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Abstract— This paper presents algorithms that upper-bound
the peak value of a state function along trajectories of a
continuous-time system with rational dynamics. The finite-
dimensional but nonconvex peak estimation problem is cast
as a convex infinite-dimensional linear program in occupation
measures. This infinite-dimensional program is then truncated
into finite-dimensions using the moment-Sum-of-Squares (SOS)
hierarchy of semidefinite programs. Prior work on treating
rational dynamics using the moment-SOS approach involves
clearing dynamics to common denominators or adding lift-
ing variables to handle reciprocal terms under new equal-
ity constraints. Our solution method uses a sum-of-rational
method based on absolute continuity of measures. The Moment-
SOS truncations of our program possess lower computational
complexity and (empirically demonstrated) higher accuracy
of upper bounds on example systems as compared to prior
approaches.

I. INTRODUCTION

Peak estimation is the practice of finding extreme values
of a state function p along trajectories x(t) of a dynamical
system that evolve starting from an initial set X0. Instances
of peak estimation (extremizing p(x(t))) include finding
the maximum speed of an aircraft, height of a rocket,
concentration of a chemical, and current along a transmission
line. This work focuses on peak estimation in the case of
rational continuous-time dynamics for a state x ∈ Rn where:

ẋ(t) = f(t, x), (1)

where the rational dynamics f can be represented as

f(t, x) = f0(t, x) +

L∑
ℓ=1

Nℓ(t, x)

Dℓ(t, x)
. (2)

The expression in (1) is a sum-of-rational dynamical system
in terms of polynomials f0, Nℓ, and Dℓ (with L finite).
Applications of peak estimation for rational systems include
systems include finding maximal concentrations in chemical
reaction networks with Michaelis-Menten kinetics or yeast
glycolysis, velocities in rigid body kinematics (manipulator
equation with rational friction models), and occupancies in
network queuing models [1], [2]. Refer to [1] for a detailed
survey of applications of rational systems, as well as a
formulation of algebraic analysis techniques to establish
system properties such as parameter identifiability and con-
trollability.

The rational-dynamics peak estimation task considered
in this work (maximizing a state function p along system
trajectories x(t | x0) evolving in a state space X ∈ Rn
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starting from X0 ⊆ X with a time horizon of [0, T ]) is
described in Problem 1.

Problem 1: Find an initial condition x0 and a stopping
time t∗ to extremize:

P ∗ = sup
t∗,x0

p(x(t∗ | x0)) (3a)

subject to ẋ(t) = f(t, x(t)) from (1) (3b)
t∗ ∈ [0, T ], x0 ∈ X0. (3c)

The Ordinary Differential Equation (ODE) peak estimation
problem in (3) is an instance of a Optimal Control Problem
(OCP) with a free terminal time and zero stage (inte-
gral) cost. The finite-dimensional problem (3) is generically
nonconvex in (t∗, x0), but can be lifted into a pair of
primal-dual infinite-dimensional Linear Programs (LPs) in
occupation measures [3]. Computational solution methods
for derived measure LPs include gridding-based discretiza-
tion [4], random sampling [5], and the moment-Sum of
Squares (SOS) hierarchy of Semidefinite Programs (SDPs)
[6], [7], [8]. Peak estimation LPs have been developed for
dynamical systems such as robustly uncertain systems [9],
[10], stochastic systems (mean and value-at-risk) [4], [11],
time-delay systems [12], and hybrid systems [13]. Other
problem domains in which infinite-dimensional LPs have
been used in the analysis and control of dynamical systems
include reachable set estimation and backwards-reachable-
set maximizing control [14], [15], [16], [17], maximum
positively invariant set estimation [18], maximum controlled
invariant sets [19], global attractors [20], [21], and long-time
averages [22].

All of the previously mentioned applications of LP in
dynamical systems analysis and control (in the context
of continuous state spaces) use a Lipschitz assumption in
dynamics in order to prove that there is no relaxation gap
between the infinite-dimensional LP and the original finite-
dimensional nonconvex program. The rational dynamics in
(1) may fail to be globally Lipschitz (within the domain of
[0, T ]×X), and therefore falls into the theory of nonsmooth
dynamical systems [23], [24]. This work utilizes a sum-
of-rational representation from [25] in order to cast (3)
as an LP in measures, and uses the theory of nonsmooth
Liouville equations from [23] to prove equivalence of optima
under compactness, trajectory-uniqueness, and positivity as-
sumptions. Prior work in SOS-based analysis of rational
functions includes clearing to common denominators [26]
(under positivity), and adding new variables to represent the
graph of rational functions as equality constraints [27], [28].

