the principle, let us first focus on two con-

nected agents i and j at an inter-agent distance
∥
∥qij

∥
∥
2
=

∥
∥qi − qj

∥
∥
2
. Consider the following bowl-shaped potential

function

Èconnected(
∥
∥qij

∥
∥
2
) =

»Rcom
∥
∥qij

∥
∥
2

(

Rcom −
∥
∥qij

∥
∥
2

) , (5)

where » > 0 is a tuning factor to adjust the bell shape

(see left of Rcom in Fig. 2). Let the safety controllers for i
be ∇qi

Èconnected(
∥
∥qij

∥
∥
2
) and for j ∇qj

Èconnected(
∥
∥qji)

∥
∥
2
=

−∇qi
Èconnected(

∥
∥qij

∥
∥
2
). When those two agents are getting

too close
∥
∥qij

∥
∥
2

→ 0, the potential È(
∥
∥qij

∥
∥
2
) goes to

infinity, so the gradient controllers are a strong repulsive

force that pushes them away from each other. Conversely,

when the two connected agents are at risk of losing their

communication link
∥
∥qij

∥
∥
2
→ Rcom, then È(

∥
∥qij

∥
∥
2
) →

∞, which means the gradient-controllers result in a strong,

attractive force that brings them closer again. For multiple

agents, the control becomes the sum of gradient potential

terms of the other agents, and the magnitude of the gradients

helps prioritize the critical inter-agent distances qij .

When the agents are disconnected, which is sometimes un-

avoidable in underactuated settings where strong flows push

them apart, we want them to be able to reconnect. Given the

assumption of an emergency communication backup outlined

in Section II-C, we incorporate a second term to restore

connectivity among disconnected agents. To the best of our

knowledge, this concept was introduced in [23]. While the

augmented potential function in [23] uses a square function

of distance to Rcom for disconnected agents, we implement

the second term in Eq. (6) as a square-root function. This is

a design choice in the context of underactuated agents in a

dynamic oceanic environment, where remote flock members

can experience strong divergent flows and direct connectivity

may be infeasible or undesirable to achieve. Thus, our

approach yields a relatively low attraction force for agents

beyond their communication range.

This results in our final potential function È(z) : Rg0 →
R>0 that is also visualized in Fig. 2:

È
(∥
∥qij

∥
∥
2

)

= Ãij
»Rcom

∥
∥qij

∥
∥
2

(

Rcom −
∥
∥qij

∥
∥
2

)

︸ ︷︷ ︸

for connected agents

+ (1− Ãij)

√
(∥
∥qij

∥
∥
2
−Rcom + ϵ

)

︸ ︷︷ ︸

for disconnected agents

.

(6)

where Ãij is an edge indicator similar to aij in Section II-B,

but with a switching threshold ϵ > 0 inducing a hysteresis

when adding new edges, see Eq. (7). Hence, È
(∥
∥qij

∥
∥
2

)

switches between two terms whether the pair of agents (i, j)
are within communication range (Ãij = 1) or disconnected

(Ãij = 0). Following the notation of [23], we define:

Ãij [t] =







0, if
(
(Ãij [t

−] = 0) ∩
(∥
∥qij

∥
∥ g Rcom − ε

))

∪
(
(Ãij [t

−] = 1) ∩
(∥
∥qij

∥
∥ g Rcom

))
,

1, if
(
(Ãij [t

−] = 1) ∩
(∥
∥qij

∥
∥ < Rcom

))

∪
(
(Ãij [t

−] = 0) ∩
(∥
∥qij

∥
∥ < Rcom − ε

))
,

(7)

This hysteresis mechanism avoids constant switching of the

dynamical network with multiple agents for edges close to

Rcom and helps preserve connectivity in reactive control

schemes [24].

