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Abstract— In this paper, we address the problem of full-
information output regulation for linear systems subject to
non-periodic non-smooth exogenous signals generated by explicit-
form models. We study the steady-state response of the system
obtained by the interconnection of the linear system, the explicit-
form exogenous system, and a time-varying state-feedback
controller. We provide solutions in the form of regulator
equations and then study the solvability conditions by separating
the analysis in two cases, namely one without feedforward term
and with continuous exogenous signals, e.g. triangular waves,
and one with a feedforward term and discontinuous exogenous
signals, e.g. square waves. We finally illustrate the results by
means of two examples.

I. INTRODUCTION

Output regulation is a fundamental problem in control
theory. The problem consists in the design of a controller
such that the closed-loop system is asymptotically stable
and able to asymptotically track reference signals while
rejecting disturbances. In this problem, both references and
disturbances, called “exogenous signals”, are assumed to be
generated by a known signal generator named “exogenous
system”. Research into output regulation problems for linear
systems dates back to 1970s, when Davison, Francis and
Wonham studied the servomechanism problem [1], [2], [3],
[4]. The scope of output regulation research was then
expanded to nonlinear systems [5], [6], [7], [8], [9]. Recently,
many studies focusing on output regulation of other classes
of dynamical systems have been presented. To mention a
few, multi-agent systems have gained great attention since
2010 [10], [11]; hybrid systems have been studied during the
same time [12], [13], [14]; and regulation methods of linear
stochastic systems have also been reported, see [15], [16].

However, in past output regulation studies non-periodic and
non-smooth exogenous signals have rarely been considered.
Non-smooth signals, such as sawtooths or pulse width
modulation (PWM) signals, are commonly encountered in
real-life applications. For example, discontinuous or non-
differentiable signals, possibly non-periodic, appear in robotic
manipulation, either as disturbances, as references, or due to
the interconnection between agents and the environment [17],
[18], [19]. This class of exogenous signals has not been con-
sidered by the regulation theory. On the one hand, many works
have focused on smooth exogenous signals represented by a
known, autonomous differential equation, which herein we
call implicit generator [20]. This generator, in time-invariant
settings, cannot model signals that show non-smoothness.
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Similarly, for these standard implicit generators even in time-
varying settings, the existing papers have only considered
periodic and smooth exogenous signals [21]. On the other
hand, tracking and rejection of non-smooth signals have been
studied in more general contexts. For instance, [22] studied
linear output regulation problems with switching exogenous
systems. The study only considered continuous non-smooth
exogenous signals and solved the problem with a switching
controller, while in our study we also consider discontinuous
exogenous signals. Other studies that considered non-smooth
exogenous signals are mostly based on hybrid linear systems,
see [12], [13], [14], [23]. These studies solve the periodic
non-smooth problem. However, output regulation with non-
periodic, possibly discontinuous, exogenous signals still
remains an open question.

In this paper, we address the linear output regulation
problem for non-periodic non-smooth exogenous signals.
These exogenous signals are modeled by a linear exogenous
system represented in explicit form1. This class of exogenous
systems can represent most signals with discontinuities or
non-differentiabilities. This paper is focused on the full-
information case2 and considers a dynamic state feedback
controller as the regulator. By interconnecting the linear
system, the explicit-form exogenous system, and the regulator,
we first characterize the steady-state response of the obtained
closed-loop system. Then we provide solutions that rely on
solving regulator equations and we determine the solvability
conditions by analyzing two different configurations sepa-
rately: systems without a feedforward path and systems with
a feedforward path. The paper is concluded by two examples
to illustrate our results.

The rest of the paper is organized as follows. Section II
elaborates on the explicit-form exogenous system and for-
mulates the full-information regulation problem. Section III
introduces the proposed form of the feedback controller and
analyzes the steady-state response of the closed-loop system.
Section IV solves the posed problem by means of the regulator
equations. The solvability is studied in Section V in which the
feedforward case and non-feedforward case are considered
separately, while Section VI provides illustrative numerical
simulations. Section VII concludes the paper.