The main contributions of this work are:
• A measure LP formulation for peak estimation of ratio-

nal dynamical systems based on the theory of [25] (for
sum-of-rational static optimization).

• A proof that there is no relaxation gap between the
finite-dimensional nonconvex problem (3) and the ob-
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jectives of infinite-dimensional LPs
• Quantification of the computational complexity in terms

of sizes of the Positive Semidefinite (PSD) matrices in
SDPs.

• Experiments demonstrating the upper-bounding of the
true peak on rational dynamical systems.

This paper has the following structure: Section II reviews
preliminaries such as notation and occupation measures. Sec-
tion III formulates a sum-of-rational-based measure LP for
the peak estimation problem in (3). Section IV introduces and
applies the moment-SOS hierarchy to obtain a nonincreasing
sequence of upper-bounds to the true peak value P ∗. Section
V performs peak estimation on example rational dynamical
systems. Section VI concludes the paper.

An extended version of this conference paper is available
at [29]. The extended version includes a proof of strong
duality, as well as details about SOS programs for the pre-
existing rational-peak-estimation methods [26], [27].

II. PRELIMINARIES

A. Notation

The set of n-dimensional indices with sum less than or
equal to a value d is Nn

≤d (α ∈ Nn
≤d if α ∈ Nn and∑n

i=1 αi ≤ d). The set of polynomials with indeterminate
x is R[x], and the subset of polynomials with degree at most
d is R[x]≤d.

The set of continuous (continuous and nonnegative) func-
tions over S is C(S) (C+(S)). The set of signed (non-
negative) Borel measures over a set S is M(S) (M+(S)).
The measure of a set A ⊆ S w.r.t. µ ∈ M+(S) is µ(A).
The sets C+(S) and M+(S) possess a bilinear pairing
⟨·, ·⟩ that acts by Lebesgue integration: g ∈ C+(S), µ ∈
M+(S) : ⟨g, µ⟩ =

∫
S
g(s)dµ(s). This bilinear pairing is

an inner product between C+(S) and M+(S) when S is
compact (in which M+(S) can be canonically identified
as the dual of C+(S)), and the pairing can be extended
to integration between C(S) (and sets of more general
measurable functions) and M(S). Given two measures µ1 ∈
M+(S1), µ2 ∈ M+(S2), the product measure µ1 ⊗ µ2 is
the unique measure satisfying ∀A1 ⊆ S1, A2 ⊆ S2 : (µ1 ⊗
µ2)(A1 × A2) = µ1(A1)µ2(A2). Given a set A ⊆ S, the
0/1 indicator function IA takes on value IA(s) = 1 if s ∈ A
and IA(s) = 0 if s /∈ A (ensuring that ⟨IA(S), µ⟩ = µ(A)).
The mass of a measure µ ∈ M+(S) is µ(S) = ⟨1, S⟩,
and µ is a probability measure if this mass is 1. The Dirac
delta supported at a point s′ (δs=s′ ) is the unique probability
measure such that ∀g ∈ C(S) : ⟨g, δs=s′⟩ = g(s′). The
adjoint of a linear operator L is L †.

B. Occupation Measures

An occupation measure is a nonnegative Borel measure
that contains all possible information about the behavior of
(a set of) trajectories of a given dynamical system.

For a given initial condition x0 ∈ X0, the occupation
measure µx(·) ∈ M+([0, T ]×X) of the trajectory x(t | x0)
(3b) up to a stopping time t∗ ∈ [0, T ] satisfies ∀A ∈
[0, T ], B ∈ X:

µx(·)(A×B | t∗) =
∫
[0,t∗]

IA×B ((t, x(t | x0)) dt. (4)

The (t∗, x∗
0)-occupation measure µx(·) in (4) can also be

understood in terms of its pairing with arbitrary continuous
(measurable) functions:

∀ω ∈ C([0, T ]×X) ⟨v, µx(·)⟩ =
∫ t∗

0
ω(t, x(t | x0))dt.

(5)
Occupation measures µx(·) in (4) may be defined over a

distribution of initial conditions µ0 ∈ M+(X0) (with x0 ∼
µ0):

µ(A×B | t∗) =
∫
X0

∫
[0,t∗]

IA×B ((t, x(t | x0)) dtdµ0(x0).

