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Abstract— Strain wave gears (SWG) are employed in most
robot joints, and hence monitoring their condition gets more
important in robotic applications. The condition of SWGs can,
e.g., be observed by sensor signals of strain gauges that are
mounted on the flex spline, the deformable part of the gear,
for torque prediction purposes. In this paper, the feasibility
of utilizing these sensor signals for fault detection in SWGs
is shown and meaningful features tailored to a specific sensor
setup are proposed. As a first important step towards fault
detection in a real world application, synthetically generated
sensor signals are considered that are derived from a simulation
chain allowing the injection of different faults. In total, five
distinct and practically relevant faults are considered and
different algorithms are applied to classify them. In addition,
robustness regarding disturbed synthetic data is investigated
and the classifiers’ potential for out-of-distribution prediction
is evaluated.

I. INTRODUCTION

Strain wave gears (SWG) play a key role for the motion
of robot joints. Therefore, the malfunction of SWGs can lead
to severe errors in robotic processes. Since SWGs are sus-
ceptible to wear and degradation [1], their condition should
continuously be monitored to detect faulty and abnormal
behavior in an early stage.

The setup of an SWG is illustrated in Fig. 1. The input
shaft is connected to the so-called wave generator (WG)
that deforms, with its elliptical shape, the elastic flex spline
and pushes the flex spline teeth at the major axis of the
ellipse into the teeth of the circular spline [2]. The cir-
cular spline is equipped with a few more teeth than the
flex spline and therefore by the rotation of the WG, the
relative angle between the flex spline and the circular spline
changes accordingly. Since the relative angle between the
two parts changes only slightly, high transmission ratios can
be realized by SWGs [3].

To model faults, anomalies, or degradation in SWGs,
different approaches can be found in the literature. E.g. in [4],
the impact of degradation on the stiffness of the gear as
well as its hysteresis behavior is modeled. In [5], a high-
fidelity multibody model of a collaborative robot, including
a detailed model of the SWGs in the joints, is presented with
the aim of performing condition monitoring. Zhang et al. [6]
analyze the reliability of failure, in particular of so-called
strength failures that can, e.g., lead to the fracture of the flex
spline, and of a so-called stiffness degradation failure that
impacts the performance of the SWG.
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Fault detection in SWGs is covered, e.g., in [7], where
faults in different SWGs located at different positions in the
robot are distinguished based on acceleration sensor signals.
Moreover, Kuo et al. [8] record the sound of SWGs by a
microphone and use these data to classify between a faulty
and a healthy state of the gear. Finally, according to [9], the
electrical current of the motor driving the SWG can also be
used to distinguish between healthy and faulty behavior of
the gear.

To avoid an additional torque sensor in the joint of
the robot, torque information can be extracted from the
deformation of the flex spline by means of strain gauges [10],
[11], see Fig. 1. The sensor signals of these strain gauges
can be synthetically generated by means of the simulation
chain introduced and validated by measurement data in [12].
The simulation chain consists of three submodels: first, a
model describing the dynamic behavior of the SWG taken
from [13]; second, a space truss model to compute the
deformation of the flex spline; and third, a model of the strain
gauge sensors mounted on it. In addition, the opportunities
to inject practically relevant faults in the simulation chain is
shown.

In this paper, the feasibility to leverage sensor signals
of strain gauges, initially mounted on the flex spline for
torque prediction, to detect faults in SWGs is presented.
Furthermore, significant features for a specific sensor setup
are suggested for this task. As a first important step towards
real world applications, synthetically generated, but realistic
measurement data showing frequently observed faults in
practical experiments are used for this analysis. The data is
generated with the simulation chain presented and validated
in [12]. In contrast to the aforementioned literature, the
simulation chain creates the opportunity to consider multiple
variations of the same fault in one SWG and also to exam-
ine the behavior of different SWGs showing these faults.
Moreover, the performance of different classifiers applied
to the generated data is evaluated, their robustness against
disturbances in this data is tested, and their ability for out-
of-distribution prediction is studied.

This paper is organized as follows: Section II introduces
the faults considered for the fault detection. Topics regarding
the setup of the fault detection analyses, i.e. the generation
of the data set and the extraction of features, are exemplified
in Section III. Subsequently, the results of the fault detection
are presented in Section IV. Finally, conclusions are given
in Section V.

