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Abstract— This paper studies a mathematical model of opin-
ion dynamics on social networks, which features continuous
opinions and binary actions. The binary actions are a suitable
quantization of the opinions, which evolve in continuous time.
The model thus takes the form of a differential equation
with discontinuous right-hand side: we explore the asymptotic
behavior of its Caratheodory solutions, which turns out to be
unexpectedly rich. By considering specific classes of graphs,
namely lines and rings, we not only find attractive extended
equilibria where the opinions are not in agreement, but also
limit cycles and solutions that exhibit the Zeno phenomenon,
whereby switching points accumulate in finite time.

I. INTRODUCTION

In the last twenty years the control community has de-
veloped a strong interest in studying differential models that
describe, or are at least inspired by, the evolution of opinions
and beliefs in human groups and social networks [1]. A
broad variety of models have been studied, as illustrated
by several surveys [2], [3], [4], [5], [6] and multiple results
have been obtained, which connect the topology of the social
network with the asymptotic behavior of the dynamics. A
key question has been to determine whether or not in the
long run the dynamics reaches a consensus, whereby the
opinions of all individuals are in agreement [7]. Problems of
identification, estimation, optimization and control have also
been considered [8], [9], [10], [11].

In this paper, we focus on an apparently simple dynamics
of continuous-time opinion evolution, in which the indi-
viduals hold scalar opinions and take binary actions. Our
dynamics of interest reads as

ẋi =

n∑
j=1

aij
(
q(xj)− xi

)
, (1)

where i ∈ {1, . . . , n} is the index of the individual, xi ∈
[0, 1] is the opinion of individual i, the coefficients aij ∈
{0, 1} are the entries of the adjacency matrix of a strongly
connected directed graph, and the quantizer q : [0, 1] →
{0, 1} denotes rounding to the closest integer, that is, q(z) =
⌊z + 1

2⌋, so that q( 12 ) = 1. We shall refer to x as the vector
of the opinions and to q(x) as the vector of the actions (the
quantizer operating componentwise on vectors).
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The aim of model (1) is not to have a general or realistic
description of social interactions, but to emphasize the effect
of quantization on the asymptotic behaviour, which can actu-
ally be quite disrupting. This way of including quantization
in opinion dynamics can represent situations in which social
influence is mediated through binary (or, more generally,
discrete) choices by the individuals. Dynamical models with
continuous opinions and discrete actions have attracted sig-
nificant attention in the last decade. These models are often
referred to as CODA models (Continuous Opinions Discrete
Actions) and have been proposed by [12] and later studied by
several authors [13], [14], [15], [16]. It is of note that some
authors have instead studied models where opinions and ac-
tions co-evolve through distinct, though closely interrelated,
dynamics [17]. Consistently with this nomenclature, we shall
refer to dynamics (1) as to a COBA model (Continuous
Opinions Binary Actions).

Some basic facts about COBA dynamics (1) can be
deduced from more general results about the CODA model
studied in [15], which has the same expression as (1)
but opinions in R. These results, which we shall recall
below, include the existence of complete solutions and the
convergence of solutions to consensus (that is, a state where
all opinions are equal) for some specific graphs, such as the
complete graph.

Obtaining a more complete picture of its convergence
properties, however, has proved more elusive. One difficulty
is that solutions to (1) can converge to points that are not
equilibria, and which we refer to as extended equilibria: this
pathological behavior is allowed by the right-hand side of
(1) being discontinuous. Several questions about the long-
time behavior of solutions have remained open and some
will be addressed in this paper. First, a key open question is
whether the dynamics is always convergent: we shall answer
it negatively by showing examples of limit cycles. Second,
it remains open whether it is possible to obtain results of
global convergence to non-trivial opinion profiles: we shall
answer this question positively.

In this paper, we advance the knowledge about the binary
actions case by proving several new results about COBA
dynamics (1). These contributions include

1) proving that, on any graph, each extended equilibrium
has a basin of attraction of positive measure (Proposi-
tion 1);

2) proving convergence from any initial condition on an
undirected line graphs: the limit point is an extended
equilibrium but needs not be a consensus (Proposi-
tion 2);
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3) showing the existence of limit cycles (Proposition 3)
and of Zeno solutions (Proposition 4) on directed ring
graphs. Curiously, the constructions of these cyclic and
Zeno solutions rely on the properties of the golden ratio
and of the Fibonacci sequence.