The final safe interaction controller for each agent i with

maximum propulsion Umax,i is then defined as

(Ãsafe)i(q) = −

∑N
j=1 ∇qi

È
(∥
∥qij

∥
∥
2

)

∥
∥
∥
∑N
j=1 ∇qi

È
(∥
∥qij

∥
∥
2

)∥
∥
∥
2

Umax,i (8)

B. Low Interference Safe Interaction Controller

For our ÃLISIC that trades off the performance inputs

uperf with the safety input usafe, we propose an approach

that weights these control vector inputs for each agent i
depending on the risk of losing connectivity or colliding.

ui = (πLISIC)i(uperf ,usafe) = c
(1)
i u

safe
i + c

(2)
i u

perf
i , ∀i ∈ V

where c
(1)
i and c

(2)
i are weighting factors. Note that u

safe
i =

(Ãsafe)i(q) depends on the other agents’ positions to guar-

antee safe interactions.

When collisions or connectivity losses are imminent, ui
should be able to rapidly tend to u

safe
i to prioritize the

safe interaction safety over performance, i.e. c
(1)
i → 1 and

c
(2)
i → 0 (Fig. 1 B, C). Conversely, when the network is well

connected and there is low danger of collisions, ui should

align with u
perf
i to have low interference with the agent’s

performance control, i.e. c
(1)
i → 0 and c

(2)
i → 1 (Fig. 1 A).

Hence we defined a weighting function ³(q) : R
N →

[0, 1] such that c
(1)
i = ³(q) and c

(2)
i = 1 − ³(q), see

an example in Section V. This function ³(q) measures the

urgency of ui to converge to u
safe
i and we define it

c
(1)
i = ³





∥
∥
∥
∥
∥
∥

N∑

j=1

∇qi
È
(∥
∥qij

∥
∥
2

)

∥
∥
∥
∥
∥
∥
2



 (9)

The function ³ can be thought of as a monotonically

increasing safety activation function taking values

between [0, 1] depending on its argument’s (unbounded)

magnitude. From the definition of ψ
(

∥

∥qij

∥

∥

2

)

in Eq. (6), lim∥qij∥
2
→0 ψ

(

∥

∥qij

∥

∥

2

)

= ∞ and

lim∥qij∥
2
→Rcom

ψ
(

∥

∥qij

∥

∥

2

)

= ∞. Hence, in critical

situations
∥

∥

∥

∑N

j=1 ∇qi
ψ
(

∥

∥qij

∥

∥

2

)
∥

∥

∥

2
gets very large so that

c
(1)
i saturates to 1 and c

(2)
i to 0, thus prioritizing the network

1918



Fig. 2: Augmented potential function, with two terms to account
for agents within and outside the communication range Rcom. A
high κ parameter is shown to increase the steepness of the slope
around Rcom

2
, depending on how achieving the exact ideal distance

is valued.

safety for the concerned agents i ∈ V i.e. ui → u
safe
i , over

each agent individual objective u
perf
i .

In other words, È
(∥
∥qij

∥
∥
2

)

has a contractivity property

for agent inter-distances at the boundaries of the safe

set, defined by 0 and Rcom, similarly to Control Barrier

Functions (CBFs) [25]. With this design, we ensure that

agents coming from a disconnected status Ãij [t
−] = 0 to a

connected status Ãij [t] = 1 experience a strong attracting

gradient u
safe
i to avoid escaping the communication range

again. From Fig. 2, it is also clear that when the network

is close to being ideally connected, the gradient norm of

the potential function

∥
∥
∥
∑N
j=1 ∇qi

È
(∥
∥qij

∥
∥
2

)∥
∥
∥
2

is low so

that agent’s i control input is dominated by the performance

controller since c
(1)
i → 0 and c

(2)
i → 1.

IV. THEORETICAL ANALYSIS

This section analyzes under which conditions our safe

interaction controller can maintain connectivity and avoid

collisions [26]. Our analysis follows the common approach

to demonstrate that a flock converges to a lattice structure

while preventing inter-agent collisions using energy-based

analysis and LaSalle’s invariance principle [12]. We start

by introducing a moving referential frame for the structural

collective dynamics [12] with respect to the flock centroid

qc. The relative coordinates are given by q̃i = qi − qc and

q̃ij = q̃i− q̃j = qij . Therefore, È
(∥
∥qij

∥
∥
2

)

= È
(∥
∥q̃ij

∥
∥
2

)

,

and the total tension energy or potential energy for the

structural dynamics in the relative coordinates yields

H(q̃) =
1

2

N∑

i=1

N∑

j=1
j ̸=i

È
(∥
∥q̃ij

∥
∥
2

)

