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Abstract— This paper addresses the monitoring and con-
tinual learning of data-based dynamical models. Throughout
the lifespan of any process, many changes can occur. In an
indirect control design framework, in order to maintain an
effective control system, it is crucial to monitor the modelling
performance and adapt the existing model to possible system
variations while preserving previously acquired information.
A comprehensive methodology is hence proposed to detect a
system-model mismatch and its cause, and to update the model
accordingly. The proposed idea consists in leveraging control
charts constructed on operational data to spot an anomaly
and to determine its cause (endogenous or exogenous). The
procedure then provides an adaptation algorithm based on the
type of change detected: if endogenous, the model is “partially”
updated by means of a Moving Horizon Estimation (MHE)
algorithm, if exogenous, the model is “incrementally” updated
by means of a model uncertainty estimation algorithm. The
proposed methodology is tested in simulation on a district
heating system benchmark, showing promising results from the
monitoring and continual learning perspective.

Index Terms— Lifelong learning, statistical process control,
moving horizon estimation, model uncertainty estimation.

I. INTRODUCTION

In recent years, data-based techniques have gained popu-
larity in the control community thanks to their greater man-
ageability with respect to large-scale physical models. In this
context, two data-driven control design approaches can be
adopted, i.e., direct methods, in which the control system is
designed directly from data [1], and indirect methods, whose
control law is synthesized based on a recovered data-driven
model [2]. This last approach, especially when employed
for designing Model Predictive Control (MPC) regulators
[3], relies on the Certainty Equivalence Principle (CEP),
which assumes that the underlying model resembles the real
system [4]. Throughout the lifespan of any system, many
changes may occur, resulting in an unreliable model and in
deteriorated controller performances. As a consequence, two
challenges arise: i) how to effectively monitor the model
reliability and ii) how to adapt the existing model to changes
without discarding previously acquired knowledge.

In order to monitor model goodness over process oper-
ation, some methods have been proposed in the literature,
such as those based on open-loop modelling error triggering
mechanisms [5], or those based on predictions-observations
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precision thresholds [6]. Even though thanks to these meth-
ods it is possible to detect a system-model mismatch, none of
them distinguishes its cause. Being able of differentiating the
type of anomaly is crucial to effectively adapt the existing
model to the specific scenario encountered. In [7], a monitor-
ing algorithm able to distinguish various system anomalies is
shown, but no adaptation solution is proposed. By contrast,
in [8], different adaptation algorithms based on the scenario
encountered are proposed, but how to distinguish among
various cases is not discussed. Being able to effectively adapt
the system model to changes is of key importance to maintain
high standard of identification and control performances. The
ability to constantly learn over time by accommodating new
knowledge while preserving previously learned experiences
is commonly referred to as “lifelong learning”. The latter is
a well-established challenge for machine learning since the
continuous acquisition of incrementally available information
may interfere with previously learned knowledge, leading to
the “catastrophic forgetting” [9]. Different algorithms have
been proposed in the literature to update models over time,
such as those based on Moving Horizon Estimators (MHE)
[10], [11], on model uncertainty estimation [3], [12], or those
retraining the existing model with online operational data [5].
None of these approaches, however, proposes an adaptation
algorithm based on the type of anomaly.

In view of the above discussion, a comprehensive monitor-
ing and lifelong learning algorithm for data-based dynamic
models is here proposed. The main contributions of the
work are summarized below. First, a monitoring strategy
able to distinguish the anomaly cause is proposed. Two main
categories of anomaly are identified: i) endogenous changes,
e.g., due to structural plant modifications and ii) exogenous
changes, e.g., due to operating conditions shifts. In order to
differentiate such anomalies, the proposed procedure makes
use of a well-known statistical process control tool, i.e.,
control charts [13]. In contrast to their traditional use [14],
control charts are here leveraged to assess modelling reliabil-
ity and to distinguish the source of the anomaly, if detected,
by means of an operational data analysis. The scenario
distinction enables to update the existing model according to
the anomaly detected. If an endogenous anomaly is spotted,
a “model partial update” based on MHE is performed. If
an exogenous anomaly is detected, a “model incremental
update” based on model uncertainty estimation is performed.
In this work, the proposed approach is tested in simulation
on a District Heating System (DHS) benchmark, i.e., the
AROMA DHS [15], to monitor and adapt its data-based
model, showing promising results.
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Notation

Given a vector z ∈ Rn, its ith element is denoted as
zi. Considering a scalar α ∈ R, the inequality z ≤ α
is intended element-wise, i.e., zi ≤ α, ∀i ∈ {1, . . . , n}.
Moreover, given a vector variable z ∈ Rn and a sequence
of m observations of z over time, i.e., z(1), . . . , z(m), the
matrix containing the m observations of z is denoted in bold,
i.e., z = [z(1), . . . , z(m)] ∈ Rn×m, and it can be compactly
expressed as z = {z(i)}mi=1.

