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Abstract— Using information consensus and replicator dy-
namics (RD), this article presents a distributed algorithm for
designing control schemes in urban drainage systems (UDSs).
It demonstrates the stability of a closed-loop model with RD
in UDSs using passivity arguments for single subsystems. As
central models for UDSs, we present two distinct topologies and
conduct passivity-based analysis to design appropriate payoff
mechanisms. We further extend this to a decentralized scenario
in which subsystems within a UDS share information and
increase capacity at specific sites in response to intense rainfall.
This algorithm with distributed consensus assistance seeks to
improve system performance. Several simulations are presented
to illustrate the benefits of this method.

I. INTRODUCTION

Amongst the major problems faced by metropolitan areas,
urban flooding is an alarming risk due to several increasing
factors causing stress on modern cities infrastructure. The
steep growth of urban population, intense rainfall due to
climate change and the reduction of green space are some
of the growing trends that show this issue is expected to
worsen [1], [2]. Guided by sustainability goals, modern cities
have decided to reevaluate urban drainage systems (UDSs)
in order to adequately respond to this challenge [3]–[5].

An urban drainage system is a key infrastructure in charge
of collecting and transporting both rainwater and wastewater
away from urban areas to prevent flooding. UDSs form
underground networks consisting of interconnected channels
that receive external sources of water and also distribute
their contents through flows that can be controlled by valves
[6]. In ideal cases, these systems work efficiently and allow
for all services in large cities to operate uninterruptedly.
Yet, in a real-world setting, such systems hold a maximum
capacity, which may be exceeded as a consequence of ex-
treme rainfall, natural disasters, or a poor design. To improve
their performance, the general goal is to efficiently distribute
water such that internal reservoirs can respond to heavy
incoming loads. By maximizing its remaining capacity, a
UDS can have available empty space to store sudden surges
of inflowing water to the network, thus avoiding undesired
overflow into populated areas. Therefore, introducing proper
control strategies can be a valuable approach to mitigate
flooding and collateral negative impact on urban life through
an adequate distribution of water, besides being an affordable
alternative to expensive renovations of a large infrastructure.
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Lately, there has been an increasing interest in model
predictive control (MPC) designs [7], [8] and real-time
control techniques [9]–[11] for UDSs. However, a limitation
of these methods is the need of a centralized controller
in charge of the entire UDS, which is typically a large-
scale network, thus requiring a costly implementation. Other
current approaches use game theory, setting water tank
systems into a closed-loop configuration known as the EDM-
PDM model [12]–[14], which consists of two major sub-
systems: an evolutionary dynamics model (EDM), and a
payoff dynamics model (PDM). The EDM incorporates an
underlying revision protocol acting on an input payoff to
evolve the so-called mean social state that is fed-back to
the PDM. In a practical setting, such as this work, one
can choose the EDM to act as a controller while the PDM
contains a physical model in order to steer the closed-loop
system towards equilibrium. In [15], the authors explore
the use of game theory for water distribution systems by
treating this issue as a resource allocation problem. Here,
the benefits of using Brown–von Neumann–Nash and Smith
dynamics against other evolutionary dynamics in a single
water distribution system are pointed out. Using an EDM-
PDM configuration, the evolutionary dynamics serve as
controllers acting through the valves of the system. Their
desgin shows adequate convergence to wanted equilibrium
points and additional disturbance rejection. Alternatively, the
work of [16] employs replicator dynamics (RD) attempting
to address an extended network with several interconnected
water reservoirs. In this case, the target is to evenly distribute
water in the reservoirs of two setups of tanks to avoid
overflow. Introducing a partitioning algorithm to divide the
UDS network into convergent and divergent topologies, their
results show a clear advantage of RD dynamics opposed to
traditional methods, such as linear-quadratic regulators and
model predictive control.