These results highlight the richness of the qualitative behav-
ior of COBA dynamics (1) and the complexity of its study.

The rest of this paper is organized as follows. In Section II
we collect relevant preliminaries and the facts about the
COBA dynamics (1) that can be directly derived from the
literature. The following sections present our contributions:
Section III contains the proof that every extended equilibrium
has sizable basin of attraction; Section IV contains the proof
that the COBA model is convergent on line graphs; Section V
contains the proof that the COBA model has a limit cycle
on directed ring graphs with six nodes; Section VI contains
the proof that the COBA model has Zeno solutions on the
directed ring with three nodes. Finally, conclusions are drawn
in Section VII.

II. KNOWN FACTS ABOUT COBA DYNAMICS

Several facts about (1) can be promptly deduced from the
results in [15], which considered the more general dynamics
that has the same form of (1) and initial conditions in Rn.
We state these facts here for completeness.

First of all, it should be observed that the right-hand side of
equation (1) is discontinuous. Hence, solutions to (1) in the
classical sense may fail to exist for some initial condition
or may fail to be complete (i.e., defined on [0,+∞)). In
fact, more general notions of solutions are available in
the literature about non-smooth systems and can be useful
to study opinion dynamics with discontinuous right-hand
side [18], [19]. For the system at hand, we know from [15,
Theorem 2.1] that a complete Caratheodory solution to (1)
exists from every initial condition. Hence, for this reason in
this paper we only consider solutions in the Caratheodory
sense.

Definition 1 (Caratheodory solution): Given a differen-
tial equation

ẋ(t) = f(x(t)), (2)

an initial condition x0 ∈ Rn and I = (t0, T ) ⊂ R where T ≤
+∞, a Caratheodory solution is an absolutely continuous
function φ : I → Rn such that φ(t0) = x0 and

φ̇(t) = f(φ(t)),

for almost all t ≥ t0. Equivalently, a Caratheodory solution
is a function that satisfies

φ(t) = x0 +

∫ t

t0

f(φ(τ))dτ.

Definition 2 (Caratheodory equilibrium): Point x∗ ∈ Rn

is a Caratheodory equilibrium if there exists a Caratheodory
solution φ such that φ(t) = x∗ for all t.

In order to emphasize that the right-hand side of (1) is
piecewise affine, it is convenient to introduce the following
sets.

Definition 3 (Quantization cube): Given k ∈ Zn, we de-
fine Sk ⊂ Rn as

Sk = {x ∈ Rn|ki −
1

2
≤ xi < ki +

1

2
, i = 1, . . . , n}.

Sk is the set of vectors whose componentwise quantization
is constant and equal to k: for this reason it is called
quantization cube. We say that a solution to (1) undergoes a
switch when it crosses the boundary of any set Sk.

The situation in which the vector field restricted to Sk

has an equilibrium point on the border of Sk is particularly
interesting and deserves to be described with a definition.

Definition 4 (Extended equilibrium): Let k ∈ Zn and fk
be

(fk)i(x) =

n∑
j=1

aij(kj − xi).

An extended equilibrium is a point x∗ ∈ Rn such that there
exists k∗ ∈ Zn such that fk∗(x∗) = 0 and x∗ ∈ Sk∗ .
Notice that all (Caratheodory) equilibria are extended equi-
libria, but extended equilibria need not be (Caratheodory)
equilibria. Indeed, fk∗(x∗) = 0 does not imply that f(x∗) =
0 (where we use f to denote the right-hand side of (1)).

In [15] it was found that on complete and complete
bipartite graphs, convergence to consensus is achieved for all
initial conditions. However, simulations suggest that, in other
type of graphs, solutions usually converge to non-consensus
extended equilibria, hence the importance of such points.
Their properties are further studied in the next section.