(10)

A possible approach, although conservative, is to show

that a global tension energy decrease of the system Ḣ =
∑n
i=1 Ḣi f 0 can be achieved by guaranteeing local tension

energy decrease ∀i ∈ V . Assume that G(t) switches at time

tl for l = 0, 1, 2 . . . and Ḣ f 0 on each [tl, tl+1). Then,

H(tk) = H(t−k ) + mkÈ (∥Rcom − ϵ∥) [23] with mk the

number of edges added at switching time k. The energy can

be bound for any subsequent time as the graph topology

becomes fixed after a certain time, and only a finite number

of maximum edges can be added. The time-derivative of Hi

along the trajectory of agent i yields

Ḣi = ˙̃q¦
i

N∑

j=1
j ̸=i

∇q̃i
È
(∥
∥q̃ij

∥
∥
2

)

(11)

where we exploited the relation ∇qi
È
(∥
∥qij

∥
∥
2

)

=

−∇qj
È
(∥
∥qij

∥
∥
2

)

. We seek a condition linking the maxi-

mum actuation power of each agent Umax,i to the dynamics

of the flock, subject to the nonlinear flow v. For ease of un-

derstanding, assume holonomic actuation i.e. g(qi,ui, t) =
ui, then u

safe
i = (Ãsafe)i(q) can be directly substituted

with Eq. (8). Using ˙̃qi = q̇i − q̇c and the Cauchy-Schwarz

inequality in Eq. (11) yields:
∥
∥
∥c

(2)
i u

perf
i (qi) + v (qi)−Ave (q̇Ni)

∥
∥
∥
2
f c

(1)
i Umax,i

(12)

where Ave (·) denotes the average and the set Ni = V \ {i}
the neighboring agents of i. More details about this proof

can be found in [26]. A similar inequality to Eq. (12) can be

derived for the general dynamics defined in Eq. (1) if g(·)
is a linear map.

Let us interpret Eq. (12). The dynamics of the neighboring

agents of i depend on their surrounding flows and respective

individual control inputs, i.e. Ave (q̇Ni) = Ave (v(qNi)) +
Ave (uNi). Despite strong flows, the agents do not necessar-

ily need to be overactuated to meet a local energy decrease

Ḣi f 0. Eq. (12) can be fulfilled even if ∥v (qi)∥2 > Umax,i,
since v (qi) can be compensated by Ave (v(qNi)). In other

words, agents in strong flows could still maintain connectiv-

ity and avoid collisions as long as the currents experienced

by each agent and its neighbors are of similar direction and

magnitude. The neighboring flocking control inputs average

Ave (uNi) also helps accounting for the current difference

term v (qi) − Ave (v(qNi)). Under these assumptions, we

can show that Ḣ f 0, which allows to bound the maximum

energy and apply LaSalle’s Invariance Principle [23], [27],

thus ensuring that no collisions or disconnections happen,

since È(
∥
∥qij

∥
∥
2
) → ∞ when

∥
∥qij

∥
∥
2
→ 0 or

∥
∥qij

∥
∥
2
→

Rcom. However, for strong divergent flows between agents,

it can happen that ∥v (qi)−Ave v(qNi)∥2 k Umax,i due

to the underactuated nature of the agents, which makes

satisfaction of Eq. (12) challenging. Note that Eq. (12) is

sufficient but not necessary to guarantee Ḣ < 0, as negative

local energies can compensate for positive ones.

V. SIMULATION STUDY

The proposed scheme is evaluated on realistic ocean

currents, seeking a close reproduction of an innovative CDR

approach [2], [5]. We use multi-time Hamilton Jacobi Reach-

ability (mt-HJR) as a performance single agent controller

since it generates a value function yielding the time-optimal

control everywhere [4].