Notation. We use standard notation. R≥0 denotes the set
of non-negative real numbers, R>0 denotes R≥0\{0}, C<0
denotes the set of complex numbers with a strictly negative
real part and C≥0 denotes C\C<0. The symbol I denotes

1The terminology is taken from [24], [25].
2This means that the state of the linear system and the exogenous signal

is available for feedback.
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the identity matrix, σ(A) denotes the spectrum of the matrix
A ∈ Rn×n and ∥A∥ indicates its induced Euclidean matrix
norm. The superscript ⊤ denotes the transposition operator.

II. PROBLEM FORMULATION

In this section, we introduce the exogenous system in
explicit form, we explain the class of exogenous signals we
are interested in, and we formulate the full-information output
regulation problem for linear systems with non-periodic non-
smooth exogenous signals.

Consider a class of single-input, single-output, linear time-
invariant systems in the form

ẋ(t) = Ax(t)+Bu(t)+Eω(t),

e(t) =Cx(t)+Du(t)+Fω(t),
(1)

with A ∈ Rn×n, B ∈ Rn×1, E ∈ Rn×ν , C ∈ R1×n, D ∈ R,
F ∈ R1×ν with ImF ⊆ ImC, x(t) ∈ Rn the state, u(t) ∈ R
the control input, e(t) ∈ R the regulation error, and ω(t) =
[r(t), d(t)⊤]⊤ ∈ Rv the exogenous signal representing the
disturbances d(t) ∈ Rν−1 and/or reference signal r(t) ∈ R.
In this setup, e(t) = y(t)− r(t) with y(t) = Cx(t)+Du(t)+
Fdd(t) ∈ R the system output and Fd ∈ R1×(v−1).

Usually, exogenous signals are modeled as the solutions
of systems in implicit form [20]

ω̇(t) = Sω(t), ω(t0) = ω0. (2)

where S ∈Rν×ν . However, this model cannot generate signals
that are not differentiable for all times. To address this class
of signals, we express ω as the solution of a generator in
explicit form [26], [27, Section 5.1]

ω(t) = Λ(t, t0)ω(t0), ω(t0) = ω0, (3)

with Λ(t, t0) ∈ Rν×ν such that Λ(t0, t0) = I and Λ(t2, t0) =
Λ(t2, t1)Λ(t1, t0) for any t0 ≤ t1 ≤ t2. If ω is differentiable for
all times and there exists an S such that (2) is valid, then
Λ(t, t0) = eS(t−t0). However, the generator (3) can represent a
wider range of signals when compared with (2). For instance,
it can describe signals generated by a time-varying system
of the form

ω̇(t) = S(t)ω(t), ω(t0) = ω0, (4)

in which case Λ(t, t0) is the transition matrix associated to
(4) [28, Section 3]. Moreover, generator (3) can also express
signals provided by possibly time-varying hybrid systems of
the form

ω̇(t,k) = S(t,k)ω(t,k), ω(t,k+1) = J(t,k)ω(t,k), (5)

where S(t,k) ∈Rν×ν and J(t,k) ∈Rν×ν . This hybrid system
flows and jumps according to some hybrid time domain to
be specified. In addition, note that generator (3) is inherently
a more direct representation of exogenous signals when
compared with other modeling frameworks. For example,
a square wave, indicated by the symbol ⊓, can be expressed
by (3) by setting Λ(t, t0) =⊓(t), directly, without the need of
specifying whether this signal is generated by, e.g. a nonlinear
system ⊓(t) = sign(sin(t − t0)), or by the hybrid system (5)
for an opportune selection of constant matrices S and J.

The main target of our study is the rejection of distur-
bances and/or tracking of references which are non-smooth
exogenous signals. We stress that, differently from the
literature of output regulation of hybrid systems, we do not
assume periodicity. With respect to non-smoothness, we focus
on piecewise-continuous signals. This is not a restrictive
requirement as it does not exclude any signal of practical
interest, e.g. (possibly time-varying) square waves, triangular
waves. Note that the generator (3) requires some additional
properties to bring it closer to the standard output regulation
setting. For instance, one would like uniqueness of ω(t) for
all times. We now discuss a series of assumptions that make
the signal ω well-behaved. To guarantee that the solution
generated by (3) is unique, we require that Λ(t, t0) is non-
singular for all times. Also this assumption is not restrictive.
For instance, any signals representable by (2) can be expressed
by (3) with Λ(t, t0) = eS(t−t0), which is invertible for all times.
Similarly, invertibility is a standard property of the transition
matrix of (4). More generally, given a signal of interest, it
is always possible to construct Λ(t, t0) invertible, possibly
by inflating its dimension. For instance, consider a square
wave ⊓(t) = sign(sin(t)) with t0 = 0 as an example. Then
Λ(t,0) =⊓(t) is not invertible for all times. However, one can
easily construct a non-singular T -periodic Λ(t,0) by specific
phase shifts of the form