The Lie derivative (instantaneous change) of a test func-
tion v ∈ C1([0, T ]×X) w.r.t. dynamics (1) is

Lfv(t, x) = ∂tv(t, x) + f(t, x) · ∇xv(t, x). (6)

Any trajectory of (3b) satisfies the conservation law,

v(t∗, x(t | x0)) = v(0, x0) +

∫ t∗

0

Lfv(t
′, x(t′ | x0))dt

′.

(7)
The conservation law in (7) is a Liouville equation, and

can be written in terms of the initial measure µ0 = δx=x0 ∈
M+(X0), terminal measure µp = δt=t∗,x=x(t∗|x0) ∈
M+([0, T ] × X), and occupation measure µ = µx(·) ∈
M+([0, T ]×X) for all v as [23]

⟨v(t, x), µp⟩ = ⟨v(0, x), µ0⟩+ ⟨Lfv(t, x), µ⟩. (8)
The ∀v imposition in equation (8) can be written equivalently
in shorthand form (with L†

f as the adjoint linear operator of
L) as

µp = δ0 ⊗ µ0 + L†
fµ. (9)

Any triple (µ0, µp, µ) that satisfies (9) is a relaxed oc-
cupation measure; the class of relaxed occupation measures
may be larger than the set of superpositions (distributions)
of occupation measures arising from trajectories.

III. RATIONAL LINEAR PROGRAM

This section will present convex infinite-dimensional LP
to perform peak estimation of rational systems.

A. Assumptions
We will begin with the following assumption:

A1: If a trajectory satisfies x(t | x0) ̸∈ X for some x0 ∈ X0,
then x(t′ | x0) ̸∈ X for all t′ ≥ t.

Further assumptions will be added as needed.
Remark 2: Assumption A1 is a non-return assumption in

the style of [30].

B. Measure Program
Problem 3 introduces an LP in measures to produce an

upper-bound on Problem 1 [3], [4]:
Problem 3: Find an initial measure µ0, a relaxed occupa-

tion measure µ, and a peak measure µp to supremize

p∗ = sup ⟨p, µp⟩ (10a)

subject to: µp = δ0 ⊗ µ0 + L†
fµ (10b)

⟨1, µ0⟩ = 1 (10c)
µ, µp ∈ M+([0, T ]×X) (10d)
µ0 ∈ M+(X0). (10e)
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Theorem 4: Under Assumption A1, Problem 3 will upper-
bound 1 with p∗ ≥ P ∗.

Proof: Let (t∗, x∗
0) ∈ [0, T ]×X0 be a feasible point of

(3), such that ∀t ∈ [0, t∗] : x(t | x∗
0) ∈ X . One such feasible

point is the tuple (0, x∗
0) for any x∗

0 ∈ X0. A feasible relaxed
occupation measure (µ0, µp, µ) may be constructed from the
trajectory x(t | x∗

0): with an initial measure µ0 = δx=x∗
0
,

a peak measure µp = δt=t∗, x=x(t|x∗
0)
, and an occupation

measure of µ = µx(·). This relaxed occupation measure
satisfies constraints (10b)-(10e) and has objective ⟨p, µp⟩ =
p(x(t∗ | x∗

0)). The upper-bound p∗ ≥ P ∗ is proven because
every (t∗, x∗

0) has a measure representation.
Equality of the objectives of Problem 1 and 3 will occur

under a set of additional assumptions:
A2: The set [0, T ]×X0 ×X is compact.
A3: The cost p(x) is continuous.
A4: Trajectories of (3b) starting at X0 in times [0, T ] are

unique.
Theorem 5: Under assumptions A1-A4, the relation p∗ =

P ∗ will hold.
Proof: By Theorem 3.1 of [24], imposition of as-

sumption A4 ensures that every relaxed occupation measure
(µ0, µp, µ) is supported on the graph of (a superposition
of) trajectories of (3b). Compactness (A2) and (lower semi-)
continuity (A3) are necessary to invoke arguments used by
Theorem 2.1 of [3], using the non-smooth Theorem 3.1 of
[24] rather than a Lipschitz assumption on dynamics.

C. Absolute Continuity Formulation
We will use the sum-of-rationals framework of [25] in

order to express (10) in a form more amenable to numerical
computation, using the moment-SOS hierarchy of SDPs.
This sum-of-rationals framework uses the notion of absolute
continuity of measures.