II. SIMULATION CHAIN AND CONSIDERED FAULTS

In this work, gauge-sensorized SWGs are considered
similar to the one shown in Fig. 1. To generate synthetic
sensor signals of these gears, the simulation chain presented
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Fig. 1: Setup of the gauge-sensorized strain wave gear RT1-
T from Schaeffler [14], edited.
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Fig. 2: Flow chart of the simulation chain.

in [12] is used, which consists of three different models, as
illustrated in Fig. 2. The first part is a dynamic input/output
(I/O) model of the SWG according to [13], with an imposed
operating point specified by the desired rotation speed nin,d

and the desired load torque Tout,d at the input and output side
of the gear, respectively, see Fig. 2. From the dynamic I/O
model, the acting rotational speed nin and the acting output
torque Tout are extracted and used to derive the loads in the
flex spline model. The flex spline is represented by a space
truss and computes the displacement vector u containing
the displacements of every discrete node in every spatial
direction. Thereafter, the displacement vector u is used in
the strain gauge sensor model to compute the signals si of
strain gauge sensors of the given specific layout shown in
Fig. 3. All sensor signals si, i ∈ {0, 1, . . . , 4} are normalized
voltages of unit mV/V and represent the output of the whole
simulation chain.

The simulation chain is validated by measurements in [12].
In this work, five different fault categories are considered,
see Table I. The following lines compactly exemplify the
dynamic I/O model and the flex spline model to illustrate
the injection of the single faults.

A. Faults in the dynamic I/O model
The dynamic I/O model of the SWG introduced in [13]

can be described by differential equations of the form

φ̈ = f(φ, φ̇, nin,d, Tout,d) , φ =

[
φin

φout

]
, (1)

with φin and φout being the angular position of the gear’s
input and output shaft, respectively. The dynamic model (1)
considers the stiffness of the whole gear by linear and cubic
stiffness effects with respect to ∆φk leading to the stiffness
torque [13]

Tstiff = k1∆φk + k2 (∆φk)
3
, (2)

sensor 0

sensor 1

sensor 2 sensor 3

sensor 4

π
2

Fig. 3: Layout of sensors 0 to 4 at the back of the flex spline’s
collar.

TABLE I: Considered faults and manipulated model for their
injection.

Fault category Manipulated model

Reduced damping I/O dynamics

Reduced stiffness I/O dynamics

Eccentric WG Flex spline

Root tooth crack Flex spline

Tip tooth crack Flex spline

with the linear and cubic stiffness coefficients k1, k2, and
the nonlinear twist

∆φk = tanαin (φin − φout) +
φout

tanαtooth
+ φerr , (3)

with the kinematic error profile φerr and

αin = arctan

(
1

(N + 1) tanαtooth

)
, (4)

with the gear-tooth angle αtooth and the catalog gear ratio
N .

Friction effects in the dynamic model (1) include constant
as well as linear and cubic friction forms. Moreover, friction
caused by resonance vibration and Coulomb friction are
modeled, which leads in total to the friction torque [13]

Tfric = b0 + b1φ̇b + b2φ̇
3
b + b3 sin(φout + θb) + µFn , (5)

with the damping coefficients b1, b2, b3, the phase shift θb,
the Coulomb friction coefficient µ, the gear-tooth normal
force Fn, and

φ̇b = − φ̇out

sinαtooth
. (6)

The faults that are subsequently injected into the dynamic
I/O model are derived from physical effects that are seen in
real world experiments. One aspect that can be observed is
the increase of the efficiency η in the first hundred hours
of the operating time. A comparable behavior is mentioned
in the literature, e.g., in [6]. The reason for the increase of
efficiency in real world applications is assumed to be run-
in effects in the first hundred hours of operating time that
correspond to degradation processes. In addition, this can
lead to some backlash in the gear.

The efficiency can be computed by η = Pout/Pin, with Pin

and Pout being the mechanical power at the input and output
of the SWG, respectively. In this work, the mean value of η
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TABLE II: Temporal evolution of the efficiency η in experi-
ments and its reproduction by the simulation chain with the
nominal damping coefficient bnom1 in Nms/rad.