Although the previous works have thoroughly explored
the use of evolutionary dynamics for water distribution, a
limitation of these studies is their highly local approach.
Despite achieving suitable design goals, we highlight that
[15] examines a water distribution system with a single
inflow and, while simulated random Gaussian rainfall profiles
in time are considered in [16], there is no connection
between rain intensity and the spatial location of water tanks.
Furthermore, the entire network is divided into subsystems,
each having single local controllers acting independently
from the rest of the system. In real scenarios, flooding is
often present in specific areas of a city with heavy rain, rather
than occuring randomly or uniformly. Meanwhile, resources
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from other sectors of the UDS, where there is light rainfall,
may remain largely unused despite being capable of sharing
their capacity to globally assist the network. The objective of
this study is to enhance the efficiency of RD controllers for
UDSs in decentralized setups. First, we formulate the control
loop as a well known EDM-PDM scheme, to which we
will refer to as a single population. Performing a passivity-
based analysis of the two models of interest (convergent and
divergent topologies), we design suitable payoff mechanisms
that ensure convergence to the equilibrium point. Then, we
extend this formulation to a distributed network with par-
tially communicated populations, where we use information
consensus and modify our payoff mechanism to achieve a
better performance taking into account the global spatial
distribution of rainfall.

This paper is organized as follows: Section II presents
preliminary concepts. Section III describes the models for
the two topologies to be considered, and in Section IV we
present the control scheme and perform a passivity-based
analysis on the models of interest to design suitable payoff
mechanisms. Section V proposes augmented dynamics for
decentralized control based on information consensus and
we present simulations showing an advantage to previous
techniques. Finally, conclusions are presented in Section VI.

II. PRELIMINARIES

A. EDM-PDM Model

The closed-loop model in Fig. 1 shows the feedback
connection of a payoff dynamics model (PDM) and an
evolutionary dynamics model (EDM). Inspired by tradition-
ally static population games [17], this scheme extends the
notion to dynamic games, in which players interact through
strategies that are allowed to evolve in time. Generally, these
are nonlinear systems where the PDM’s internal dynamics
can represent some dynamical system of interest and its
output p(t), called the deterministic payoff, is associated to
a reward for the possible strategies the system can adopt.
Here, the different strategies are related to control actions to
be performed over the system. The EDM acts as a controller
and its output x(t), known as the mean social state, evolves
according to the received payoffs for each strategy.

Payoff Dynamics Model
(PDM)

Evolutionary Dynamics Model
(EDM)

Fig. 1: Diagram of the closed-loop model between a PDM
and an EDM.

Designing a control system under this scheme will require
a careful choice of the payoff mechanism, which steers the
system of interest towards a desired state that coincides
with an equilibrium point of the selected EDM. From a

systems perspective, the diagram in Fig. 1 allows for a deeper
mathematical analysis and design. In this work, we will
exploit passivity properties of the replicator dynamics, to
design the payoff mechanism for the UDS models of interest.
We consider the dynamics described in Section III to be
part of a PDM and, in this section, we design the payoff
mechanism, based on passivity arguments for stability in
closed-loop with a replicator dynamics EDM.

B. Replicator Dynamics

Emerging from underlying imitative revision protocols, the
replicator equation is an important example of a biologically
inspired mathematical model that captures interspecies com-
petition based on their fitness [17], [18]. Applied to a game-
theoretic scenario, the RD are suitable to model the migration
between strategies adopted by agents in a large population
driven by their received payoff. Let S = {1, 2, . . . , s} be the
set of available strategies for a population, and xi(t) ∈ [0, 1]
the proportion of agents playing strategy i ∈ S at time t.
The time evolution of such proportions is determined by the
replicator equation

ẋi(t) = βxi(t)(pi(t)− p(t)), for all i ∈ S, (1)

where β ∈ R>0 is the population growth rate, and p(t) =∑
j∈S xj(t)pj(t) is the population’s average fitness or pay-

off. Eq. (1) reproduces the expected behaviour of natural
selection, since strategies fitter than the average tend to in-
crease in size, while less fit decrease. An important property
fulfilled by RD is stated in the following Lemma.

Lemma 1. The simplex ∆ =

{
x ∈ Rs

≥0

∣∣∣∣∑i∈S xi = 1

}
is

positively invariant under RD2.