1919



A. Experimental Set-Up

We study the effectiveness of different controllers in ma-

neuvering a two-dimensional Autonomous Surface Vehicle

(ASV), with a thrust angle ¹ as a control input. The actuation

can be assumed holonomic of fixed thrust magnitude ∥u∥2 =
0.1 m/s, as the vessel can turn to a desired ¹ within seconds

while our sampling times are 10 minutes. We consider a

group of identical N = 30 ASVs with omnidirectional com-

munication capabilities, navigating in strong ocean currents

v(q, t) ∈ [0.3, 2] m/s. Each single agent’s objective is to

reach a target region common to all ASVs, which could be

identified as an ideal seaweed growth region in the context

of floating robotic farms [2]. Next, we detail the creation of

an extensive set of missions to illustrate trade-offs between

single-agent objectives and flock connectivity maintenance

in a realistic ocean environment.

a) Realistic Simulation of Ocean Conditions: Inspired

by [4], we focus on the Gulf of Mexico region (Fig. 3), as

it presents challenging currents. Moreover, we employ two

ocean current data sources, which we refer to as HYCOM

hindcasts [28] and Copernicus hindcasts [29] that we use as

forecasts for realistic scenarios. In our context, the ocean

forecast data represents predicted currents v̂FC while the

hindcast ocean data are true flows v. While the forecast error

affects the optimality of the performance mt-HJR controllers,

the advantage of our reactive safety controller design over

predictive schemes [13], [14] is that it is not affected by

the error on forecasted currents. We propose two settings to

investigate our approach, namely (a) performance mt-HJR

planning on hindcasts and simulation on hindcasts (HC-

HC) and (b) performance mt-HJR planning on forecasts and

simulation on hindcasts (FC-HC). The first allows us to

assess performance in an idealized setting where true flows

are known, while the second reflects a realistic application

in dynamic ocean environments.

b) Large Representative Set of Missions: We assume all

agents start simultaneously at time t0 a navigation mission to

a target region T . The navigation objective of each ASV is

to reach T from their start states (q1(t0) . . . qn(t0)) within a

maximum allowed time Ttimeout. The target T is defined as a

circular region with center coordinates qT and fixed radius

rT = 0.1◦ around it. To obtain a diverse set of missions

M, the starting times t0 are uniformly sampled between

April 2022 and December 2022. Ttimeout is set to 144h, and

the start points are sampled such that the ASVs can reach

the target within [72, 144]h to ensure that missions are by

definition feasible on true flows and temporally representa-

tive enough of realistic scenarios. To prevent stranding side

effects, we impose a minimum distance of 111km between

the target area and the land and a minimum distance of

40km between each ASV’s initial position and the land. We

generate |M| = 1000 missions of initially connected and

collision-free networks, see Fig. 3.

B. Baseline Controllers

We build on recent work that proposed a reliable mt-HJR

controller for underactuated agents utilizing complex flows

Fig. 3: We sample a large set of missions |M| = 1000 in the
Gulf of Mexico that are spatially and temporally representative of
realistic scenarios.

[4]. This approach directly extends to multiple agents

with little extra computation. The feedback controller for

agent i can be obtained from an optimal value function J ∗

at time t as ui(t)
∗ = argmin

ui∈U g(qi,ui, t)·∇qi
J ∗(qi, t).

All evaluated controllers use the mt-HJR formulation as

a single agent performance control. Our baseline scheme,

called multi-time Hamilton Jacobi Reachability Baseline

(mt-HJR-B), involves each agent only utilizing its time-

optimal performance control mt-HJR without considering

multi-agent interactions. This baseline provides a reasonable

estimation of the likelihood of collisions and communication

losses if each agent were to rely solely on its performance

control. In addition, we define a second baseline controller,

multi-time Hamilton Jacobi Reachability with multi-agent

Reactive Control (mt-HJR-RC) adapted from [30]. This

controller operates in three modes: ACHIEVECONNECTIV-

ITY, MAINTAINCONNECTIVITY, and GOTOGOAL, which

are selected based on the ASVs’ relative positions. The

MAINTAINCONNECTIVITY and GOTOGOAL modes employ

a general navigation function for each agent, which we

instantiate to our mt-HJR performance controller. This ap-

proach is easily integrated with the time-optimal control

mt-HJR, and the reactive control term can be implemented

decentralized.