III. LOCAL CONVERGENCE OF EXTENDED EQUILIBRIA

Our interest in extended equilibria is motivated by the
fact that they always have an attraction region with positive
measure (in fact, a quantization cube), as described by the
following proposition.

Proposition 1 (Basin of attraction of extended equilibria):
Given an extended equilibrium x∗, consider k∗ ∈ Zn for
which fk∗(x∗) = 0. Then, for all x0 ∈ Sk∗ ,

φ(t) −→ x∗ for t → +∞.
Proof: Since x0 ∈ Sk∗ , we can write the coordinates

of the solution starting in x0 as

xi = k∗i +∆i,

with ∆i ∈ [− 1
2 ,

1
2 ). We can do the same with the equilibrium

point and write x∗
i = k∗i + ∆∗

i , where ∆∗
i ∈ [− 1

2 ,
1
2 ]. The

dynamics can thus be rewritten as

ẋi =

n∑
j=1

aij
(
q(xj)− xi

)
=

∑
j∈Nj

k∗j − di(k
∗
i +∆i),

where Ni is the neighborhood of node i and di is the
cardinality of Ni, that is, the degree of node i. We can
substitute the expression k∗i = x∗

i −∆∗
i to obtain

ẋi =
∑
j∈Nj

k∗j − dix
∗
i − di(−∆∗

i +∆i).
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The first two terms are the derivative fk∗(x∗), which is null
by definition of extended equilibrium. The end result is thus

ẋi = di(∆
∗
i −∆i),

where di > 0 because the graph is strongly connected.
Each component moves towards the extended equilibrium
and away from the frontier, as ẋi > 0 (xi moves to the right)
when ∆i < ∆∗

i (xi is on the left of x∗
i ) and vice versa. Thus,

the solution cannot leave Sk∗ , in which the dynamics reads

ẋ = k −Dx,

where k is a constant vector and −D is a diagonal matrix
with negative entries. As such, the equilibrium point is
asymptotically stable, and in particular attracts all solutions
starting in Sk∗ .

Even though extended equilibria are usually non-
consensus points, we choose as example a particularly in-
teresting extended equilibrium on the undirected ring graph
with n = 8 nodes: a non-integer consensus point.

Example 1 (Hidden consensus): On an undirected ring
graph, every node i interacts with i− 1 and i+ 1 (modulo
n). For x∗ to be an extended equilibrium, it must hold that
x∗
i = q(xi−1)+q(xi+1)

2 . If we consider Sk∗ = S(0,0,1,1,0,0,1,1),
we have that x∗ = ( 12 ,

1
2 ,

1
2 , ...) ∈ Sk∗ is a non-integer

consensus extended equilibrium. The peculiarity of this point
is that nodes agree on the opinion 1

2 , yet they actions behave
differently. In the solution shown in the left plot of Fig. 1,
four opinions converge to 1

2 from below, and as such are
quantized to 0, and four from above, and consequently
take action 1. From a social interpretation point of view,
since only actions can be seen, not opinions, this situation
would appear as a disagreement scenario. Thus, this type of
consensus is undetectable.

The right plot in Fig. 1 shows several trajectories of the
dynamics on the undirected ring, in order to further illustrate
Proposition 1. The solutions starting in Sk∗ are attracted by
the “hidden consensus” x∗ ∈ Sk∗ , where x∗

1 = x∗
2 = 1

2
and k∗1 = k∗2 = 0. Solutions starting elsewhere have the
first two components converging to (1,1) instead. Notice that
x∗ /∈ Sk∗ , hence the solution starting from x∗ itself is not
constant, but instead can be proved to converge to consensus.

IV. DYNAMICS ON A LINE

The dynamics (1) on a line graph with n nodes becomes
ẋ1 = q(x2)− x1,

ẋi = q(xi+1) + q(xi−1)− 2xi,

ẋn = q(xn−1)− xn.

(3)

Proposition 2 (Convergence to extended equilibria):
Dynamics (3) is convergent for all initial conditions and the
convergence point is an extended equilibrium.

