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Abstract— This paper investigates novel epidemic spreading
problems under the influence of opinion evolution in social
networks, where the opinions reflect the public health concerns
toward the epidemic. A coupled bilayer network is proposed,
where the epidemics propagate over several communities through
a physical network layer while the opinions evolve over the same
communitiesthrougha social network layer. Specifically, the epi-
demic spreading process is described by a susceptible-infected-
vigilant (SIV) model, which introduces opinion-dependent epi-
demic vigilance state compared with classical epidemic models.
Additionally, a polar opinion dynamics model is adopted on the
social network, which incorporates the infection prevalence and
human stubbornness into the opinion evolution. By introducing
an opinion-dependent reproduction number, we provide the
stability analysis of disease-free and endemic equilibria and
derive sufficient conditions for their global asymptotic stability.
Simulations are conducted to verify the theoretical results.

I. INTRODUCTION

Mathematical modeling of infectious diseases has a long
history, dating back to Daniel Bernoulli’s work on smallpox
in 1760 [1]. The primary objectives of such modeling are to
comprehend disease transmission mechanisms and to predict
epidemic outcomes [2]. Over the past century, epidemic
models have played a vital role in guiding public health
policies [3]. The COVID-19 pandemic has highlighted the
necessity of continued research in this field [4].

Compartmental models, such as susceptible-infected-
susceptible (SIS) [2] and susceptible-infected-recovered
(SIR) [5], have aided in grasping epidemic dynamics. How-
ever, these models fall short in capturing the complexities
of disease traits and human actions. To address these issues,
previous works [6], [7] have proposed an expanded model
integrating temporary immunity sources reflecting social
awareness and protective behaviors [8]. In this study, we
adopt this model, denoting it as the susceptible-infected-
vigilant (SIV) model following [6]. Specifically, we focus
on the discrete-time networked SIV model.

In epidemiology, the reproduction number indicates the
expected cases generated by one case in the population and is
a crucial parameter [9]. It can be influenced by environmental
conditions and population behaviors [10]. In sociology, the
health belief model [11] implies that the opinion spreading
in social networks may affect the reproduction number, and
further, the epidemic spreading. It can be observed that the
influence of social awareness, reflected by the vigilant state in
the SIV mentioned above, is consistent with the health belief
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model. Thus, we are interested in the coupling between the
networked SIV model and opinion dynamics.

Previous study [12] has linked epidemic models with the
basic DeGroot opinion model [13]. However, the DeGroot
model always leads the opinions to a consensus, while
persistent disagreements often take place in reality. Altafini’s
model [14] captures cooperative and antagonistic interac-
tions in opinion exchange dynamics, reflecting disagreement
among people. This model has been coupled with a net-
worked SIS model in [15]. However, this model still ignores
the personal preferences of individuals, which usually mani-
fest as stubbornness or prejudice in practice [16]. To this end,
we employ the polar opinion dynamics [17], which considers
personal cognitive factors and stubbornness, to better model
people’s beliefs and awareness regarding epidemics.

Our contributions include proposing a networked SIV
epidemic model coupled with polar opinion dynamics, where
health opinions depend on peer influence, individual stub-
bornness, and infection levels. We introduce an SIV-opinion
reproduction number (RV

o ) to measure epidemic severity. We
demonstrate that when RV

o ≤ 1, the epidemic converges
to a healthy state, and opinions reach a consensus that the
epidemic is not a threat. For RV

o > 1, we identify conditions
for endemicity and dissensus. Numerical simulations on a
large-scale real world network verify our results.

This paper is organized as follows: Section II intro-
duces the coupled epidemic-opinion model preliminaries.
Section III defines equilibria and the reproduction number,
and analyzes the dynamics. A numerical example on a
network of Japan’s prefectures is presented in Section IV.
Finally, in Section V we present some concluding remarks.
The proofs are omitted due to space limitations.

Notation: Let [n] denote the set {1, 2, . . . , n} for any pos-
itive integer n. Denote by Rn and Rn×n the n-dimensional
Euclidean space and the set of n× n real matrices, respec-
tively. Denote by A ≻ 0 and A ≺ 0 that matrix A is positive
definite and negative definite, respectively. Let A⊤, ρ(A),
and ∥A∥∞ be the transpose, spectral radius, and infinity
norm of matrix A, respectively. The n × n identity matrix
is given by In, and 1n represents the all-ones vector in Rn.
For any vector x ∈ Rn, xi denotes the i-th entry of x, and
diag(x) ∈ Rn×n denotes a diagonal matrix with xi being
the ith diagonal entry. For any two vectors x, y ∈ Rn, we
simply write x > y if xi > yi,∀i ∈ [n].