Finally, we denote our Low Interference Safe Interaction

Controller (LISIC) approach from Section III as multi-

time Hamilton Jacobi Reachability with multi-agent LISIC

(mt-HJR-LISIC). The single agent performance controller

u
perf
i is again mt-HJR. The trade-off between each agent’s

navigational objective and the safe network interaction can be

tuned with two parameters. First, the potential function shape

(Fig. 2) can be more or less flat around the ideal distance

Rcom/2. In this application, we set » = 2. Furthermore, we

now detail our weighting scheme for c
(1)
i and c

(2)
i via the

definition of ³ in Eq. (9) as a SOFTMAX-like function

c
(1)
i =

e∥
∑

n
j=1

∇qi
ψ(∥qij∥

2
)∥

2

e∥
∑

n
j=1

∇qi
ψ(∥qij∥

2
)∥

2 + eρ
, ∀i ∈ V. (13)

where the parameter Ä g 0 can be adjusted to achieve faster

saturation of the potential function gradient term u
safe
i (q).
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C. Additional Parameters and Metrics

The upper connectivity bound Rcom in Eq. (2c) and (7)

is set to 9km, which corresponds approximately to radio

communication capabilities for ASVs. The collision lower

threshold from Eq. (2b) is set to Rcoll = 100m, providing

a practical margin, as one would typically do in a real-

world implementation. Moreover, we define ϵ = 300m for

the edge hysteresis parameter from Eq. (7). We use the

Euclidean norm to measure inter-agent distances d(qi, qj)
and the minimum flock center distance to target dmin(T ).
The parameters used in the experiments are summarized in

Table I.

Symbol Description Value

Umax ASVs maximum actuation 0.1m/s
v Time-varying ocean currents [0.3, 2]m/s
Rcom Upper connectivity bound 9000m
Rcoll Lower collision threshold 100m
rT Radius of circular target region 0.1◦

Ä Saturation of potential function 1 (no units)
» Shape of potential function 2 (no units)
ϵ Hysteresis for adding or removing edges 300m
Ttimeout Duration of a mission 144h

TABLE I: Relevant Simulation and Controller Parameters.

D. Numerical Results

The results over apriori known true currents (HC-HC) and

realistic scenario (FC-HC) are presented in Table II. Both

mt-HJR-LISIC and mt-HJR-RC exhibit superior performance

in terms of connectivity and collision metrics compared to

the baseline mt-HJR-B. Thus, we conduct statistical testing

to compare mt-HJR-RC and mt-HJR-LISIC. Regarding the

disconnection and collision rate, we perform a one-sided

two-sample z proportion test for mt-HJR-LISIC against

mt-HJR-RC.

Let Γ be the rate collision or disconnection over M with

the null hypothesis H0 : Γmt-HJR-LISIC = Γmt-HJR-RC to reject

in favor of the alternative hypothesis HA : Γmt-HJR-LISIC <
Γmt-HJR-RC. mt-HJR-LISIC is statistically significantly better

than mt-HJR-RC at avoiding disconnections in both (HC-

HC) and (FC-HC) scenarios, with p-values of p = 6.3e−69

and p = 1.7e−114, respectively. However, it is not signif-

icantly better than mt-HJR-RC at avoiding collisions. We

also perform a Welch’s t-test due to the unequal variances

of mt-HJR-RC and mt-HJR-LISIC to test (1) connectivity

using the means over |M| of the Isolated Platform Met-

ric, i.e., µ(IPM) and the minimum Fiedler value recorded

over time, i.e., µ(¼min2 ), (2) performance trade-off with

µ (dmin (T )). For both (HC-HC) and (FC-HC) scenarios,

mt-HJR-LISIC leads to statistically significantly better re-

sults for the network connectivity with p < 1e−30 for

µ(IPM) and µ(¼min2 ) while mt-HJR-RC displays a better

objective trade-off µ (dmin (T )) with p-values p < 1e−40.

Moreover, we plot the IPM and µ(¼min2 ), evaluated on the

full set of missions |M| for the three controllers in Fig. 4.