Definition 6: A measure ν ∈ M+(S) is absolutely con-
tinuous to µ ∈ M+(S) (ν ≪ µ) if, for every A ⊆ X ,
⟨IA, µ⟩ = 0 implies that ⟨IA, ν⟩ = 0.

Definition 7: For every pair of absolutely continuous mea-
sures ν ≪ µ, there exists a nonnegative function h(s) such
that ∀g ∈ C(S) : ⟨g(s), ν(s)⟩ = ⟨g(s)h(s), µ(s)⟩. This
function h is also referred to as the density of ν w.r.t. µ, or
as the Radon-Nikodym derivative dν

dµ .
Given dynamics functions (f0, {Nℓ}Lℓ=1, {Dℓ}Lℓ=1) in (1)

and a relaxed occupation measure (µ0, µp, µ) feasible for
(10), we can define a set of per-rational measures {νℓ}Lℓ=1
(with ∀ℓ : νℓ ∈ M+([0, T ] × X)). These per-rational mea-
sures will be constructed to satisfy the following condition
with respect to the rational denominators in (2)

∀ω ∈ C([0, T ]×X), ℓ ∈ 1..L :

⟨ω(t, x)Dℓ(t, x), νℓ(t, x)⟩ = ⟨ω(t, x), µ(t, x)⟩. (11)

This condition will be expressed in condensed notation as

∀ℓ : D†
ℓνℓ = µ. (12)

Remark 8: Equation (11) is inspired by Equation (7) of
[25] for sum-of-rational optimization.

We now impose the following assumption:
A5: Each function Dℓ is strictly positive over [0, T ]×X .

Proposition 9: The measures νℓ have finite densities
dνℓ

dµ = 1/Dℓ when A5 is in effect.

The Lie derivative in (10b) can be expanded using (11) as
(∀v ∈ C1([0, T ]×X) with assumption A5 in place)

⟨Lfv, µ⟩ =
〈
∂tv +

(
f0 +

∑L
ℓ=1(Nℓ/Dℓ)

)
· ∇xv, µ

〉
(13a)

⟨Lf0v +
∑L

ℓ=1(Nℓ/Dℓ) · ∇xv, µ⟩ (13b)

= ⟨Lf0v, µ⟩+
∑L

ℓ=1⟨(Nℓ/Dℓ) · ∇xv(t, x), µ⟩
(13c)

= ⟨Lf0v, µ⟩+
∑L

ℓ=1⟨Nℓ · ∇xv, νℓ⟩. (13d)

Problem 10 uses the sum-of-rational framework to pose a
measure peak estimation LP:

Problem 10: Find an initial measure µ0, a relaxed occupa-
tion measure µ, a peak measure µp, and a set of per-rational
measures {νℓ}Lℓ=1 to supremize

p∗r = sup
µ0,µ, µp,{νℓ}

⟨p, µp⟩ (14a)

s.t. µp = δ0 ⊗ µ0 + L†
f0
µ+

∑ℓ
ℓ=1(Nℓ · ∇x)

†νℓ (14b)

∀ℓ : D†
ℓνℓ = µ (14c)

⟨1, µ0⟩ = 1 (14d)
µ, µp, {νℓ} ∈ M+([0, T ]×X) (14e)
µ0 ∈ M+(X0). (14f)

Corollary 11: Under A1-A5, the objective values of Prob-
lem 1 and 10 will be equal with P ∗ = p∗r .

Proof: Theorem 5 ensures that P ∗ = p∗ under A1-A4.
The finite nature of the densities 1/Dℓ from Proposition 9
(proved by Theorem 2.1 of [25]) ensures that the absolute-
continuity-based construction process in (11) will result in
each νℓ having identical support to µ. As a result, (µ0, µp, µ)
from (14b) will form a relaxed occupation measure, thus
ensuring no relaxation gap by Theorem 3.1 of [24] (used in
Theorem 5).

Remark 12: If A5 is not imposed, then it is possible for
the measure νℓ from (11) to be unconstrained (with Dℓ =
0 at some (t, x)). It therefore cannot be presumed that the
supports of νℓ and µ are identical. These degrees of freedom
in νℓ could allow for the strict (and possibly unbounded)
upper-bound p∗r > p∗.