II. MODELLING AND PROBLEM FORMULATION

This section introduces a networked epidemic model cou-
pled with a polar opinion dynamics model. We consider a
situation where an epidemic is spreading among a group

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 2343



Fig. 1: SIV epidemic model with three states and various
transition parameters.

of communities. The spreading process is affected by the
topology of the physical network and the attitudes of the
communities towards the disease affect the spreading pro-
cess. Moreover, the opinion of each community changes over
time depending on its infection status and the opinions of
other communities in the social network.

A. Epidemic Dynamics

In this paper, we extend the widely studied SIS model to
a generalized variant known as the SIV model [6]. In the
SIV model, individuals can be in one of the three classes
of states: Susceptible class S, infected class Ip with p ∈
{1, . . . ,mI}, and vigilant class V q with q ∈ {1, . . . ,mV }.
Susceptible individuals can be infected by their infected
neighbors. Infected individuals recover with a certain rate
and become vigilant. Vigilant individuals are not suscep-
tible or infected; they may adopt protective measures like
wearing masks, social distancing, or becoming immune from
infection or vaccination. In the infected class and vigilant
class, an individual can be classified into any of the mI/mV

states; this allows us to model various disease characteristics,
including disease severity, sources of vigilance, and so on.
For simplicity,we consider the case with mI =mV =1 in this
paper, but other cases can be analyzed using similar methods.

We consider a physical interaction network represented by
the directed graph GD=(V, ED). Here, V=[n] represents the
communities, and ED ⊆ V × V represents disease spreading
interactions. A directed edge (j, i) indicates that community
j can infect community i. Denote by ND

i = {j | (j, i) ∈ ED}
is the set of the neighbors of community i.

Fig. 1 shows the three-state SIV epidemic transmission
model where the transitions between different compartments
are shown with arrows. The proportions of the susceptible,
infected, and vigilant population in community i at contin-
uous time t are denoted, respectively, by xSi (t), x

I
i (t), and

xVi (t). Note that for all i ∈ [n] and t ≥ 0, it holds that
xSi (t), x

I
i (t), x

V
i (t) ∈ [0, 1] and xSi (t) + xIi (t) + xVi (t) = 1.

Then similar to the construction of the networked SIS model
in [2], the SIV epidemic dynamics to capture the evolution
of the n communities is given by

ẋSi (t) = γix
V
i (t)− θix

S
i (t)− xSi (t)

∑
j∈ND

i

βijx
I
j (t),

ẋIi (t) = xSi (t)
∑

j∈ND
i

βijx
I
j (t)− δix

I
i (t),

ẋVi (t) = δix
I
i (t) + θix

S
i (t)− γix

V
i (t).

(1)

The transition parameters are given as follows: βij ∈ [0, 1]
denotes the average infection rate from community j to
community i, δi ∈ [0, 1] denotes the average recovery rate
of the infected population in community i, γi ∈ [0, 1] is
the average susceptibility rate of the vigilant population in
community i after despising protective measures or losing
immunity, and θi ∈ [0, 1] is the average vigilance rate of the
susceptible population in community i to become vigilant.

In this paper, we deal with the system in the discrete-time
domain as in the SIS model case in [18]. Taking the sampling
period as ∆T = 1without loss of generality, we describe (1)
in the discretized form as

xSi (k + 1) = xSi (k) + γix
V
i (k)− θix

S
i (k)

− xSi (k)
∑

j∈ND
i

βijx
I
j (k),

xIi (k + 1) = xIi (k) + xSi (k)
∑

j∈ND
i

βijx
I
j (k)− δix

I
i (k),

xVi (k + 1) = xVi (k) + δix
I
i (k) + θix

S
i (k)− γix

V
i (k).

(2)

B. Opinion Dynamics

For community i at time k, its opinion towards the
epidemic severity is denoted as oi(k) ∈ [0, 1]. With oi(k) =
1, the community believes that the epidemic is extremely
serious, and with oi(k) = 0, the community perceives that
the epidemic is not a threat.