Experiments Simulations

0h 250h b1 = bnom1 b1 = 1
3
bnom1

η [%] 56.51 66.76 65.81 73.43

0 500 1,000 1,500

0.6

0.8

1

t [h]

k
/k

n
o
m

[-
] Measurement points

Fig. 4: Temporal evolution of measured SWG stiffness k
normalized with the nominal stiffness knom in Nm/rad
measured in the beginning of the experiment.

in a certain time interval is determined for a specific input
rotation speed φ̇in and load torque Tout. Table II lists the
efficiency η for a gear in its initial state and after 250 h of
operating time. The comparison of these two values shows
that the efficiency η has increased by approx. 10% in the first
250 h of the operating time. This behavior is also observed
for measurement data of other SWGs of the same type.

The simulation chain exhibits a similar behavior if the
linear damping parameter b1 in (5) is decreased, which is also
exemplified in Table II. In particular, decreasing the damping
parameter b1 by 1/3 results in an increase of the efficiency η
by approx. 7%.

Another observation that can be made is the decrease of
the stiffness of the SWG over time. This is also confirmed
by [6]. As an example, the temporal evolution of the mea-
sured stiffness of a SWG is shown in Fig. 4, where the stiff-
ness drops by approx. 20% in the first 10 h. Afterwards, the
stiffness stays roughly constant. The reason for this behavior
is again assumed to be run-in effects. The simulation chain
is also able to exhibit a decrease of the SWG stiffness. This
is done, e.g., by reducing the linear stiffness coefficient k1
in (2) of the dynamic I/O model of the SWG.

The decrease of the damping and of the stiffness are each
considered as one fault class, see Table I.

B. Faults in the flex spline model

The flex spline in [12] is modeled as space truss. The
geometry of the flex spline is discretized by a multitude
of nodes that are connected with elastic bars of stiffness
kbar, see Fig. 5. The space truss model has to satisfy certain
boundary conditions that can be derived from the design of
the gear. The first one is the fixation of the flex spline to
the housing of the gear, which imposes a zero displacement
of the nodes located on the edge of the collar, see Fig. 5.
Furthermore, the flex spline’s sleeve is deformed due to the
elliptical shape of the WG. This leads to the predefined

displacement ui,elliptical of the inside nodes of the sleeve
being in contact with the wave generator. Finally, the tooth
meshing forces F tooth,i act on the nodes at the outside of
the sleeve where the flex spline teeth are located.

As listed in Table I, the fault categories eccentric WG,
root tooth crack, and tip tooth crack are considered. The
relevance of the last two faults is also pointed out in [15].
The injection of these three faults in the simulation chain is
exemplified in [12] and is subsequently summarized briefly.
The eccentric WG fault is realized by adding some eccentric
displacement uecc =

[
r, θ, 0

]T
in cylindrical coordinates

with radius r and angle θ to the displacement ui,ellipitcal, as
shown in Fig. 5. To obtain a root tooth crack, the stiffness
kbar between neighboring nodes in circumferential direction
is reduced drastically to k̃bar. Finally, a tip tooth crack is
modeled by a strongly reduced tooth force F̃ tooth,i acting
only at a specific node i.

C. Simulation of faults
In summary, Fig. 6 illustrates sensor signals s̃i of all

five aforementioned fault classes and additionally the sensor
signals si of a healthy gear. Decreasing the linear damping
coefficient b1 in (5) has hardly any impact on the sensor sig-
nals si as shown in Fig. 6a. If the linear stiffness coefficient
k1 is decreased in (2), only the sensor signal s0 changes
very slightly, as can be seen in Fig. 6b. An eccentric wave
generator mainly leads to the offset of some sensor signals,
e.g., sensor signals s1 and s3 in Fig. 6c, and additionally, to
the change of their sinusoidal shape. The root tooth crack
in Fig. 6d shows changing amplitudes in all sensor signals
si. Finally, slight deviations of sensor signals s1 and s3 are
visible between time 0.015 s and 0.02 s in case of the tip
tooth crack, as can be seen in Fig. 6e.

In advance, several variants of each fault are considered
and the sensor signals s̃i are compared. From this comparison
it is concluded that most sensor signals s̃i shown in Fig. 6
are characteristic for each fault category. Furthermore, it is
visible that the presented faults lead to different shapes of
the sensor signals s̃i in Fig. 6. Hence, these sensor signals
are used for fault detection purposes in the following.

III. SETUP OF THE FAULT DETECTION ANALYSIS

Having introduced the simulation chain and the considered
faults, the specifications of the fault detection analysis are
introduced in this section. These are the selection of mean-
ingful features, the generation of data sets for fault detection
tasks, and the classifiers themselves.