Proof: We start from the following consideration: if
two adjacent nodes have the same quantized value at time
T , so they will for all t > T . In fact, in a line graph we
have n − 2 nodes of degree 2, which require both their
neighbours to have the opposite action in order to switch

their action. Otherwise, if a neighbour has action 0 and the
other has action 1, the considered node will asymptotically
converge towards 1

2 , without ever leaving its quantization
interval. Back to the initial statement, if q(xi−1) = q(xi),
then for xi to switch action we would need xi−1 to switch
action first, which cannot happen unless xi does so first,
hence q(xi−1) = q(xi) for all t > T .

Now assume q(xi−1) = q(xi) = 0 for some i (the choice
0 is arbitrary, the same can be done for 1). The aim is to
prove that in finite time we enter in a set Sk which we cannot
leave, i.e. no component can switch action.

• If q(xi+1) = 0, we repeat the reasoning starting from
q(xi) = q(xi+1) = 0,

• if q(xi+1) = 1, then
– if q(xi+2) eventually reaches 1, we repeat the

reasoning starting from q(xi+1) = q(xi+2) = 1,
– if q(xi+2) stays at 0 for long enough, q(xi+1) will

drop to 0, and we repeat the reasoning starting from
q(xi+1) = q(xi+2) = 0.

This process shows that starting from two adjacent nodes
with the same action (hence constant action), in finite time
we end up with more than two nodes with constant action.
Eventually, the process reaches the border nodes, which have
degree one and thus eventually reproduce their neighbour’s
action. At that point, we have finally reached a cube that
cannot be left, in which the dynamics is linear, bounded and
without cycles, hence it converges to a point in the closure
of the cube.

If there are no two adjacent nodes with the same action
to start the process, we are in a Sk with k of the type
(0, 1, 0, 1....). Such a cube does not contain an equilibrium,
in fact every single component can switch actions. At the first
switch, if 1 ≤ m ≤ n − 1 components switch at the same
time, at least 2 adjacent nodes will have the same action:
from this state, we can apply the reasoning described above.
If instead all n components reach 1

2 at the same time, we
cannot enter cube Sk′ with k′i = 1 − ki, as the vector field
in the latter domain pushes towards ( 12 ,

1
2 ,

1
2 ...). Therefore,

after reaching this point, the solution will enter another cube
where two adjacent nodes share the same action.

Remark 1 (Form of the extended equilibria): By the
proof of Proposition 2, we see that extended equilibria lie
on the closure of domains Sk∗ such that their k∗’s are
composed of alternating strings of 0s and 1s, each string
having length of at least 2. The vector of opinions x∗

is such that every component is equal to the average of
its neighbours. For instance k∗ = (0, 0, 1, 1, 1, 0, 0) and
x∗ = (0, 1

2 ,
1
2 , 1,

1
2 ,

1
2 , 0).

Example 2 (Line with 4 nodes): On a line graph with
n = 4 nodes, there are four possible extended equilibria:

1) (0, 0, 0, 0) ∈ S(0,0,0,0),
2) (0, 1

2 ,
1
2 , 1) ∈ S(0,0,1,1),

3) (1, 1
2 ,

1
2 , 0) ∈ S(1,1,0,0),

4) (1, 1, 1, 1) ∈ S(1,1,1,1).
Fig. 2 shows the trajectories of some solutions. The diagram
shows components x1 and x2, starting from different initial
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Fig. 1. Dynamics on the undirected ring. Left: time evolution of the “hidden consensus” solution in Example 1. Right: the first two components of
trajectories that illustrate Proposition 1.
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Fig. 2. Plot of x1 and x2 of solutions of the dynamics on a line graph
with four nodes, where q(x3) = q(x4) = 1, presented in Example 2.

conditions. The components x3 and x4, which are not shown,
have always the same initial conditions with quantized values
k3 = k4 = 1, thus neither will leave that quantization
interval. As per the components (x1, x2) shown in Fig. 2,
we have different cases:

• k1 = 0, k2 = 0, we are in S(0,0,1,1) and thus
(x1, x2) −→ (0, 1

2 ): extended equilibrium 2;
• k1 = 0, k2 = 1, we are in S(0,1,1,1), only x1 can

change quantized value, we can only move to S(1,1,1,1)

and converge to consensus (extended equilibrium 4);
• k1 = 1, k2 = 1, we are in S(1,1,1,1), convergence to

equilibrium 4;
• k1 = 1, k2 = 0, we are in S(1,0,1,1), both x1 and x2 can

change quantized value, and depending on which does
it first we can converge to either extended equilibrium 2
or 4.