Lemma 1 ensures that for any initial condition x(t0) ∈
∆, the state of the population x(t) ∈ ∆ for later times
t > t0, as expected for actual proportions. Furthermore, at
the equilibrium p∗i = p∗j , for all i, j ∈ S, provided that all
strategies are non-extinct, i.e., x∗

i > 0 and x∗
j > 0. These are

also known as interior points, where it immediately follows
that x⊤p∗ ≤ x∗⊤p∗ for all x ∈ ∆. Moreover, RD can be
appealing thanks to their passivity properties, as pointed out
in the following Lemma (see [19]).

Lemma 2. The system implementing replicator dynamics
(Eq. 1) defined as

ΣRD :

{
ẋi(t) = βxi(t)(pi(t)−

∑
j∈S xj(t)pj(t)),

yi(t) = xi(t), ∀ i ∈ S,

with input p = col(p1, p2, . . . , ps) ∈ Rs and output y =
col(y1, y2, . . . , ys) ∈ Rs, is EIP.

This result further motivates the use of the aforementioned
evolutionary dynamics as controllers by means of exploiting
their passivity properties, for example, as we will develop in
Section IV. A naturally lossless system can be used to render
equilibrium points in a negative feedback system stable,

2Proofs are omitted due to lack of space.
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Fig. 2: Two types of subsystems found within a UDS: (a) convergent, and (b) divergent topologies.

for instance, under the conditions provided in the following
theorem [20].

Theorem 1. The equilibrium point of a negative feedback
interconnection of a strictly passive system Ψ and a lossless
passive system Φ is Lyapunov stable.

III. MODEL DESCRIPTION

As outlined in [16], UDSs can typically be partitioned
into two types of subsystems: convergent and divergent
topologies, which are depicted in Fig. 2. Such division allows
for an easier analysis of the entire network by grouping into
larger sections that can also represent separate zones from an
urban area. Based on the Muskingum model [6], the channels
of the UDS are approximated as wastewater reservoirs. For
both topologies, the models are derived from continuity
equations (i.e., mass conservation) where incompressible
flow is assumed.

A. Convergent Topology

In this topology, n source reservoirs receive external
inflows of wastewater ri(t) and discharge their contents to
a single receptor reservoir indexed as n + 1. The outflows
of each reservoir is proportional to their current volume
qi(t) through a coefficient ai which takes into account the
reservoir’s geometry. Source reservoirs can further manip-
ulate their outflow by controlling the opening percentage
xi(t) ∈ [0, 1] of each valve. For completeness, xn+1(t) can
be interpreted as the percentage of a strategy corresponding
to closing all valves. Finally, the water loss of the receptor
reservoir is characterized by the coefficient γn+1(t). The
internal dynamics of this configuration are then given by

Σ▽ :


q̇i(t) = ri(t)− aixi(t)qi(t) , i = 1, . . . , n,

q̇n+1(t) = rn+1(t)− γn+1(t)qn+1(t) + . . .

+
n∑

j=1

ajxj(t)qj(t).

The importance of this model, as we discuss in the distributed
case, is its frequent use at the topmost layer of UDSs. Usu-
ally, several sources of water converge to a larger reservoir
and then continue distribution through the network.

B. Divergent Topology

In this topology, a source reservoir indexed as n + 1
receives an external inflow of wastewater rn+1(t) and dis-
charges its content to n receptor reservoirs. Similarly, the
outflow from the source reservoir to each receptor reservoir
is proportional to its current volume qn+1(t) through a
coefficient an+1 taking into account the source’s geometry.
Individual flows from the source to receptor reservoirs can be
manipulated by controlling the opening percentage xi(t) ∈
[0, 1] of each valve. Finally, the water loss of receptor
reservoirs is characterized by coefficients γi(t). The internal
dynamics of this configuration are then given by

Σ△ :


q̇i(t) = ri(t)− γiqi(t) + . . .