A. Feature selection
The selection of features plays a key role in the context of

fault detection. Usually, features cannot be directly extracted
from raw measurement signals. As illustrated, e.g., in [8],
[16], a lot of effort is put into the preprocessing and
afterwards into the choice of features. Choosing statistical
measures as features is popular for fault detection purposes
in SWGs [8], [16]. Hence, the mean msi and variance σsi
of the sensor signals si are considered in the following. The
behavior of SWGs can vary strongly for different operating
points. Hence, all features, e.g. mean and variance, are
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Fig. 5: Boundary conditions due to the elliptical shape of
the wave generator, due to the fixation to the housing of the
gear, and due to the tooth contact.

normalized for each operating point by the value of the
healthy gear, e.g.,

mrel
si =

ms̃i

msi

. (7)

Furthermore, due to the periodic shape of the sensor
signals shown in Fig. 6, reasonable features can be the
discrete Fourier transform (DFT) DFT (s̄i), see e.g. [17],
of the zero-mean sensor signals s̄i = si −msi . Exemplarily,
the DFT of the zero-mean sensor signals s̄0 and s̄1 is shown
in Fig. 7 with the normalization of the frequency f by the
input rotation speed nin. On the one hand, deviations of the
DFT of sensor signal s̄0 in Fig. 7a are only visible for the
reduced stiffness fault and the root tooth crack fault. On the
other hand, only the DFT of sensor signal s̄1 of the eccentric
WG fault differs significantly from the DFT of the healthy
gear, as can be seen in Fig. 7b.

However, the DFT of the difference of certain sensor
signals is a more significant feature. Due to the symmetric
layout of the strain gauge sensors shown in Fig. 3 and the
symmetry of the elliptical wave generator, sensor signals s1
and s3 as well as s2 and s4, respectively, have to be similar
for healthy SWGs. Therefore, their differences

∆s1,3 = s1 − s3 , ∆s2,4 = s2 − s4 (8)

can contain valuable information regarding faults in SWGs,
as illustrated in Fig. 7c and 7d. For the DFT of both ∆s̄1,3
and ∆s̄2,4, the eccentric WG fault, the root tooth crack fault,
and the tip tooth crack fault can be clearly distinguished from
each other as well as from the remaining curves. However,
the remaining curves, corresponding to the healthy gear,
the reduced damping and the reduced stiffness fault, look
similar. To distinguish between these fault classes, additional
features, e.g. related to the efficiency, are necessary.

The efficiency of SWGs also changes with varying operat-
ing points. Hence, the normalized quantity ηrel according to
(7) is considered. A good distinction between slight changes

TABLE III: Considered feature selections.

Selection Statistics Frequency spectrum Efficiency

1 mrel
si

, σrel
si

- ηrel

2 mrel
si

, σrel
si

DFTrel (s̄i) ηrel

3 - DFTrel (∆s̄1,3), DFTrel (∆s̄2,4) ηrel2

in ηrel can be achieved by considering the expression

ηrel2 = 4

√
|1− ηrel| . (9)

The different feature selections considered in this work
are listed in Table III. The DFT features are normalized
component-wise similar to (7) resulting in DFTrel (•). Se-
lection 1 considers only statistical measures and the relative
efficiency ηrel. Selection 2 additionally takes the DFT of
all sensor signals into account to study their benefit as
features. Finally, Selection 3 consists of the DFT of the
difference of redundant sensor signals DFT (∆s̄1,3) and
DFT (∆s̄2,4) as well as the special efficiency expression
ηrel2 , since this selection shows good classification results in
simulation studies done in advance.

B. Data set
The data of three different SWG models is considered

in this study. For this reason, the dynamic I/O model is, at
first, parameterized with the parameters proposed in [13] and
thereafter the healthy linear damping parameter b1 and the
healthy linear stiffness parameter k1 are varied for each gear
according to Table IV. The strain gauge sensor model of
each SWG model is additionally fitted to measurement data
of three distinct Schaeffler RT1-T gears, see Fig. 1, according
to [12]. SWG models 1, 2, and 3, therefore, differ in several
properties from each other.