V. LIMIT CYCLE ON A DIRECTED RING

In this section, we consider (1) on a directed ring, that is,{
ẋi = q(xi+1)− xi i ∈ {1, . . . , n− 1},
ẋn = q(x1)− xn

(4)

and prove that for appropriately chosen initial conditions
there exists a periodic trajectory.

Proposition 3 (Cycle): If n = 6, there exists a closed
solution to (4).

Proof: We claim that the initial condition

x0 =
(φ
2
,
1

2
,
φ− 1

2
,
2− φ

2
,
1

2
,
3− φ

2

)
with quantization q(x0) = (1, 0, 0, 0, 1, 1), where φ = 1+

√
5

2 ,
generates a closed solution. To show this, let us compute
explicitly the solutions in Sq(x0). When restricted to Sq(x0),
the differential equation (4) is linear and solved by

xi(t) =(x0i − q(xi+1))e
−t + q(xi+1),

that is, using the relation φ−1 = φ− 1,

x(t)=
(φ
2
e−t,

e−t

2
,
φ−1

2
e−t, 1−φ

2
e−t, 1−e−t

2
, 1−φ−1

2
e−t

)
for t ∈ (0, T ) where T is the time at which one of the
components reaches 1

2 causing a switch of the dynamics.
Such T can be found by setting x1(T ) =

1
2 , or x4(T ) =

1
2 ,

as they are the first components to reach 1
2 :

x1(T ) =
1

2
=⇒ φ

2
e−T =

1

2
=⇒ T = ln(φ).

By computing xi(T ) for all i, we obtain

x(T ) =

(
1

2
,
φ−1

2
, 1− φ

2
,
1

2
, 1− φ−1

2
,
φ

2

)
.

For the computation of x3(T ), we used the relation φ−2 =
2 − φ. In fact, it holds that φn = Fnφ + Fn−1, where Fn

is the n-th term of the Fibonacci sequence Fn = Fn−1 +
Fn−2, F0 = 0, F1 = 1, which can be extended to −∞ by
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Fig. 3. The cycle constructed in Proposition 3. Left: time evolution of the periodic solution. Right: examples of different trajectories converging to the
cycle.

writing Fn−2 = −Fn−1 + Fn, from which φ−2 = F−2φ +
F−3 = −φ+ 2.
The proof is concluded by noticing that xi(T ) = xi+1(0)
for all i.
The cycle solution that is constructed in the proof is illus-
trated in Fig. 3: simulations suggest that the cycle has non-
neglegible basin of attraction.

VI. ZENO PHENOMENON ON 3-NODE DIRECTED RING

Solutions to (1) may switch a finite or infinite number of
times. When the switching times are infinite in number and
their accumulation point is finite, we say that the solution
exhibits the Zeno phenomenon. We show in this section that
solutions to (1) can exhibit this pathological behavior, by
proving an explicit construction for the directed ring with
3 nodes. The dynamics (1) applied on a directed ring with
n = 3 becomes 

ẋ1 = q(x2)− x1,

ẋ2 = q(x3)− x2,

ẋ3 = q(x1)− x3.

(5)

Proposition 4 (Zeno): There exist solutions to (5) that
exhibit an accumulation of switching times in finite time.

Proof: Consider the initial condition x0 = ( 12 + δ, 1
2 −

ϵ, 1
2 ) ∈ S(1,0,1), where 0 < δ < 1

2φ , 0 < ϵ < 1
2 , ϵ =

φ δ, and φ = 1+
√
5

2 . Explicitly solving the equations in the
neighborhood of x0 yields

x1(t) = (12 + δ)e−t,

x2(t) = (− 1
2 − ϵ)e−t + 1,

x3(t) = − 1
2e

−t + 1.