II. PROBLEM STATEMENT

Consider a discrete-time system S:

S :

{
x(k + 1) = f(x(k), u(k), d(k))

y(k) = g(x(k), u(k), d(k))
, (1)

where f and g are non-linear functions, x ∈ Rnx , u ∈ Rnu ,
y ∈ Rny , d ∈ Rnd are the state, input, output and disturbance
vectors, respectively, whereas k is the adopted discrete time
index. In data-driven approaches, a dynamical model M of
(1) can be identified from data for control design purposes,
which generically reads as

M :

{
x̂(k + 1) = f̂(x̂(k), u(k), d(k); Θ)

ŷ(k) = ĝ(x̂(k), u(k), d(k); Θ)
, (2)

where f̂ and ĝ are non-linear functions, x̂ ∈ Rn̂x and
ŷ ∈ Rny are the model state and output, respectively, whereas
Θ ∈ RnΘ is the vector of model parameters that must be
tuned during the training procedure. The latter is carried out
by means of open-loop data collected by feeding the system
with exciting inputs (e.g., multilevel pseudorandom binary
sequences or MPRBS), exploring the entire operating range
of interest, and with disturbances whose profiles derive from
historical data. M can be implemented according to different
model structures [16], such as Recurrent Neural Networks
(RNNs), which are particularly suitable to approximate non-
linear dynamical systems, thanks to their universal approxi-
mation capabilities [17].

According to indirect data-based control methods, af-
ter a model M is estimated from data, a control system
CM regulating S is designed to obtain desired closed-
loop performances. The controller CM may range from
simple Proportional-Integral-Derivative (PID) to more com-
plex MPC regulators. The correct functioning of the control
scheme obviously depends on the accuracy of the identified
model, based on which the controller is designed, typically
relying on the CEP. Thus, the accuracy of model M is es-
sential to be monitored in closed-loop online operation. This
task can be addressed by supervising the identification error
eŷ(k) = y(k)− ŷ(k), which should be reasonably small if
the model M accurately represents system S when fed with
the same inputs and disturbances. However, the identification
error eŷ may unacceptably increase if:

• system S internally changes, e.g., in case of a structural
plant modification (endogenous cause);

• system S operates in not known conditions, e.g., in
case the disturbance d takes values not included in the

training data used to learn M (exogenous cause). For
simplicity, the scenario in which system S is fed with
an input u outside the known operating range is not
addressed here, since it is assumed that model M has
been trained with exciting input signals covering the
entire operating range of interest.

This work therefore aims first to supervise the integrity of
model M in (2) during the closed-loop operation of system
S regulated by CM. Then, if an anomaly is detected, the
second challenge consists in discerning its cause, i.e., if
unacceptable modelling errors derive from internal system
changes or from external unknown operating conditions.
According to the anomalous scenario encountered, the third
challenge lies in updating the existing model taking into
account the new available information while not discarding
previously acquired knowledge.

III. PROPOSED PROCEDURE

The proposed resolution procedure for the aforementioned
problems is summarized by the flowchart reported in Figure
1. In a nutshell, it is here proposed to periodically assess
the modelling reliability by means of control charts mon-
itoring if model M operates as expected or if anomalies
occur. A control chart is an online monitoring technique
used in statistical process control to detect the occurrence
of assignable causes of process changes so that corrective
actions may be undertaken [13]. Hereafter, the different steps
of the flowchart in Figure 1 are described, considering that
Step 1 and Step 2, i.e., the identification of M and the design
of CM, have been described in Section II.