+an+1xi(t)qn+1(t) , i = 1, . . . , n,

q̇n+1(t) = rn+1(t)−
n∑

j=1

an+1xj(t)qn+1(t).

An in depth analysis of the equilibrium points for both
subsystems can be found in [16]. For the purpose of this
work, we will further assume that no valve is either fully
opened or closed at any moment, this is 0 < xi(t) <
1, for all i = 1, . . . , n, and that external inflows and
outflows of wastewater are constant in time, i.e., ri(t) = ri
and γi(t) = γi, for all i = 1, . . . , n+ 1.

IV. PASSIVITY-BASED DESIGN AND CONTROL OF
SUBSYSTEM TOPOLOGIES

A. A Payoff Mechanism for Convergent Topologies

Taking into account a convergent topology with identical
reservoirs such that ai = a, for all i = {1, . . . , n}, the
equilibrium point satisfies q∗i = q∗, for all i = 1, . . . , n+ 1.
Now, inspired in the Lyapunov function of [16], consider
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the storage function S▽(eq(t)) =
1

2aq∗

∑n+1
i=1 e2qi(t), where

eq(t) = q(t) − q∗(t). Time derivatives along Σ▽ can be
shown to have the form

Ṡ▽(eq(t)) = −e⊤x (t)eq(t)− φ▽(eq(t)), (2)

where

φ▽(eq(t)) =
xn+1(t)

4q∗
e2qn+1

(t) +
1

q∗

(
4γn+1 − an

4a

)
e2qn+1

(t)

+
1

q∗

n∑
i=1

xi(t)

(
eqi(t)−

1

2
eqn+1(t)

)2

,

is a positive definite function assuming a < 4γn+1/n.
The obtained form of Eq. (2) allows us to conclude that
the convergent topology is a naturally passive system with
respect to the negative of the volume state vector. Our
analysis suggests a design of a suitable wanted payoff as
asserted in the following Lemma.

Lemma 3. Under the output (payoff) y(t) = −q(t), the
convergent subsystem Σ▽ is strictly EIP.

Therefore, if Σ▽ (under the payoff described in Lemma
3) is placed in the PDM connected with an ΣRD EDM, by
means of Theorem 1, we can guarantee the stability of the
equilibrium point. In addition, an equilibrium point of RD is
found when all strategies have equal payoff, matching the
design criteria of equal volumes. Finally, using LaSalle’s
invariance principle, this equilibrium point is locally asymp-
totically stable.

B. A Payoff Mechanism for Divergent Topologies

Following the approach of the previous case, consider the
storage function S△(eq(t)) =

1
2an+1q∗n+1

∑n+1
i=1 e2qi(t). It can

be shown that time derivatives along Σ△ have the form

Ṡ△(eq(t)) = e⊤x (t)eq(t)− φ△(eq(t)), (3)

where

φ△(eq(t)) =
γn+1

an+1q∗n+1

e2qn+1
(t)

+
1

q∗n+1

n∑
i=1

(
4γi − xi(t)an+1

4an+1

)
e2qi(t)

+
1

q∗n+1

n∑
i=1

xi(t)
(
eqn+1

(t)− eqi(t)
)2

,

is a positive definite function if an+1 < 4γi , for all i =
1, . . . , n. In contrast to convergent topologies, the form of
Eq. (3) allows us to conclude that the divergent topology
is a passive system with respect to the negative of the
volume state vector. The following Lemma states our payoff
mehcanism of choice to render the system EIP.

Lemma 4. Under the output (payoff) y(t) = q(t), the
divergent subsystem Σ△ is strictly EIP.

Similarly, if Σ△ (under the payoff described in Lemma
4) is placed in the PDM connected with an ΣRD EDM, by
means of Theorem 1, we can guarantee Lyapunov and further
asymptotic stability of the equilibrium point.