Opinions within a social network can evolve as commu-
nities interact with their neighbors. We model this opinion
evolution across a network of n connected communities
using the directed graph GO = (V, EO). Similar to the
physical network GD, the neighbor set of community i in
the social network GO is defined as NO

i .
In this paper, we focus on the following polar opinion

dynamics with stubborn positives [17]:

oi(k+1) = oi(k)+(1−oi(k))
∑

j∈NO
i

wij(oj(k)−oi(k)), (3)

where wij measures the amount of relative influence of
community j upon community i. Assume that

∑
j wij = 1

for all i ∈ [n]. Then let W = [wij ] ∈ Rn×n be the row-
stochastic adjacency matrix of the social network, and let
L = In −W be the network’s Laplacian matrix.

Model (3) incorporates human stubbornness into opinion
dynamics to be more realistic. The key distinction from
the classical DeGroot opinion model [13] lies in the term
1 − oi(k). This term signifies that extreme opinions at one
end of the spectrum resist changes more than those at the
opposite end. It models scenarios where communities at
one negative extreme of the opinion spectrum may be more
open to alternative views, while communities with positive
opinions are motivated to maintain their positions [17]. In
this paper, we assume that oi(k) = 1 represents stubborn
positives based on the theory of mass panic [19].

C. Coupled Epidemic-Opinion Dynamics

After introducing the networked SIV epidemic model and
the polar opinions model spreading over the same set of n

2344



communities, it is natural to consider a network dynamical
model that couples the two models together.

First, based on the health belief model in health behavior
research [11], it is reasonable to expect that for a community,
its opinion or attitude toward the serverity of an epidemic
will affect its actions of adopting protective behaviors. For
example, a community being very serious about the epidemic
may propagate the dangers of the epidemic more widely
and frequently, and tend to make stricter policies to prevent
the epidemic. People in such a community may also be
more likely to adhere to protective behaviors, follow the in-
structions given by scientific institutions, and get vaccinated
actively. These actions may lead to higher vigilance rate θ
and lower susceptibility rate γ in the community. To describe
such dependence more explicitly, we take the rates θi and γi
to be functions of opinion oi(k) as θi(oi(k)) and γi(oi(k)).

The community’s perception of epidemic severity can also
be influenced by its infection rate. We present an opinion
dynamics model for community i, integrating its original
opinion model (3) with current infection level as follows:

oi(k + 1) = ϕix
I
i (k) + (1− ϕi) [oi(k)

+ (1− oi(k))
∑

j∈NO
i

wij(oj(k)− oi(k)) ] , (4)

where ϕi ∈ (0, 1) is a given constant. The second term
on the right-hand side of (4) is from (3). The neighbors
of community i influence its opinion following the polar
model with stubborn positives. The first term captures how
the infection level of community i affects its opinion. If, for
example, community i has a low opinion but experiences a
severe infection (xIi (k) is high), oi(k+1) in (4) will increase.
This model is consistent with the health belief model in [11].

III. ANALYSIS OF SIV-OPINION DYNAMICAL MODEL

This section considers well-posedness and the equilibria of
the SIV-opinion dynamical model. Furthermore, we analyze
stability conditions of our model and discuss the mutual
influence between epidemic spreading and opinion evolution.

A. Well-Posedness

In order for our coupled epidemic-opinion model to be
well posed, its solutions must remain in the state space
[0, 1]n. To this end, we pose three assumptions related to
the graphs, transition parameters, and initial states.

Assumption 1. Both the physical interaction graph GD and
the social graph GO are strongly connected.

Assumption 2. For all i, j ∈ [n] and k ≥ 0, it holds that
δi, βij ∈ (0, 1), θi(oi(k)), γi(oi(k)) ∈ [0, 1],

∑
j∈ND

i
βij +

θi(oi(k)) ≤ 1, θi(oi(k)) + γi(oi(k)) ≥ c for some constant
c ∈ (0, 1), and θi(oi(k)), γi(oi(k)) take the boundary value
iff oi(k) takes the boundary value.

Assumption 3. For all i ∈ [n], it holds that xSi (0), x
I
i (0),

xVi (0), oi(0) ∈ [0, 1] and xSi (0) + xIi (0) + xVi (0) = 1.