Λ(t,0) =
[

⊓
( 2π

T t + π

2

)
−⊓

( 2π

T t
)

⊓
( 2π

T t
)

⊓
( 2π

T t + π

2

) ]
, (6)

in which case the determinant of Λ(t,0) is constantly one. If
more than one signal is considered, then an invertible Λ(t,0)
can be constructed as a block diagonal matrix with each block
in the form (6).

The aforementioned properties of the exogenous signal
generator are formalized in the following assumption.

Assumption 1: The matrix-valued function Λ is piecewise
continuous and non-singular for all times.

Another assumption related to the boundedness of the
exogenous signal is added.

Assumption 2: The matrix-valued functions Λ and Λ−1 are
bounded for all times.

This assumption is a generalization of the standard hypoth-
esis that the exogenous system ω̇ = s(ω) in the traditional
nonlinear output regulation problem is Poisson stable [29,
Section 8.1]. In that case, all the eigenvalues of the matrix
[ ∂ s

∂ω
]ω=0 lie on the imaginary axis. Then Assumption 2 holds

trivially.
We are now ready to formulate the full-information linear

output regulation problem driven by a non-periodic explicit
signal generator.

Problem 1 (Full-information Output Regulation Problem):
Consider system (1) interconnected with the exogenous
system (3) under Assumptions 1 and 2. The output regulation
problem consists in designing a regulator u such that the
following two conditions are satisfied.
(S) The closed-loop system obtained by interconnecting

system (1), the exogenous system (3), and the regulator
with ω(t)≡ 0 is asymptotically stable.
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(R) The closed-loop system obtained by interconnecting
system (1), the exogenous system (3), and the regulator
satisfies

lim
t→∞

e(t) = 0, (7)

uniformly for any x(t0) ∈ Rn, ω(t0) ∈ Rν ,
To ensure that the problem can be solved, another standard

assumption on system (1) is introduced.
Assumption 3: The pair (A, B) is stabilizable.

III. STEADY-STATE OF THE CLOSED-LOOP SYSTEM

In this section, we propose the form of the dynamic state
feedback regulator and we characterize the steady-state of the
closed-loop system obtained by interconnecting system (1),
the exogenous system (3), and the regulator.

To solve Problem 1, we look for a dynamic state feedback
controller of the form

u(t) = Kx(t)+Γ(t)ω(t), (8)

where K ∈ R1×n and Γ(t) ∈ R1×v. Note that differently from
the standard linear theory of smooth regulation, Γ is a time-
varying matrix. The reason for this choice will be clear
later. Moreover, to guarantee the existence of the steady-state
response xss(t)3, we require that Γ is bounded and piecewise
continuous. With this setup, if condition (S) is satisfied and
Assumptions 1 and 2 hold, the steady-state solution xss(t)
exists for all times.

By interconnecting system (1), generator (3) and con-
troller (8), we obtain the closed-loop system

ẋ(t) = Acx(t)+Bc(t)ω(t),

e(t) =Ccx(t)+Dc(t)ω(t),

ω(t) = Λ(t, t0)ω0,

(9)

where Ac = A+BK, Bc(t) = E +BΓ(t), Cc = C+DK, and
Dc(t) = F + DΓ(t). We now characterize the steady-state
response of the closed-loop system (9) under the assumption
that the condition (S) is satisfied by some choice of gain K.
For brevity, when t0 = 0 we use the notation Λ(t) = Λ(t,0).