D. Function Program
The dual LP for 10 is contained in Problem 13:
Problem 13: Find a C1 auxiliary function v, a scalar γ,

and per-rational continuous functions {qℓ}Lℓ=1 to infimize

d∗r = inf
γ∈R,v,{qℓ}

γ (15a)

s.t. ∀x ∈ X0 :

γ ≥ v(0, x) (15b)
∀(t, x) ∈ [0, T ]×X :

v(t, x) ≥ p(x) (15c)

− Lf0v(t, x)−
∑L

ℓ=1 qℓ(t, x) ≥ 0 (15d)
∀(t, x) ∈ [0, T ]×X, ∀ℓ ∈ 1..L :

Dℓ(t, x)qℓ(t, x)−Nℓ(t, x) · ∇xv(t, x) ≥ 0 (15e)
v ∈ C1([0, T ]×X) (15f)
∀ℓ : qℓ ∈ C([0, T ]×X). (15g)

Lemma 14: The mass of all feasible measures
(µ0, µp, µ, {νℓ}) for solutions to Problem 10 are finite
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under A1-A5.
Proof: The mass of µ0 is constrained to 1 by (14d).

This pins the mass of µp to 1 by letting v(t, x) = 1 be
a test function to (14b). Applying v(t, x) = t to (14b)
results in ⟨1, µ⟩ = ⟨t, µp⟩ ≤ T . The masses of νℓ are set
to ⟨1, νℓ⟩ = ⟨1/Dℓ, µ⟩. The quantities ⟨1/Dℓ, µ⟩ are finite
by A5 (because Dℓ > 0 over [0, T ] × X), such that the
finite mass bound ∀ℓ : ⟨1, νℓ⟩ ≤ T sup(t,x)∈[0,T ]×X Dℓ(t, x)
is respected.

Theorem 15: Under A1-A5, programs (14) and (15) will
satisfy p∗r = d∗r (strong duality).

Proof: See Appendix I of [29].

IV. FINITE-DIMENSIONAL TRUNCATION

Program (15) must be discretized into a finite-dimensional
program in order to admit tractable numerical solutions by
computational means. We will first introduce the moment-
SOS hierarchy of SDPs, and then use this hierarchy in order
to perform finite-dimensional truncations of (15).

A. Sum of Squares Background

A polynomial θ ∈ R[x] is SOS if there exists a tuple
of polynomials {ϕj}jmax

j=1 ∈ R[x]jmax such that p(x) =∑jmax

j=1 ϕj(x)
2. The set of all SOS polynomials in indeter-

minates x is marked as Σ[x] ⊂ R[x], and the bounded-
degree subset of SOS polynomials with degree less than or
equal to 2k is Σ[x]≤2k. The set of SOS polynomials is a
strict subset of the cone of nonnegative polynomials, with
equality holding only in the cases of univariate polynomials,
general quadratics, or bivariate quartics [31], [32]. To each
SOS polynomial θ, there exists a (nonunique) tuple of a size
s ∈ N, a polynomial vector m(x) ∈ Ns, and a PSD Gram
matrix Q ∈ Ss+ such that θ(x) = m(x)TQm(x). When x
has dimension n and m(x) is chosen to be the vector of
monomials of degrees 0 to k, the size s is

(
n+d
d

)
. Testing

membership of a polynomial in the SOS cone can therefore
be done using SDPs [33].

A Basic Semialgebraic (BSA) set is a set defined by
a finite number of bounded-degree polynomial inequality
constraints. For any BSA set K = {x | gj(x) ≥ 0, j ∈
1 . . . Ng}, the Weighted Sum of Squares (WSOS) cone Σ[K]
is the class of polynomials θ ∈ R[x] that admit the following
representation in terms of SOS polynomials (σ0, {σj}):

θ(x) = σ0(x) +
∑

j σj(x)gj(x) (16a)

∃σ0(x) ∈ Σ[x], ∀j ∈ 1 . . . Ng : σj(x) ∈ Σ[x]. (16b)

The set K is ball-constrained if there exists an R ≥ 0 such
that R − ∥x∥22 ∈ Σ[K]. Every compact set whose bounding
radius R is known may be rendered ball-constrained by ap-
pending the redundant constraint R−∥x∥22 to the description
of K. Every positive polynomial over a ball-constrained set K
is also a member of Σ[K] (Putinar Positivestellensatz [34]).
The multipliers σj from (16) certifying this positivity may
generically have degrees that are exponential in n and degree
of θ [35].