Among the three evaluated controllers, mt-HJR-LISIC has

the lowest IPM. Because of its higher value of µ(¼min2 )

mt-HJR-B mt-HJR-RC mt-HJR-LISIC

1

2

3

4

5

6

7

8

9 mean

Minimum Fiedler Value

mt-HJR-B mt-HJR-RC mt-HJR-LISIC

0

1

2

3

4

5

6

7
mean

Isolated Platform Metric (IPM)

Fig. 4: Left: IPM evaluated on M. Due to its low IPM,
mt-HJR-LISIC typically has both a low disconnection time and a
low number of disconnected agents. Right: The minimum Fiedler
value λmin

2 can be used as a graph connectivity measure. A high
λmin
2 ensures better robustness against connectivity failures.

(see Fig. 4, right), mt-HJR-LISIC is more robust against

disconnections, and should be the preferred control choice

when communication maintenance is prioritized. Finally, Fig.

5 illustrates a navigation mission, comparing a naive multi-

agent approach (mt-HJR-B) to our safe interaction controller,

mt-HJR-LISIC. Note that despite the initial strong currents

pushing the ASVs away from the desired goal in Fig. 5,

the currents eventually shift favorably, allowing the under-

actuated ASVs to reach the target. The mt-HJR framework

leverages this information through current forecasts to plan

intelligently.

Coll. Disconn. µ(IPM) ↓ µ(¼min
2 ) ↑ µ (dmin (T )) ↓

Ãperf plans on true flows: HC-HC

mt-HJR-B 68.5% 50.1% 0.37 0.39 0 km
mt-HJR-RC 0% 44.8% 0.19 0.42 0.14 km∗

mt-HJR-LISIC 0.7% 9.9%∗ 0.05∗ 1.15∗ 5.90 km

Ãperf plans on forecasts: FC-HC

mt-HJR-B 39.1 % 70.5% 0.92 0.23 10.55 km
mt-HJR-RC 0% 58% 0.23 0.30 10.84 km∗

mt-HJR-LISIC 0.7% 9.9%∗ 0.043∗ 1.15∗ 13.96 km

TABLE II: We compare the performance of three controllers in two
forecast settings. The ∗ symbol indicates a statistically significant
better performance in terms of connectivity, collisions, and distance
to the target.

E. Discussion

It is clear that mt-HJR-LISIC outperforms mt-HJR-RC and

the mt-HJR-B in terms of connectivity metrics. Interestingly,

mt-HJR-LISIC leads to a slightly higher collision rate in

Table II than mt-HJR-RC. We believe that it is mainly

due to two reasons: (1) In mt-HJR-RC, the expected risk

of collisions is inherently lower as each agent can achieve

connectivity with a maximum amount of two other agents

[30] while mt-HJR-LISIC achieves a similar structure to

a lattice configuration [12] (2) In our example, all agents

navigate to the same target, which also increases the risk of

collisions, as it is a common implicit regularizer. We expect

improvement in collision rate for application to autonomous

ASVs, where each agent maximizes an objective along its

trajectory [5]. The discrepancy between the performance

trade-off with each agent target reaching objective dmin (T )
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mt-HJR-B mt-HJR-LISIC

ConnectivityAgent trajectoriesStart positionsTarget Collisions

Fig. 5: Mission example with mt-HJR-B (left) versus
mt-HJR-LISIC (right). Note that while the agents’ trajectories
are depicted for the interval [t0, Ttimeout], the currents in the
background represent a snapshot at time t0 and evolve in both
direction and magnitude over time. mt-HJR-LISIC guarantees
communication through the full length of the mission, avoids
collisions, and ensures that all agents reach the target.

in Table II is less noticeable in the (FC-HC) setting, since

the mt-HJR performance is also degraded because of the

stochastic error when planning on forecasts [4].

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed a H-MAS approach to maintain

network connectivity in complex dynamical flows while

satisfying single agent level objectives when feasible. Our

method blends a safety controller for collisions and connec-

tivity maintenance with a performance control policy, which

allows us to decompose a complex multi-agent problem

effectively. Our empirical results in realistic ocean dynamics

showed that our method efficiently maintains connectivity

and avoids collisions in most scenarios while reasonably

trading off with each agent’s performance objective. Future

work involves real-world testing of our experiments, as well

as adapting predictive methods [13], [14] to time-varying

flows to anticipate disconnections and collisions utilizing the

only available coarse ocean forecasts.
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