Next, the fault classes presented in Section II are con-
sidered including an additional healthy class, which leads
to in total six classes. Sixty different variants of the fault
are considered in each fault class. This is done for each
of the SWG models 1, 2, and 3. The variants of the fault
classes are listed in Table V. Sixty different variants of the
damping parameter b̃1 and the stiffness parameter k̃1 are
considered in the reduced damping and reduced stiffness
class, respectively. Furthermore, sixty data points for the
eccentric WG, the root tooth crack, and the tip tooth crack
class are generated by applying each fault with three different
degrees of severity, and additionally, at twenty different,
equally distributed positions in circumferential direction, see
Table V. In case of the healthy class, sixty times the same
SWG model is considered to balance the number of data
points in this class compared to the other ones.

Finally, the data is generated for six operating points by
considering every combination of the desired input rotation
speeds nin,d ∈ {2000, 4000} rpm and the desired load
torques Tout,d ∈ {7, 39, 70} Nm. Therefore, a number of
overall 2160 data points are considered for each of the three
SWG models, leading to 6480 data points in total.

A disturbed data set, similar to the aforementioned one,
is also generated since slight irregularities can be seen in
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Fig. 6: Healthy and faulty sensor signals si and s̃i, respectively, for the faults: (a) reduced damping, (b) reduced stiffness,
(c) eccentric WG, (d) root tooth crack, and (e) tip tooth crack.
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Fig. 7: DFT of different sensor signals.

measurement data. It can be observed that these irregularities
have the shape of lower order harmonics of the input rotation
speed and that slight constant offsets occur. Therefore, for
each sensor signal si, randomly chosen amplitudes aj and
phases αj are generated and a harmonic disturbance is added
to the sensor signals according to

sdi = si + a0 +

4∑
j=1

aj sin

(
2π

j
nint+ αj

)
. (10)

An example of disturbed sensor signals sdi can be seen in
Fig. 8. The disturbed data set consists as well of 6480 data
points.

C. Applied classification algorithms

The implementations of Python’s Scikit-learn package [18]
are used for the following classification tasks. The considered
classifiers are chosen to be a multi-layer perceptron (MLP),
a support vector machine (SVM), a random forest classifier
(RF), a k-nearest neighbor classifier (KNN), and a naive
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TABLE IV: Parameters of considered SWG models.

SWG model b1 k1

1 bnom1 knom1

2 bnom1 · 1.2 knom1 · 1.2
3 bnom1 · 0.8 knom1 · 0.8

TABLE V: Specification of sixty variants in each class.

Class Properties

Healthy SWG model not varied

Reduced damping b̃1 = λj · b1,

with 60 evenly spaced λj between 0.4 and 0.8

Reduced stiffness k̃1 = λj · k1,

with 60 evenly spaced λj between 0.4 and 0.8

Eccentric WG uecc =
[
rj , θ, 0

]T
, j = 1, ..., 3,

θ = 0, π/10, ..., 19π/10

Root tooth crack k̃bar = λj · kbar, λj ≪ 1, j = 1, ..., 3,

at θ = 0, π/10, ..., 19π/10

Tip tooth crack ∥F̃ tooth,i+j∥2 = λk · ∥F tooth,i+j∥2, λk ≪ 1,

k = 1, ..., 3, j = 1, ..., 20

bayes classifier (NB), see e.g. [17], [19]. Their properties are
listed in Table VI and relate mainly to the standard settings
of the implementations of Python’s Scikit-learn package,
however some adaptions are made and are reasoned in the
following.

An analysis is made for MLP in advance to investigate
the influence of the number of neurons per hidden layers
and the number of hidden layers themselves. For this rea-
son, {2, 3, 4} hidden layers are considered with {10, 30, 50}
neurons per layer and the architecture showing the best
results for Selection 3 on disturbed data is chosen. Multiple
kernels have been tested for SVM, but, the most promising
polynomial kernels have been rejected due to unreasonably
long training times with only slightly improved results at
the same time. The performance of RF converges for an
increasing number of trees and an increasing depth of each
tree. The size of RF was in advance slowly raised and
chosen in such a way that a further increase does not lead
to significantly improved classification results anymore. The
number of considered neighbors for KNN is varied and the
one with the best results for Selection 3 on disturbed data
is chosen. Finally, a Gaussian distribution is taken for NB
since it is assumed that it suits best to the distribution of the
data points.