Control charts characterization

In Step 3 of the flowchart in Figure 1, closed-loop oper-
ational data are collected and control charts are constructed
so as to properly characterize the scenario where model
M accurately represents system S . In particular, Step 3 is
structured in the following operations:

• Step 3.1) A dataset D = {y(i), ŷ(i), d(i), u(i)}Ni=1 con-
taining N observations, i.e., including all inputs and
outputs of S and M, is collected during the online
operation of the control system. Disturbances d are
assumed to be measurable or estimated through local
observers. The benchmark dataset D is used to construct
the modelling error control chart based on eŷ = {y(i)−
ŷ(i)}Ni=1, and the disturbance control chart based on
d = {d(i)}Ni=1.

• Step 3.2) Considering that eŷ ∈ Rny×N and
d ∈ Rnd×N , multivariate control charts must be lever-
aged. The statistical (Mahalanobis) distance T 2 is there-
fore exploited, i.e., a popular statistical tool in mul-
tivariate process analysis [13]. Specifically, consider
a reference dataset z containing N observations of a
variable z, and a monitoring dataset z̃ containing Ñ
observations of the same variable. The Mahalanobis
distance of z̃ with respect to z is computed as

T 2(z̃, z) = {(z̃(i)− µz)
′(Σz)

−1(z̃(i)− µz)}Ñi=1 , (3)
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Fig. 1. Flowchart of the proposed procedure: the number of each step is
reported on the corresponding top-left corner.

where

µz =
1

N

N∑
i=1

z(i), (4)

Σz =
1

N − 1

N∑
i=1

(z(i)− µz)(z(i)− µz)
′. (5)

In detail, T 2(z̃, z) ∈ RÑ contains a sequence of
Mahalanobis distances, computed for each observation
in z̃ with respect to the reference dataset z. The first
argument of T 2(z̃, z) corresponds to the monitoring
dataset, whereas the second argument to the reference
dataset used to compute the mean vector µz and the co-
variance matrix Σz, as evident from (4)-(5). Considering
the problem here addressed, the Mahalanobis distances
T 2(eŷ, eŷ) and T 2(d,d) are computed by using as
monitoring dataset the reference one, in order to build
the reference multivariate control charts of eŷ and d,
as discussed next.

• Step 3.3) The Hotelling T 2 multivariate control charts
are here developed, being suited to monitor vector vari-
ables through their Mahalanobis distances. More details
on their design are available in [13]. The control charts
development is commonly structured into two phases.
First, it is evaluated if the available observations of
monitored variables are “in control” from the statistical
perspective, so that they can be used as reference. If

this phase is successful, observations are exploited to
develop benchmark control charts. This requires the def-
inition, for each monitored variable, of an Upper Con-
trol Limit (UCL) and of a Lower Control Limit (LCL),
so as to check if they are respected during the online
monitoring process, i.e., LCL ≤ T 2(z̃, z) ≤ UCL. If
UCL and/or LCL are violated by future collected data,
the process will no longer be “in control” and a fault
will have occurred. As suggested in [13], being the
Mahalanobis distance a positive quantity, LCL is set
to 0. Since the assumption of data normal distribution
may be not verified for T 2(eŷ, eŷ) and T 2(d,d), their
UCLs, i.e., UCLe and UCLd, respectively, are here
estimated from the observed data in D using percentiles.
For a continuous random variable X , the k-th percentile
is a value pk such that P(X ≤ pk) = k/100.

Hence, after having performed the operations in Step 3
for dataset D, control charts characterized by their LCLs
and UCLs are defined both for eŷ and for d. The latter are
exploited in the subsequent steps to monitor if model M is
properly representing S during online operation and, if not,
to assess the nature of the anomaly.

Model monitoring
The model monitoring phase, represented by Step 4 in

Figure 1, is structured as follows:
• Step 4.1) At the end of each monitoring period, a new

dataset D̃ = {ỹ(i), ˜̂y(i), d̃(i), ũ(i)}Ñi=1 containing Ñ

observations is collected, then ẽŷ = {ỹ(i)− ˜̂y(i)}Ñi=1

and d̃ = {d̃(i)}Ñi=1 are defined.
• Step 4.2) The Mahalanobis distances of the new ob-

served variables in D̃ with respect to the benchmark
dataset D are computed using (3)-(5), i.e., T 2(ẽŷ, eŷ)

and T 2(d̃,d).
• Step 4.3) Using the bounds defined in Step 3.3, in

order to detect whether an anomaly occurred or not,
the following condition is checked:

(T 2(ẽŷ, eŷ) ≤ UCLe ) ∧ (T 2(d̃,d) ≤ UCLd ). (6)

If (6) is verified, it means that the identification errors
and the disturbances are evolving according to the
scenarios explored in D, implying that model M is
still able to correctly capture the system dynamics.
Therefore, no further actions are required and Step 4
is restored, as evident from the flowchart in Figure 1.
If (6) is not verified, an unknown model operation is
detected and therefore Step 5 is required.