The truncated WSOS cone Σ[K]≤2k is the class of poly-
nomials such that deg(σ0) ≤ 2k and ∀j : deg(σj) ≤ 2k.
The process of replacing a nonconvex polynomial inequality
constraint with a WSOS constraint and increasing the degree
until convergence is called the moment-SOS hierarchy.

B. SOS Program
We will impose the following constraints in order to utilize

the moment-SOS hierarchy:
A6: X0 and X are ball-constrained BSA sets.

For a fixed degree k ∈ N and index ℓ ∈ 1 . . . L, let us
define the following degree of:

εℓ = max(deg(Dℓ),deg(Nℓ)− 1). (17)

The degree-k SOS truncation of (15) is:
Problem 16: Find a scalar γ and polynomials v, {qℓ}Lℓ=1

to minimize

d∗r,k = min
γ∈R,v,{qℓ}

γ (18a)

γ − v(0, x) ∈ Σ[X0]≤2k (18b)
v(t, x)− p(x) ∈ Σ[([0, T ]×X)]≤2k (18c)

− Lf0v(t, x)−
∑L

ℓ=1 qℓ(t, x) (18d)
∈ Σ[([0, T ]×X)]≤2k+2⌊(deg(f0)−1)/2⌋

∀ℓ ∈ 1 . . . L :

Dℓ(t, x)qℓ(t, x)−Nℓ(t, x) · ∇xv(t, x) (18e)
∈ Σ[([0, T ]×X)]≤2k+2⌊εℓ/2⌋

v ∈ R[t, x]≤2k (18f)
∀ℓ ∈ 1 . . . L : qℓ ∈ R[t, x]≤2k. (18g)

The following lemma ensuring finiteness of measure
masses is required to prove convergence of Problem 16 to
the optimal value of Problem 10 as k → ∞:

Theorem 17: Under assumptions A1-A6, the finite trun-
cations will converge from above as limk→∞ d∗r,k = P ∗

Proof: We first note that P ∗ = d∗r under A1-A5 by
Corollary 11 using Theorem 15 (strong duality) and Lemma
14 (finite mass).

After noting that the masses of all feasible measures are
bounded by Lemma 14, convergence in objective to d∗r = P ∗

is proven by Corollary 8 of [36].

C. Computational Complexity
The dominant-size Gram PSD constraint of program (18)

occurs at (18d), and has size
(
n+1+2k+2⌊deg(f0)/2⌋

n+1

)
. When

using an interior point method, the scaling of (18) therefore
grows as O(n6k) (nominally) or exponentially (in a degen-
erate case from Proposition 6 of [37]). Further complexity
reductions such as symmetry and term sparsity may be em-
ployed if present to reduce computation time, but exploiting
sparsity may lead to different finite-degree SOS optimal
values.

V. NUMERICAL EXAMPLES

Julia code to generate all examples in this work is pub-
licly available online1. SOS programs were posed using a
Correlative-Term-Sparsity interface (CS-TSSOS) [38], [39].
The SOS programs were converted to SDPs using JuMP [40].
All SDPs were then solved by Mosek 10.1 [41].

A. Two-Species Chemical Reaction Network
The first example involves analysis of a chemical reac-

tion network. The states (x1, x2) represent the nonnegative
concentrations of the two species. The species undergo

1http://doi.org/10.5905/ethz-1007-711
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degradation at a linear rate, and promotion according to
Michaelis-Menten kinetics (therefore possessing a globally
asymptotically stable equilibrium point in the nonnegative
orthant [42]). The relevant dynamics evolving in X = [0, 1]2

over a time horizon of T = 6 are:

ẋ1 = −3

4
x1 +

1

1 + 4.5x2
(19a)

ẋ2 = − 9

16
x2 +

1.25

1 + 6.75x1
. (19b)

We note that the unique equilibrium point of (19) occurs
at xeq = [0.3203, 0.7027]. Both of the denominators in
(19) are positive over X , thus satisfying assumption A5.
Peak estimation is performed to bound the maximal value
of p(x) = x2 for trajectories beginning in the disc initial set
of X0 = {x | 0.32 − (x1 − 0.3)2 − (x2 − 0.3)2}.