V. DISTRIBUTED CONTROL OF SUBSYSTEM TOPOLOGIES

Up to this point, we have designed control systems with
complete knowledge of the subsystem’s state. However, this
assumption breaks down in large-scale networks as instan-
taneous information may not be readily available for all
sectors of a UDS. In addition, we should emphasize that
intense rainfall can cause overflow only in specific areas
while other parts of the UDS can have unused remaining
capacity. Such remaining free space could be used to relief
stress on particular locations through a more efficient distri-
bution across the global network. In this section, we propose
augmented dynamics for the previous topologies distributed
over a connected communication graph. We will solely focus
on convergent topologies, since this configuration is typically
found at the topmost layers of a UDS. Nevertheless, the same
design can be directly applied to the divergent case.

A. Problem Formulation

Consider a set K = {1, 2, . . . , N} of N populations each
comprised of n + 1 reservoirs arranged in a convergent
topology as studied previously. We identify each population
as a vertex of a connected and undirected graph GC =
(K, E), where E ⊆ K × K is the set of edges, therefore
if an edge (i, j) ∈ E then (j, i) ∈ E. Moreover, let Nk ⊂ K
be the set of neighbours with which k shares information,
i.e., populations directly connected through an edge. Each
population represents a part of the topmost layer of reservoirs
in the network, these are those in charge of directly receiving
water flow solely from incoming rain. The design objective
will be to better distribute the load across populations, such
that, even when some sectors of the UDS have relatively
small demand, it can relieve the stress caused in other sectors
with a greater inflow.

B. Consensus Based Algorithm

Let qki be the volume of water in the i−th reservoir of
population k, and q̂k1,k2

i the volume of water estimated by
population k1 in population k2’s i−th reservoir. Additionally,
we assume each population to have complete information of
their own state at any time, i.e., q̂k,ki (t) = qki (t) for all i ∈ S.
In this order, we propose the following distributed EDM-
PDM dynamics

q̇ki (t) = rki (t)− aki x
k
i (t)q

k
i (t) , i = 1, . . . , n, (4a)

q̇kn+1(t) = −γk
n+1(t)q

k
n+1(t) +

n∑
j=1

akjx
k
j (t)q

k
j (t), (4b)

˙̂qk,k
′

i (t) = −
∑

k′′∈Nk

(
q̂k,k

′

i (t)− q̂k
′′,k′

i (t)
)
, (4c)

pki (t) = qki (t) , i = 1, . . . , n, (4d)

pkn+1(t) =
1

N

∑
k′∈K

q̂k,k
′

n+1(t), (4e)

ẋk
i (t) = βxk

i (t)
(
pki (t)− pk(t)

)
, (4f)

for all k′ ̸= k and k ∈ K. Eqs. (4a) and (4b) simply
state the dynamics described in Section III-A for each
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population. Then, Eq. (4c) incorporates the consensus based
approach, according to which each population k tries to
reach consensus in its estimates by communicating with its
neighbours k′′ ∈ Nk. Eqs. (4d) and (4e) modify the payoff
mechanism by averaging across all populations of the set
K. While the source tanks i = 1, . . . , n, seek to equal their
volume, the n + 1 tank receives the average volume across
receptor reservoirs through all the network. Consequently, a
greater flow from source tanks towards the receptor reservoir
is to be expected. In high stress demand areas, this will allow
for a greater discharge of water from the topmost layers of
the UDS. Finally, Eq. (4f) defines an EDM closing the loop
model for each population.

C. Simulations

1) Case 1: As a first example of the proposed dynamics
in Eq. (4), we present in Fig. 3 the results of this algorithm
applied to a distributed setting of convergent topologies
under the random graph in Fig. 3(a). The parameters are
n = 2, β = 10−4, geometric parameters ak1 = ak2 = 0.1 s−1,
γk
3 = 0.05 s−1, and wastewater inflow rk1 = 2rk2 =

0.5 m3s−1, for all k ∈ K. In this scenario we discuss the
performance of the distributed algorithm under homogenous
rainfall across the network.