Anomaly characterization
Step 5 is essential to characterize the type of anomaly

encountered in D̃ if condition (6) is violated. This step
develops as follows:

• Step 5.1) As depicted in Figure 1, in order to distinguish
the type of anomaly, it must be checked whether dis-
turbances are operating within known conditions. Thus,
the following condition is first checked:

T 2(d̃,d) ≤ UCLd. (7)
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If (7) is verified, the observed exogenous factors are
statistically close to the original ones, and therefore (6)
is violated due to an endogenous change in S . Thus,
Step 6a must be performed to adapt M to this new
situation, as described later. On the other hand, if (7) is
not verified, a new disturbance condition not represented
in D is detected, and therefore Step 5.2 is performed.

• Step 5.2) When a new operating condition is detected,
i.e., (7) is violated, the following condition is checked:

T 2(ẽŷ, eŷ) ≤ UCLe. (8)

If (8) is verified and (7) is violated, it means that
model M is able to accurately represent system S,
even though disturbances in D̃ are not represented in
the original dataset D. Thus, it is necessary to add a
new control chart associated with D̃ (Step 3 is restored),
without modifying the model M or the controller CM,
as the modelling error is acceptable. If (7) and (8) are
not verified, a new operating condition associated with
unacceptable modelling errors is detected, and therefore
Step 6b must be performed.

Ultimately, if a model anomaly is detected by control
charts, the original model M must be adapted to the specific
type of scenario encountered, as described in the following.

Model partial update for endogenous anomalies

According to the proposed procedure, an endogenous
anomaly is detected if (7) is respected and (8) is violated. In
this paper, an endogenous anomaly is intended as a change
in a process internal factor which leads to a modification in
the dynamics of S, no more fully represented by model M.
In Step 6a of the flowchart in Figure 1, in order to adapt
the model to such internal changes while still preserving
the information contained in M, i.e., avoiding catastrophic
forgetting, an MHE inspired by [10] is exploited. The pro-
posed algorithm, based on the underlying MHE optimization
problem, aims at seeking the parameters update for model
M in (2) that best describes the new collected data D̃, and
it can be stated as

Θup ∗= argmin
Θup,x̂(0)

Ñ∑
k=1

||ỹ(k)− ŷup(k)||2 + γ||Θ−Θup||2 (9a)

subject to, ∀ k ∈ {0, . . . , Ñ},
x̂(0) = x̄0, (9b)

x̂(k + 1) = f̂(x̂(k), ũ(k), d̃(k); Θup), (9c)

ŷup(k) = ĝ(x̂(k), ũ(k), d̃(k); Θup), (9d)
ϕΘup = ϕΘ, (9e)

where Θ ∈ RnΘ represents the vector of parameters of
the original model M (2), Θup ∈ RnΘ is the optimiza-
tion variable, Θup ∗ is the optimal solution to (9), whereas
ϕ ∈ RnΘ×nΘ is a diagonal matrix used to constraint some
components of Θup to be equal to the corresponding ones
of Θ, as discussed later. The cost function (9a) penalizes
the mismatch between the actual measured output ỹ and
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Fig. 2. (a) Model partial update in the RNN case: the partially updated
model is highlighted in red. (b) Model incremental update in the RNN case:
the incrementally updated model M† is highlighted in red.

that of the updated model ŷup, and, moreover, discourages
significant deviations from the previously computed optimal
solution Θ. Hence, the coefficient γ defines the trade-off
between the need to improve model performance (γ small)
and the necessity not to forget the information previously
acquired. The updated model Mup is embedded in the MHE
formulation in (9c)-(9d), with its state initialized in (9b) with
x̄0, supposed to be measured or estimated by an appropriate
state observer. To reduce computational complexity and
avoid catastrophic forgetting, constraint (9e) is here added to
update just some model parameters by means of the selective
matrix ϕ. For instance, if RNNs are used, as visible in Figure
2(a), only the parameters related to the output layer could be
updated, i.e., the weights and biases of the output equation
ŷ in (2). In this way, the information acquired through the
original training procedure is embedded in the hidden layers
parameters, whereas the information related to the current
modified system is stored in the updated optimal solution
Θup ∗. After the model partial update, the previously built
control charts must be discarded, as the system has changed
and the updated model Mup is characterized by different
modelling errors. Thus, the procedure restarts from Step 2,
where CMup is designed based on the updated model Mup.