A lower-bound on p(x) = x2 acquired from gridded
numerical ODE-sampling is 0.8157. Table I reports upper-
bounds acquired by finite-degree SOS truncations in (18),
as well as bounds discovered by comparison methods [26],
[27] detailed in Appendix II of [29] at the same degrees for
v(t, x). Table II reports the time taken for Mosek to return
solutions in Table I. All methods return an upper bound of
P ∗ ≤ 1 at degree k = 1. Our method (Problem 16) returns
the lowest peak estimate at each degree k for this experiment.

TABLE I: Bounds for Michaelis-Menten Network (19)

Degree k 2 3 4 5 6
Sum-of-rational (18) 0.8522 0.8159 0.8159 0.8159 0.8159

Lifted [27] 0.9242 0.8200 0.8189 0.8170 0.8185
Cleared [26] 0.9202 0.8306 0.8237 0.8225 0.8210

TABLE II: Timing (seconds) for Table I

Degree k 2 3 4 5 6
Sum-of-rational (18) 0.063 0.922 0.766 3.093 5.438

Lifted [27] 0.063 0.157 1.094 13.266 32.312
Cleared [26] 0.110 0.281 0.531 1.015 1.9690

Degree k = 6 bounds (black dotted lines) and sample
trajectories (colored curves) starting from X0 are plotted
in Figure 1. The k = 6 bounds from Table I are visually
indistinguishable on Figure 1. The red dot marks the location
of the stable equilibruim point xeq .

B. Three-state Rational Twist System
The second example involves a rational modification of

the Twist system from Equation (37) of [30]. The three-
state rational twist system is expressed in terms of matrix
parameters (A,B)

A =

−1 1 1
−1 0 −1
0 1 −2

 B =
1

2

−1 0 −1
0 1 1
1 1 0

 , (20)

to form the expression of (∀i ∈ 1..3):

ẋi(t) =

3∑
j=1

3Bijxj +
Aijxj − 4Bijx

3
j

0.5 + x2
i

. (21)

The polynomial Twist dynamics in [30] lacks the (0.5+x2
i )

denominators. Peak estimation of (21) occurs over the state
space of X = [−1, 1]3 in a time horizon of T = 6. The initial
set X0 is the two-dimensional box X |x3=0. It is desired to

Fig. 1: Trajectories and k = 6 bounds for (19), along with
position of the unique equilibrium point xeq

upper-bound the peak value of p(x) = x2
3 along trajectories

of (21). Tables III and IV compile computed upper-bounds
of p(x) along rational Twist trajectories and solution timing,
in the same style as in Tables I and II. The Sum-of-Ratios
program (18) returns a bound of P ∗ ≤ 1 at degree k = 1.

TABLE III: Bounds for Rational Twist (21)

Degree k 2 3 4 5 6
Sum-of-rational (18) 0.9652 0.4321 0.3590 0.3501 0.3498

Lifted [27] 1 1 1 1 1
Cleared [26] 1 1 1 1 1

TABLE IV: Timing (seconds) for Table III

Degree k 2 3 4 5 6
Sum-of-rational (18) 0.125 0.562 3.125 8.390 38.280

Lifted [27] 0.344 2.125 14.250 80.703 470.313
Cleared [26] 0.219 0.891 2.672 7.156 25.156

A lower bound on P ∗ acquired through sampling (gridding
the plane X0) is P ∗ > 0.3489. Sampled trajectories and the
p(x) = x2

3 level set at the k = 6 bound (Problem 16) for the
rational Twist system are plotted in Figure 2.

Fig. 2: Trajectories and k = 6 bound for (21)

VI. CONCLUSION

This paper presents a scheme to perform peak estimation
of rational systems. The sum-of-rational optimization tech-
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nique from [25] is used to reduce the complexity of resulting
moment-SOS-derived SDPs. This decomposition scheme is
nonconservative if all denominator polynomials Dℓ are posi-
tive and a compact set is considered (generating assumptions
A1-A6 in the dynamical systems setting). Effectiveness of
our technique was demonstrated on example systems.

Future work includes investigating methods to reduce
conservatism of assumptions A1-A6 (such as if Dℓ > 0
only along the graph of trajectories starting at X0). Other
options include applying our method towards rigid body
kinematics, decomposing network structure in dynamics [43]
through sparse sum-of-rational optimization (Theorem 3.2
of [25]), analyzing non-ODE rational system models, and
applying the methods from [25] towards other dynamical
systems problems [14]-[22].
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