(b)
(a)

(c)

Fig. 3: Simulation of the proposed dynamics with β = 10−4,
over the (a) random connected communication graph GC of
N = 10 populations of convergent topologies with n+1 = 3
reservoirs and λ2(L) = 0.57. As a sample, (b) the actual
volumes q1i (t) and (c) estimated volumes q̂1,−k

i (t) are also
shown.

Initially, each population makes a random guess to build
their estimates that rapidly achieve consensus with the entire
network after the first minute, for this case, as observed
in Fig. 3(b). Effectively, all populations converge to an
equilibrium point where the volumes in all reservoirs are
equal. It is worth noticing the role of the population growth
rate β in the convergence of the proposed dynamics. Fig. 4
shows the Euclidean distance between the final social state
after tf = 15 min. and the expected equilibrium for different
combinations of (β, λ2(L), N), where λ2(L) is the algebraic
connectivity of graph GC . The population growth rate plays
the role of a second timescale interfering with the speed at

which consensus can be achieved. As shown, larger networks
of size N can admit smaller values of β provided that there
is enough connectivity λ2(L) in order to converge towards
the equilibrium point.
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Fig. 4: Numerical convergence to the expected equilibrium
point x∗ for multiple realizations after tf = 15min.

2) Case 2: In order to highlight the utility of the aug-
mented payoff mechanism in Eqs. (4d) and (4e), we present
an example in which the total inflow rate takes a Gaussian
form. This represents a dense cloud causing heavy rain at
certain sector of the UDS, mainly affecting nearby pop-
ulations. Consider N = 14 convergent subsystems with
n = 2 connected on a chain as shown in Fig. 5, which
are physically distant subsystems communicating with their
nearest neighbours. We assume the same parameters as in
V-C.1, however, modifying the inflow rates as

rk1 (t) = rk2 (t) = 0.2e−
1
5 (k−k0)

2

+ 0.01 [m3/s],

being maximum for population k0 = 7 and having a
uniform background rain as depicted in Fig. 5. We also
present the final total water volume held by each population
after tf = 25 min. under communicated and independent
configurations. Results show the advantage of the proposed
algorithm as it effectively reduces the total volume at the sites
of heavy rainfall, thus increasing their response capacity. The
trade-off is noticeable in populations of lighter rainfall, where
it is clear that remaining capacity is reduced. However, these
regions can better withstand the incoming flow, showing how
the local information sharing assists the global UDS.

Time dynamics of water volume in each reservoir are
also compared in Fig. 6, where we focus on the central
k0 = 7 population. We observe a faster response in the
communicated case due to the modified payoff, which further
enhances the reaction to heavy rain. Furthermore, reservoirs 1
and 2 reach equal smaller volumes than the independent case,
successfully increasing the remaining capacity as desired.

VI. CONCLUSIONS

In this work, we have analyzed two UDS subsystems:
convergent and divergent topologies, from an equilibrium-
independent passive perspective. We have showed the EIP
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(a)

(b)

Fig. 5: (a) Non-uniform total rainfall centered at population
k0 = 7, and (b) comparison of final total water volume per
population in communicated and independent designs.

Fig. 6: Comparison of the dynamics of water volume per
reservoir in population k0 = 7 between the communicated
(solid) and independent (dashed) design.

property of replicator dynamics, which allows us to design a
payoff mechanism under the EDM-PDM scheme that ensures
stability of the desired equilibrium point. Moreover, we have
extended our payoff design to a distributed case using a
consensus approach to model the sharing of information on
a connected communication graph. Our results show that the
proposed decentralized algorithm can be used to alleviate the
load on particular populations with high inflow of wastewater
in order to mitigate the risk of overflooding.

For future work, numerous improvements can be included
to the presented approach. First, we have not yet taken into
account the maximum reservoir capacities, which can be
relevant for real implementations. Second, analytic condi-
tions for stability of the augmented dynamics in Eq. (4)

are still necessary to complement the numerical results on
convergence. Finally, combining both the information with
physical water flow between subsystems can be an important
extension, leading to better performance of UDSs. Since
information sharing across the network has been ensured,
an improved distribution of water could be achieved by
redirecting flow towards subsystems with less load.
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