Model incremental update for exogenous anomalies

According to the proposed procedure for anomaly char-
acterization described in Step 5, an exogenous anomaly
is detected if both (7) and (8) are not respected. In this
paper, an exogenous anomaly is intended as a change in
a process external factor which leads to a system dynamics
modification that model M is not able to represent. Being
the original model able to correctly identify the system
dynamics in already explored external operating conditions,
the model incremental update performed in Step 6b involves
an enlargement of M so as to make it capable of identifying
S even in presence of new observed exogenous signals. To
this end, the proposed idea consists in exploiting an additive
model that estimates the original model identification error
(uncertainty) offline. Therefore, a new model M† is defined,
operating in parallel with the original model M in (2), which
reads as

M† :

{
x̂†(k + 1) = f̂†(x̂†(k), u(k), d(k); Θ†)

ê†ŷ(k) = ĝ†(x̂†(k), u(k), d(k); Θ†)
, (10)
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so that the overall updated output is

ŷup(k) = ŷ(k) + ê†ŷ(k) , (11)

with ŷ deriving from the original model M in (2). For
instance, considering M and M† identified by an RNN, the
model incremental update scheme implemented is shown in
Figure 2(b). In order to obtain an effective lifelong learning
algorithm and thus to avoid catastrophic forgetting, ê†ŷ must
not negatively impact on ŷ when standard operating con-
ditions are restored. To achieve this, the incremental model
reported in (10) must be trained with a dataset D† = Do∪D̃,
including a subset of the original operating conditions, i.e.,
Do ⊆ D, and the dataset D̃ containing the new explored
conditions. After the model incremental update, a new
control chart both for errors and for disturbances must be
constructed considering the observations in D̃. The original
control charts, however, must not be discarded since they
are still valid to monitor the model in the already known
operating conditions. Thus, the procedure restarts from Step
2, where CMup is designed based on the updated model Mup,
defined by (2), (10), and (11).

IV. NUMERICAL RESULTS

The proposed lifelong learning algorithm is applied to
a District Heating System (DHS), i.e., an efficient energy
system crucial to reach the decarbonization objectives. A
DHS is generally composed of a heating station and of an
insulated water pipeline network transferring the generated
heat to thermal loads [18]. The case study analysed in this
work is the AROMA DHS, described in [15]. The input is
the supply temperature at the heating station, i.e., u = T s

0 ,
whereas the external disturbances are the thermal loads de-
mands, i.e., d = [{P c

i }′∀i∈Nc
]′, where Nc is the thermal loads

set. The output vector is y = [T r
0 , q0, {T s

i , T
c
i , q

c
i }′∀i∈Nc

]′,
i.e., including the return temperature T r

0 and the water flow
q0 at the heating station, the load supply temperatures T s

i ,
output temperatures T c

i and water flows q c
i . The AROMA

DHS physical model described in [15] has been leveraged
to develop a dynamic simulator, exploited to generate input-
output data (see [19] for further details). To quantitatively as-
sess the modelling performances of the developed data-based
models, the FIT (%) index reported in [19] is employed.

According to Step 1 of the flowchart in Figure 1, the data-
based original model M (2) of the AROMA DHS is based on
a Physics-informed RNN, whose training procedure required
136 minutes, whereas Step 2 consists in the implementation
of a Nonlinear MPC (NMPC) algorithm, exploiting the
derived data-based model, as discussed in [19]. As explained
in Section III, according to Step 3, it is first necessary
to collect a benchmark dataset in order to characterize the
control charts in a standard setting. The benchmark dataset
D is collected through a monthly closed-loop simulation of
the controlled system, where u is computed by the NMPC
algorithm and d is characterized by typical thermal demand
trends, as reported in [18]. After performing Step 3.1, 3.2
and 3.3, the benchmark control charts are built. The control
limits UCLe and UCLd, computed as the empirical percentile

p99.73, will be used to monitor the system throughout its
functioning. The monitoring phase described in Step 4 re-
quires data collection every monitoring period (one day).
Two datasets are here collected considering two scenarios:

• Case 1: D̃[1], obtained by increasing by 5% the
AROMA DHS pipes lengths and decreasing by 5% their
diameters (endogenous change). The disturbances are
similar to the ones explored in the original training set;

• Case 2: D̃[2], obtained by using thermal demands signif-
icantly different from the ones explored in the original
training set (exogenous change).