Lemma 1: Consider the closed-loop system (9). Suppose
Assumptions 1, 2, and 3 hold and that requirement (S) is
satisfied by a properly selected K. For any bounded piecewise
continuous Γ, the steady-state response of x is given by

xss(t) = Π∞(t)ω(t), (10)

where Π∞(t) ∈ Rn×ν is the matrix-valued function

Π∞(t) =
(∫ t

−∞

eAc(t−τ)Bc(τ)Λ(τ)dτ

)
Λ(t)−1. (11)

The proof of Lemma 1 is omitted for reasons of space.
From now on, we drop the subscript in Π∞. Thus, in the
following by Π, we mean Π∞.

3We use the definition of steady state given in [30].

IV. NECESSARY AND SUFFICIENT CONDITIONS FOR
REGULATION

This section focuses on providing the necessary and
sufficient conditions for the solution of Problem 1. Note
that the feedforward term D in system (1) can be either zero
or non-zero, which is a factor related to the existence of a
solution. This will be discussed in the next section.

We present the solution to the full-information problem in
the next theorem.

Theorem 1: Consider Problem 1. Suppose Assump-
tions 1, 2, and 3 hold. Then there exists a matrix K and a
bounded piecewise continuous matrix Γ such that the regula-
tor (8) solves the full-information output regulation problem if
and only if there exist bounded piecewise continuous matrices
Π and ∆ that solve the regulator equations

Π(t) =
(∫ t

−∞

eA(t−τ)(E +B∆(τ))Λ(τ)dτ

)
Λ(t)−1,

0 = lim
t→+∞

CΠ(t)+D∆(t)+F.
(12)

The proof of Theorem 1 is omitted for reasons of space.
By Theorem 1, if bounded and piecewise continuous matrices
Π and ∆ solving the regulator equations (12) can be found,
then the control law

u(t) = Kx(t)+(∆(t)−KΠ(t))ω(t) (13)

solves Problem 1. Note that K is any matrix such that the
closed-loop system is asymptotically stable, i.e. σ(A+BK)⊂
C<0.

It is not straightforward to check the solvability conditions
and compute solutions of the regulator equations (12). To
remedy this problem, we introduce the following corollary
that transforms (12) into differential-algebraic equations.

Corollary 1: Suppose Assumptions 1, 2, and 3 hold. There
exist bounded piecewise continuous matrices Π and ∆ that
solve the regulator equations (12) if and only if there exist
steady-state solutions Ψ∗(t) and ∆∗(t) solving

Ψ̇
∗(t) =AΨ

∗(t)+(B∆
∗(t)+E)Λ(t),

0 =CΨ
∗(t)+(D∆

∗(t)+F)Λ(t),
(14)

for all t ≥ 0, where ∆∗ is piecewise continuous.
The proof of Corollary 1 is omitted for reasons of space.

V. SOLVABILITY OF THE REGULATOR EQUATIONS

We have presented the solution to the output regulation
problem. Finding this solution relies on solving the regulator
equations (12). We now study under which conditions the
regulator equations are solvable for any matrices E and F .

Given the generality of Λ considered so far, the presence
of the feedforward term D plays a pivotal role in the
tracking/rejection ability of the linear system (1). To be
more specific, if D = 0, the posed regulation problem cannot
be solved (without feedforward term and with a bounded
regulator4) for exogenous signals that are discontinuous (e.g.

4Note that if u is allowed to be an impulsive control then the problem
with discontinuous signals may be solved without feedforward term. This is
left as a future research direction.
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possibly time-varying square waves). Note that this makes
sense: a discontinuous signal cannot be tracked by Cx, which
is a continuous signal, without the help of a feedforward
term Du that can cancel the jump. Therefore, we study the
solvability of the case D = 0 restricting the class of inputs (to
e.g. possibly time-varying triangular waves). We introduce the
following assumption that helps us to guarantee the existence
of a solution to the regulation problem when D = 0.

Assumption 4: The matrix-valued function Λ(t, t0) is
piecewise differentiable5.

Assumption 4 assumes that ω has a finite number of
non-differentiable points in any finite interval and is semi-
differentiable at each non-differentiable point, i.e. both left
and right derivatives exist, although different. However,
considering the class of inputs that we target (e.g. triangular
waves), the assumption does not practically restrict the
applicability of the result.