IV. FAULT DETECTION ANALYSES

In this section, the fault detection on the data set presented
in the previous section is carried out. Furthermore, the
robustness of the classification is evaluated by considering
disturbed data and performing out-of-distribution classifica-
tion. To reduce the impact of unfortunate choices of training
and test sets, a k-fold cross validation [20] with four splits
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Fig. 8: Comparison of non-disturbed and disturbed data.

TABLE VI: Properties and architecture of chosen classifiers.

Classifier Properties

MLP: Multi-layer perceptron 3 hidden layers, 10 neurons each,

ReLU activation functions

SVM: Support vector machine Radial basis function kernel

RF: Random forest 100 trees of depth 7

KNN: k-nearest neighbors 3 considered neighbors

NB: Naive bayes Gaussian distribution assumed

is applied and the average score over all splits is compared
in the following.

A. Varying feature selection

First of all, the influence of the feature selections listed in
Table III on the classification score is evaluated in Table VII.
There, the RF and the KNN classifiers show similar scores
on Selection 1 and 2 with a test score of almost 100%
and approx. 97%, respectively. However, on Selection 3,
they show their lowest test scores of about 97% and 94%,
respectively. On the other hand, MLP shows its highest test
score of approx. 98% on Selection 3 in contrast to less than
84% on the other selections. Reasonable test scores of about
93% on Selection 1 are achieved by NB. Yet, on the other
selections, the test score is below 80%. The last place is
taken by SVM exhibiting a test score of about 66% on
Selection 3.

Based on the presented results, RF seems to be the most
promising classifier regarding its prediction score and its
abilities to predict reliably with different selections. For
KNN, similar findings hold, however, with a smaller clas-
sification score. MLP also seems to be promising, but only
if the features of Selection 3 are chosen. The highest scores
are achieved using Selection 1 or 3 for all classifiers. Hence,
it can be concluded that the DFT of single sensor signals
does not improve the classification results in these cases.

B. Disturbed data

The performance of the classifiers is now evaluated on
the disturbed data set. For this reason the classifiers are
trained and tested on the disturbed data, similar to the afore-
mentioned analysis. The corresponding prediction results are
listed in Table VIII. In general, the prediction scores are not
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TABLE VII: Score on training and test set for different
selections.

MLP SVM RF KNN NB

Selection 1

Avg. training score [%] 84.17 49.77 99.92 98.91 92.64

Avg. test score [%] 83.33 49.60 99.81 97.95 92.59

Selection 2

Avg. training score [%] 82.47 35.60 99.56 98.62 79.96

Avg. test score [%] 81.10 35.49 99.24 97.21 79.89

Selection 3

Avg. training score [%] 99.09 83.51 98.21 97.92 79.49

Avg. test score [%] 98.30 66.10 96.96 94.48 79.43

TABLE VIII: Score on training and test set for disturbed
data.

MLP SVM RF KNN NB

Selection 1

Avg. training score [%] 67.14 47.29 91.63 89.20 74.17

Avg. test score [%] 66.02 47.15 90.35 79.69 73.72

Selection 2

Avg. training score [%] 71.34 27.02 92.80 87.56 67.57

Avg. test score [%] 69.43 27.16 91.88 78.60 66.81

Selection 3

Avg. training score [%] 99.23 86.56 98.35 81.34 70.61

Avg. test score [%] 98.24 46.20 96.88 63.38 69.72

as high as they are in the undisturbed case. For MLP and
RF, the test score on Selection 3 decreases only slightly.
However, the score of RF drops by approx. 7% and 9% for
the other selections. The test score of KNN and NB decline
in all cases more strongly than the score of RF. The best
test score that can be achieved by KNN is about 80% on
Selection 1. In case of NB, the highest test score is about
73.72% on the same selection. Again, the lowest test scores
are achieved by SVM with a maximum test score of approx.
47%.

Therefore, it is summarized, that the MLP and RF clas-
sifiers show the best robustness against disturbances. The
feature selection that contributes the most to this result is
Selection 3, which takes the redundancy of the sensor signals
into account.

C. Out-of-distribution classification
In real world applications, the classifiers cannot be trained

on every gear to which they will be applied to in future. Thus,
the classification on data of simulation chains that have not
been used for the training of the classifier is considered. The
classifiers are subsequently trained for this reason on two
of the simulation chains mentioned in Table IV, e.g., SWG
models 1 and 2, afterwards, the prediction is done on data
of the remaining simulation chain, in this example the data
of SWG model 3. This case is named 1, 2 → 3 in Table IX,

TABLE IX: Avg. score in per cent on out-of-distribution
classification.