Case 1: endogenous change

Step 4.1 and 4.2 are performed on D̃[1], obtaining the error
control chart shown in Figure 3(a) and the disturbance con-
trol chart shown in Figure 3(b). Being T 2(ẽ

[1]
ŷ , eŷ) > UCLe

and T 2(d̃[1],d) ≤ UCLd, according to Step 4.3 and 5.1,
it is possible to conclude that the type of anomaly is
endogenous (as expected) and therefore a model partial
update is performed. After the model partial update based
on the MHE algorithm described in Step 6a (optimization
time of 16 minutes), the model with updated output layer
parameters outperforms the old one in a testing simulation
with the modified plant and operating conditions similar to
the ones explored in the original training set. In Figure 3(e)
it is possible to appreciate how the updated output variable
(yellow) of the furthest load from the heating station captures
its corresponding actual behaviour (blue), in contrast to the
output variable identified by the old model (orange). Indeed,
the average FIT of the updated model is 85.5%, against
53.1% of the original one. Finally, according to Step 6a,
the original control charts are discarded, and the procedure
restarts from Step 2, where CMup is designed based on Mup.

Case 2: exogenous change

Step 4.1 and 4.2 are performed on D̃[2], obtaining the error
control chart shown in Figure 3(c) and the disturbance con-
trol chart shown in Figure 3(d). Being T 2(ẽ

[2]
ŷ , eŷ) > UCLe

and T 2(d̃[2],d) > UCLd, according to Step 4.3, 5.1 and 5.2,
it is possible to conclude that the anomaly is exogenous
(as expected) and therefore a model incremental update is
performed. After the model incremental update based on
the additive uncertainty estimation described in Step 6b,
the updated model outperforms the old one in a testing
simulation with the original plant and operating conditions
significantly different from the ones explored in the original
training set. In Figure 3(b) it is possible to appreciate how the
updated output variable (yellow) of the furthest load from the
heating station captures its corresponding actual behaviour
(blue), in contrast to the output variable identified by the old
model alone (orange). Indeed, the average FIT of the updated
model is 82.7%, against 46.6% of the original one. When
standard operating conditions are restored, the incrementally
updated model Mup performs just as well (FIT of 84.8%)
as the original one M (FIT of 84.9%), avoiding catastrophic
forgetting. Finally, according to Step 6b, a new control chart
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Fig. 3. (a) Case 1 error control chart: T 2(ẽ
[1]
ŷ , eŷ) is depicted in blue,

UCLe in red. (b) Case 1 disturbance control chart: T 2(d̃[1],d) is depicted
in blue, UCLd in red. (c) Case 2 error control chart: T 2(ẽ

[2]
ŷ , eŷ) is depicted

in blue, UCLe in red. (d) Case 2 disturbance control chart: T 2(d̃[2],d) is
depicted in blue, UCLd in red. (e) T c

5 after MHE update (yellow) compared
to the measured value (blue) and the old model identification (orange). (f)
T c
5 after incremental RNN update (yellow) compared to the measured value

(blue) and the old model identification (orange).

both for errors and for disturbances is constructed based on
the new observed data, and the original control charts are
preserved. Thus, the procedure restarts from Step 2, where
CMup is redesigned based on the updated model Mup.

V. CONCLUSIONS

In this work, a novel monitoring and continual learning
procedure for data-based dynamic models is proposed. The
combined use of control charts of modelling errors and of
disturbances allows to detect and distinguish the origin of an
anomaly. The methodology then develops into two updating
strategies, according to the anomalous scenario encountered.
The developed procedure is tested on a District Heating
System (DHS) benchmark referenced in the literature. The
strategy allows first to distinguish between a plant modifica-
tion and an operating condition shift. It is then shown how
updating the customized model based on the encountered
scenario allows for improved performance of the existing
model in both cases, without the need to retrain the model
from scratch. Future related works regard the development of
an efficient methodology to monitor and adapt the controller
itself, as its performance may be unrelated to the accuracy
of the employed data-based model.
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