Now we propose the solvability condition of the regulator
equation (12) by considering D = 0 and D ̸= 0 separately.
More specifically, under Assumptions 1, 2, and 3, there exist
bounded piecewise continuous matrices Π and ∆ solving the
regulator equations (12) for any E and F if the following
solvability requirement holds.

(SR) When D = 0, if Assumption 4 holds and system (1) is
minimum-phase with a unitary relative degree. When
D ̸= 0, if system (1) is minimum-phase.

The formal derivation of this argument is omitted for
reasons of space.

Remark 1: Assumption 2 can be relaxed and the obtained
results still hold in the case in which Λ is exponentially
bounded, i.e. there exist positive numbers k, α , such that
∥Λ(t, t0)∥ ≤ keα(t−t0) for all t. In this case, while Λ is un-
bounded, the solutions Π and ∆ to the regulator equations (12)
are still bounded. In this case we cannot talk of “steady
states”, but the property limt→+∞(x(t)−Π(t)ω(t)) = 0 still
holds. This will be shown by a numerical example in the
next section. A formal formulation of the problem in this
more general case will be retained as future work.

VI. NUMERICAL SIMULATIONS

In this section, we illustrate the theory proposed in this
paper by providing two numerical examples: a system with
D = 0 and bounded Λ, and a system with D ̸= 0 and
unbounded Λ. We have randomly generated the matrices

5By definition, this means that for any tb > ta ≥ 0, there exists a finite
subdivision ta = t0 < t1 < · · · < tn−1 < tn = tb of [ta, tb] such that Λ(t) is
continuously differentiable in each subinterval [ti−1, ti] for any i = 1,2, · · · ,n.
Note that the derivative at ti−1 is understood as the right derivative and the
derivative at ti is understood as the left derivative [31, Definition 3.1].
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Time (s)
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1

Fig. 1. Top graph: time history of the output response of the system
y(t) = Cx(t) + Fdd(t) (solid blue) and of the reference signal r(t) (red
dashed). Bottom graph: time history of the regulation error e(t).

in system (1) in MATLAB as

A =


0.8407 3.1776 −0.7474 −0.7711

−3.9223 −2.3927 −1.8728 −4.0577
4.0631 0.9436 −3.3852 0.9852
3.7965 −4.7749 −3.2123 −0.2908

 ,

B =
[

1.9595 1.9989 1.3853 −4.6640
]⊤

,

C =
[
−4.3119 −1.8040 0.3086 1.5445

]
,

E =


0 −0.9238 0.3133
0 3.1998 −1.7485
0 2.1836 −3.9437
0 4.6865 1.1096

 ,

F =
[
−1 2.7880 −0.7655

]
.

(15)

The value of D is different in each example.

A. System with Zero Feedforward Matrix and Bounded
Exogenous Signals

In this example, we have set the feedforward matrix D = 0.
Note that the system with matrices (15) is minimum phase
with unitary relative degree. Hence, the regulation problem
is solvable. In accordance with Assumption 4, we consider
an exogenous system composed of non-periodic triangular
and sinusoidal waves such as

Λ(t) =
∇

(
2π

T t
3
2 + π

2

)
+1 1

2 ∇

(
2π

T t
3
2

)
+1

2 sin
(

2π

T t
3
2

)
−sin

(
2π

T t
3
2

)
∇

(
2π

T t
3
2 + π

2

)
+1 1

2 ∇

(
2π

T t
3
2

)
+1

2
1
2 ∇

(
2π

T t
3
2

)
+1

2 sin
(

2π

T t
3
2

)
∇

(
2π

T t
3
2 + π

2

)
+1

,
where ∇ is the triangular wave defined as ∇(t) =
4
T
∫ t

0 ⊓(τ)dτ − 1 = 4
T
∫ t

0 sign(sin(τ))dτ − 1 and T = π .
Note that since Λ is not periodic, it cannot be
tracked with the available hybrid output regulation the-
ory. The initial conditions have been randomly selected
to be x(0) =

[
0.4898 −0.3756 0.2057 0.4224

]⊤ and
ω(0) =

[
−0.8481 −0.5202 0.1964

]⊤. We first de-
termine the value of the matrix K. We have selected
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Fig. 2. Top graph: time history of the state x(t). Middle graph: time history
of the steady state xss(t) = Π(t)ω(t). Bottom graph: time history of the
difference x(t)− xss(t).
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Fig. 3. Time history of Π(t) (solid blue) and Γ(t) (red dashed).

the closed-loop poles as −5 + 2i, −5 − 2i, −3, −10,
which correspond to the stabilizing feedback matrix K =[
−7.2020 −3.0845 2.2956 0.1446

]
.