Under these assumptions, we obtain our first result.

Proposition 1. For the model defined in (2) and (4), the
states satisfy xSi (k), x

I
i (k), x

V
i (k), oi(k) ∈ [0, 1] for all i ∈

[n] and k ≥ 0.

B. Equilibria of the Coupled Model

Due to the constraint that xSi (k)+x
I
i (k)+x

V
i (k) = 1 for

all i ∈ [n] and k ≥ 0, one of the equations in (2) is redundant.
By setting xSi (k) = 1 − xIi (k) − xVi (k), the coupled SIV-
opinion model can be described by

xIi (k + 1) = xIi (k)− δix
I
i (k)

+ (1− xIi (k)− xVi (k))
∑

j∈ND
i

βijx
I
j (k),

xVi (k + 1) = xVi (k) + δix
I
i (k)− γi(oi(k))x

V
i (k)

+ θi(oi(k))(1− xIi (k)− xVi (k)),

oi(k + 1) = ϕix
I
i (k) + (1− ϕi) [oi(k)

+ (1− oi(k))
∑

j∈NO
i

wij(oj(k)− oi(k)) ] .

(5)
To study the system (5), let (xIi

∗, xVi
∗, o∗i ) denote an

equilibrium of the three equations.

Definition 1. An equilibrium state z∗ = (xI
∗
, xV

∗
, o∗) of

the coupled SIV-opinion model (5) is said to be
1) a healthy state if xI∗ = 0, and an endemic state

otherwise;
2) a consensus state if o∗i = o∗j ,∀i, j ∈ [n], and a

dissensus state otherwise.

C. Stability Analysis of Disease-Free Equilibrium

In practice, achieving the healthy state, which means to
reach the disease-free equilibrium, should be the most worth
exploring scenario. To further analyze stability conditions of
disease-free equilibria, we state a few preliminaries.

In epidemiology, the basic reproduction number, denoted
by R0, is a critical parameter to measure epidemic spreading
[9]. It can be affected by various factors such as pathogen
types and population behaviors. Thus, we define a specific
reproduction number RV

o to characterize the infectivity of
the SIV-opinion model (5).

Definition 2. For the coupled SIV-opinion model in (5), the
reproduction number is defined as

RV
o = ρ (In −∆+ (In −Ψ)B) ,

where

Ψ = diag

(
min

oi∈[oi,oi]
ψi(oi)

)
, (6)

ψi(oi) =
θi(oi)

γi(oi) + θi(oi)
, i ∈ [n], (7)

B=[βij ]∈Rn×n,∆=diag (δ1,. . . ,δn), with oi and oi being
the lower and upper bounds of oi(k) for k ≥ 0, respectively.

The next lemma shows the relation between the infection
rate and the opinions when the disease eradicates.
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Lemma 1. For the coupled SIV-opinion model in (5), o(k)
asymptotically converges to 0 if xI(k) asymptotically con-
verges to 0.

Remark 1. Lemma 1 identifies a social state representing
epidemic extinction. When the epidemic vanishes for any
reason, the society goes to a consensus-healthy equilibrium
z∗ = (0, xV

∗
, 0). This signifies that if the epidemic is

eradicated, all communities will agree that it poses no threat.

Now we are ready to prove the stability of the disease-free
equilibrium. First, we define a particular equilibrium of the
vigilant state as

V̂ ∗ = Θ(0)(Γ(0) + Θ(0))−11n, (8)

where Θ(o) = diag (θ1(o1), . . . , θn(on)), Γ(o) =
diag (γ1(o1), . . . , γn(on)). Then in the following theorem,
a sufficient condition for the global stability of the disease-
free equilibrium will be established. To simplify notations,
γi(oi(k)), θi(oi(k)), Γ(o(k)), Θ(o(k)) and γi(k), θi(k),
Γ(k), Θ(k) can substitute each other in the rest of this paper.

Theorem 1. If RV
o ≤ 1, the healthy-consensus state z∗ =

(0, V̂ ∗, 0) of the system in (5) is globally asymptotically
stable.