The first component to reach 1
2 , causing a cube switch, is

x1, because δ < ϵ. The time T1 > 0 at which this switch
happens is such that x1(T1) =

(
1
2 + δ

)
e−T1 = 1

2 , that is,

T1 = ln(1 + 2δ). Computing x2(T1) and x3(T1), we obtain
x1(T1) =

1
2 ,

x2(T1) =
1
2 − ϵ−δ

1+2δ ,

x3(T1) =
1
2 + δ

1+2δ ,

that, through the change of variables, x′
i = 1− xi+1 (where

cyclically n+1 = 1) and dropping the prime notation results
in 

x1(T1) =
1
2 + δ′,

x2(T1) =
1
2 − ϵ′,

x3(T1) =
1
2 ,

with δ′ = ϵ−δ
1+2δ > 0 and ϵ′ = δ

1+2δ > 0. Since ϵ = φδ, we

have δ′ = (φ−1)δ
1+2δ = φ−1δ

1+2δ where φ−1 = φ− 1.
Since the point we found is of the same structure of the
starting point we can repeat the process, finding a sequence
of points 

x1(Ti) =
1
2 + δ(i),

x2(Ti) =
1
2 − ϵ(i),

x3(Ti) =
1
2 ,

with δ(i) = φ−1δ(i−1)

1+2δ(i−1) and ϵ(i) = δ(i−1)

1+2δ(i−1) . Notice that
ϵ(i) = φδ(i) for all i, so that we only need to study δ(i).
By induction on i, it is possible to obtain the expression

δ(i) =
φ−iδ

1 + 2δ
i∑

j=1

φ−j+1

.

When i diverges, δ(i) converges to 0 and consequently xi(Ti)
converges to 1

2 . By calculating the time T =
∑∞

i=1 Ti

required to go through the infinite switches, we obtain

T =

∞∑
i=1

Ti =

∞∑
i=1

ln(1 + 2δ(i−1)) <

∞∑
i=1

ln(1 + 2δφ−i+1)

≃
∞∑
i=1

2δφ−i+1 < +∞.
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Fig. 4. Zeno solution from the proof of Proposition 4. Left plot: opinions as functions of time. Middle plot: actions as functions of time. Vertical segments
represent switches: it is possible to see the accumulation point. Right plot: components x1 and x2 of trajectory (converging to ( 1

2
, 1
2
)) for t ∈ (0, T ).

The dynamics goes through infinite switches in a finite time,
such phenomenon is referred to as Zeno point. The infinitely
switching dynamics describe the solution in the interval t ∈
[0, T ), and proves that limt→T x(t) = (12 ,

1
2 ,

1
2 ).

The solution constructed in this proof, which converges to
the Zeno point ζ = ( 12 ,

1
2 ,

1
2 ), can be extended for t > T

by appending a Caratheodory solution that starts from initial
condition ζ. One of these extended-beyond-Zeno solutions
is shown in Fig. 4.

The Zeno solution is the only one that satisfies the
condition for having infinite switches (δ(i) < ϵ(i) for all i),
thus no periodic solutions exist on the directed cycle with
n = 3. Cases n = 4 and n = 5 are yet to be investigated.

VII. CONCLUSION

In this paper, we have shown how continuous dynamics
with binary actions can produce rather complex and patho-
logical behaviors, thereby illustrating that discretization of
opinions can have disrupting effects on consensus. Indeed,
we now know that Caratheodory solutions to (1) can con-
verge to consensus, converge to non-consensus equilibria,
converge to point that are not equilibria (called extended
equilibria), converge to limit cycles, or even exhibit Zeno
behaviours.

These insights leave multiple questions open and call
for further work to reach a complete understanding of this
dynamics. Indeed, with the important exception of Proposi-
tion 1, all constructions and convergence results have been
obtained for very specific classes of graphs. For general
graphs without a specific structure, simulations in [15]
indicate that convergence to non-consensus equilibria is
frequently observed. These evidences further strengthen our
interest in more general conditions that determine the long-
term qualitative behavior of the solutions.
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