The computation of the matrices Π(t) and Γ(t) has been
implemented by following Corollary 1, i.e. solving (14). Fig. 1
shows the time history of the system output y(t) and of the
reference signal r(t) (top graph) and displays the time history
of the regulation error e(t) (bottom graph). The figure shows
that the output of the system is asymptotically tracking the
given reference signal while rejecting the disturbances. To
verify the steady-state analysis presented in Section III, Fig. 2
depicts the time history of the state x(t) (top graph) and of the
computed steady state Π(t)ω(t) (middle graph), and displays
their difference x(t)−Π(t)ω(t) (bottom graph). Fig. 3 shows
that Π and Γ are bounded. The result is in accordance with
Lemma 1 as limt→+∞(x(t)−Π(t)ω(t)) = 0.
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Time (s)

-5

0

5 y(t)
r(t)

0 2 4 6 8 10 12 14 16 18
Time (s)

-5

0

5

Fig. 4. Top graph: time history of the output response of the system
y(t) =Cx(t)+Du(t)+Fdd(t) (solid blue) and of the reference signal r(t)
(red dashed). Bottom graph: time history of the regulation error e(t).

B. System with Non-Zero Feedforward Matrix and Un-
bounded Exogenous Signals

In this example, we have randomly set the feedforward
matrix D = −4.4605, which guarantees the satisfaction
of (SR). Consequently, we can consider a more complex
exogenous system that contains logarithmically magnified
non-periodic square, triangular, and sinusoidal waves namely

Λ(t) = log(t +2)×
⊓
(

2π

T t
3
2 + 3π

4

)
1
2 ∇

(
2π

T t
3
2

)
+1

2 cos
(

2π

T t
3
2

)
−1

−cos
(

2π

T t
3
2

)
+1 ⊓

(
2π

T t
3
2 + 3π

4

)
−sin

(
2π

T t
3
2

)
0 ⊓

(
2π

T t
3
2 + π

2

)
−1 ⊓

(
2π

T t
3
2 + 3π

4

)
,

where ⊓(t) = sign(sin(t)) and T = π . The initial conditions
and matrix K have been selected as before. Fig. 4 shows the
time history of the system output y(t) and of the reference
signal r(t) (top graph) and displays the time history of the
regulation error e(t) (bottom graph). Thus, the results show
that the output of the system is asymptotically tracking the
reference also in this case. Fig. 5, similarly to Fig. 2, compares
the time histories of x(t) and Π(t)ω(t). Fig. 6 shows the
trajectories of Π(t) and Γ(t). In particular, when Λ is not
bounded, Πω diverges with Λ, but Π and Γ are still bounded.

VII. CONCLUSION

The full-information output regulation problem for a linear
system interconnected with a generator in explicit form
that produces (possibly) non-periodic non-smooth exogenous
signals has been addressed. In this paper, we have proposed
a dynamic state feedback regulator and characterized the
steady-state response of the closed-loop system obtained by
interconnecting the linear system, the exogenous system, and
the state-feedback regulator. We have then presented the
solution of the problem in the form of regulator equations.
Depending on the existence of the feedforward path, we
have discussed the solvability of the two different cases
separately. Finally, we have illustrated our results by means
of two examples. Future work will focus on solving the error
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Fig. 5. Top graph: time history of the state x(t). Middle graph: time history
of the steady state xss(t) = Π(t)ω(t). Bottom graph: time history of the
difference x(t)− xss(t).
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Fig. 6. Time history of Π(t) (solid blue) and Γ(t) (red dashed).

feedback problem, producing an internal model principle, and
generalizing the results to the case with unbounded Λ and
the case of impulsive regulators.
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