Theorem 1 shows the role of the reproduction number RV
o ,

or more specifically, the lower bound of ψi(oi(k)) defined in
(7), in epidemic eradication. In practice, when RV

o is large
and the epidemic cannot disappear spontaneously, adminis-
trations of the communities can lead the population so that
the lower bound of ψ(o(k)) becomes larger, which will make
RV

o smaller than 1. Further, it will be interesting to analyze
optimal control strategies theoretically to realize effective
epidemic suppression under some budget constraints in a
future work.

D. Stability Analysis of Endemic Equilibrium

Since we analyzed the stability of the disease-free equi-
librium, the next step is to study the endemic equilibrium,
which reveals the impact of opinions under situations with
more severe epidemics.

We have seen in Lemma 1 that all communities reach
consensus when the epidemic disappears. Now we consider
opinion states of the endemic equilibrium. We have the
following proposition.

Proposition 2. For the coupled SIV-opinion system in (5),
an consensus-endemic state (xI∗ ̸= 0, o∗ = a1n) is an
equilibrium only if a ∈ (0, 1] and

δi =
1− a− θi(a)(1−a)

γi(a)+θi(a)

a
γi(a)+θi(a)

+ 1∑
j∈ND

i
βij

, ∀i ∈ [n]. (9)

The following corollary is a direct result from the system
model of (5) and Proposition 2.

Corollary 1. If z∗ is an endemic equilibrium of the coupled
SIV-opinion model, then xI∗> 0, xV ∗

> 0, and o∗ > 0.

Proposition 2 and Corollary 1 state that as long as the
epidemic persists, no community can be completely disease-
free or agree that the epidemic does not pose a threat.
Furthermore, the communities cannot reach a consensus on
the severity of the epidemic except for some systems with
particular transition parameters.

We now study the stability of the endemic equilibrium.
The following result characterizes the condition under which
the endemic equilibrium is globally asymptotically stable.

Theorem 2. Suppose that RV
o > 1 and z∗ = (xI

∗
, xV

∗
, o∗)

is an endemic equilibrium of the coupled SIV-opinion model
(5). If

−2wii −
ϕi

1− ϕi
< (Lo∗)i <

ϕi
1− ϕi

,∀i ∈ [n], (10)

and there exists a matrix P ≻ 0 such that

F⊤(o, xS)PF (o, xS)− P ≺ 0, (11)

where

F (o, xS)

=

[
In −∆−H + diag

(
xS

)
B −H

Θ(o)−∆ In − Γ(o)−Θ(o)

]
,

H = diag
(
BxI

∗)
,

for all oi ∈ [oi, oi] and xSi ∈ [0, 1], i ∈ [n], then
the equilibrium z∗ is asymptotically stable for all disease-
nonzero initial conditions, i.e., xI(0) ̸= 0.

The above theorem demonstrates that when RV
o > 1, i.e.,

the disease is severe, the state of system (5) will converge to
an endemic equilibrium under certain conditions. Note that
Theorem 1 gives a sufficient condition of the convergence of
disease-free equilibrium, instead of a sufficient and necessary
one. Therefore, when RV

o > 1, the coupled SIV-opinion sys-
tem (5) may have healthy or endemic equilibria. Analysing
the existence of a larger healthy/endemic boundary or lack
thereof (e.g., locally stable healthy and endemic equilibria
coexist in one system with their own attractive region)
remains a future research direction.

IV. SIMULATIONS

In this section, we employ the coupled SIV-opinion model
(5) to simulate epidemic spread and illustrate the theoretical
findings using a real-world large-scale network structure.

A. Real-world Network

We analyze an epidemic process over a network of 46
communities, each representing a prefecture in Japan (except
for Kumamoto, due to the lack of statistics). Both the physi-
cal network for disease spreading and the social network for
opinion evolution adhere to Assumption 1, but they differ in
their link structures due to real-world variations.

The physical network models human mobility and mi-
gration between prefectures, based on data from the Eighth
National Survey on Migration of Japan [20]. To simplify this
network, we remove low-weight edges by setting entries in
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Fig. 2: Under a mild epidemic with RV
o = 0.9956, the

evolution of the coupled SIV-opinion system for the n = 46
network. (a) The infected states converge to zero. (b) The
vigilant states converge to 0.3333. (c) The opinion states
reach consensus and converge to zero.

the adjacency matrix B below a threshold to zero, ensuring
irreducibility while preserving communication patterns in
Japan. The recovery rate matrix ∆ is derived from the
Physician Maldistribution Index of Japan in 2022, provided
by the Ministry of Health, Labour and Welfare [21].

The social network represents opinion communication
between prefectures. Since individuals across regions can
communicate easily thanks to the Internet, we use the Watts-
Strogatz model [22] to generate a small-world network with
parameters n, d, and c denoting network size, average degree,
and clustering coefficient, respectively. In this section, we set
n = 46, d = 10, and c = 0.5.

To ensure well-posed simulation parameters, we employ
monotonic functions for θi(oi(k)) and γi(oi(k)), choosing
θi(oi(k)) = 0.2 + 0.3oi(k) and γi(oi(k)) = 0.4− 0.4oi(k),
where oi(k) ∈ [0, 1], for all i ∈ [n] and k ≥ 0. We normalize
the original physical adjacency matrix B to satisfy B1n =
0.51n, ensure that the normalized recovery rate matrix ∆
falls within [0, 1]n, and normalize the social adjacency matrix
W to be row stochastic. For clarity, we present the dynamics
of five randomly selected communities alongside the average
values for all communities (represented by thick black dotted
line) in the figures showing simulation results below.
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Fig. 3: Under a severe epidemic with RV
o = 1.1827, the

evolution of the coupled SIV-opinion system for the n = 46
network. (a) The infected states reach an endemic equilib-
rium. (b) The vigilant states converge to an equilibrium. (c)
The opinion states reach dissensus.

B. Mild Epidemics

Firstly, we simulate the evolution of a mild epidemic
with low infectivity, using an adjacency matrix of 0.4B.
Then according to Definition 2, we obtain RV

o = 0.9956.
The initial epidemic-opinion states are generated randomly
following Assumption 3. As Lemma 1 implies, the opinions
of all communities finally converge to a consensus that
the epidemic is not serious when the epidemic fades away,
as shown in Figs. 2a and 2c. Moreover, when RV

o ≤ 1,
Theorem 1 states that all the communities converge to a
health-consensus equilibrium, which can be computed as
(0, 0.33331n, 0) for this example. From the plots in Fig. 2,
we confirm this theoretical result.

C. Severe Epidemics

The evolution of a severe epidemic with an adjacency
matrix B is illustrated in Fig. 3. We have RV

o = 1.1827
following Definition 2. As shown in Figs. 3a and 3c, the cou-
pled SIV-opinion system converges to a dissensus-endemic
equilibrium. That is, none of the communities reaches a
disease-free state (xIi

∗
= 0) or think the epidemic is not

a threat (oi∗ = 0), which is consistent with Corollary 1.
Further, the dissensus-endemic equilibrium appears to
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Fig. 4: Under the same condition as Fig. 3, the evolution of
the coupled SIV-opinion system for 3 different initial condi-
tions. The 3 trajectories of each community are depicted by
same color. The system states converge to the same endemic-
dissensus equilibrium, independent of the initial condition.
(a) Infected states. (b) Vigilant states. (c) Opinion states.

be unique under different initial conditions in simulation.
In Fig. 4, using the same parameters as in Fig. 3, we
start the system with 3 different initial conditions. We can
observe that the states converge to the same dissensus-
endemic equilibrium, which implies that this equilibrium
may have a large region of attraction. We can verify that
the equilibrium z∗ in Fig. 3 is locally exponentially stable
by substituting z∗ into (11). Based on 105 Monte Carlo
simulations, the stability radius of equilibrium z∗ is not less
than 0.14. A challenging question is to find out the specific
conditions for the uniqueness and the region of attraction
of dissensus-endemic equilibria theoretically. Theorem 2
provides a sufficient condition, which may be conservative.
Tighter conditions remain to be explored in future work.

V. CONCLUSION

This paper has addressed a discrete-time networked SIV
epidemic model coupled with polar opinion dynamics, ex-
amining how epidemics are influenced by both physical
and social factors. We have introduced an SIV-opinion re-
production number and established stability conditions for
disease-free and endemic equilibria. Our findings highlight

the impact of opinion dynamics on epidemic spread. Numer-
ical simulations have validated our theoretical results. Future
research will extend this study to other epidemic models and
analyze optimal control strategies for eradicating epidemics.
We are also interested in sufficient and necessary conditions
for the disease-free and endemic equilibria, or more precise
boundaries between them.
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