MLP SVM RF KNN NB

Selection 1

1, 2 → 3 70.74 44.44 92.50 90.14 91.99

2, 3 → 1 75.83 48.15 99.91 87.82 92.69

1, 3 → 2 75.37 43.84 93.56 86.30 86.16

Selection 2

1, 2 → 3 61.16 31.99 59.54 87.36 76.30

2, 3 → 1 59.54 30.32 90.93 80.88 79.91

1, 3 → 2 58.98 30.65 61.76 83.33 67.92

Selection 3

1, 2 → 3 79.81 40.93 82.82 77.08 77.73

2, 3 → 1 81.62 48.75 77.82 65.97 60.28

1, 3 → 2 74.21 47.92 85.79 83.15 67.55

which lists the score of this classification task for all possible
variants.

In this setting, the best results are achieved by RF with a
score above 92% on Selection 1 in all cases. NB achieves
also reasonable results on the same selection with a score
between 86% and 93% followed by KNN with a score
between 86% and approx. 90%. The highest score of MLP
is approx. 82% on Selection 3. SVM performance is the
weakest with the best score of approx. 48% on Selection 1
and approx. 49% on Selection 3.

Hence, regarding the out-of-distribution classification, RF
and NB are the best performing algorithms when considering
Selection 1. Although, MLP looked promising on the classi-
fication of disturbed data, the quality of this classifier is not
as high when doing out-of-distribution classification.

D. Out-of-distribution classification on disturbed data
The out-of-distribution classification is done on the dis-

turbed data in this section to study the worst case quality
of the fault classification that is assumed to be expected on
real world measurement data. Both training and testing are
executed as described in the previous paragraphs.

The classification scores of the four most promising clas-
sifiers, MLP RF, KNN, and NB on the most promising
selections, Selection 1 and 3, are listed in Table X. RF
achieves the best classification scores on Selection 3, which
vary between approx. 86% and 93%. RF still achieves scores
between approx. 79% and 88% on Selection 1. Moreover,
the classification score of MLP varies in the best case
between approx. 72% and 83%. The other classifiers achieve
classification scores smaller than 75%.

This analysis shows that RF achieves the best results for
the out-of-distribution classification on disturbed data. The
classification score is above 86% in all considered cases.
However, the results have to be rated in context of a specific
application task. It is assumed that usually the achieved score
is not sufficient. Therefore, the potential of retraining the
classifiers has to be evaluated, e.g., by applying transfer
learning concepts.
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TABLE X: Avg. score in per cent on out-of-distribution
classification on disturbed data for four selected classifiers.

MLP RF KNN NB

Selection 1

1, 2 → 3 51.25 87.59 70.93 66.85

2, 3 → 1 53.70 85.69 71.67 65.00

1, 3 → 2 61.30 79.03 65.65 73.84

Selection 3

1, 2 → 3 72.08 90.09 56.99 53.94

2, 3 → 1 82.92 86.20 47.31 56.39

1, 3 → 2 82.87 92.31 50.32 74.26

V. CONCLUSIONS

Fault detection in gauge-sensorized strain wave gears
(SWG) using synthetically generated strain gauge sensor
signals is presented in this paper. Five fault classes and a
healthy class are distinguished and the performance as well
as the robustness of different classifiers is compared.

This paper points out the practicality of fault detection
in SWGs based on strain gauge sensors of a specific layout.
Furthermore, simple but meaningful features are proposed for
this task. The fault detection analysis shows that regardless
of the feature selection, the random forest classifier (RF) is
the most promising classifier with test scores up to 99.81%.
In addition, the multi-layer perceptron (MLP) shows a high
test score of 98.30% as well, but only using the features
of Selection 3. The consideration of disturbed sensor signals
leads to the conclusion that a reasonable classification score
above 96% on the test set is only achieved by MLP and RF
using the features of Selection 3. For the out-of-distribution
classification, scores above 92% in all considered cases can
only be achieved by RF. Finally, analyzing the classification
quality on disturbed out-of-distribution data leads to the
conclusion that among the considered classifiers, RF is the
most robust one achieving a classification score of at least
86.20%.

In future work, more data sets of different gears are
to be considered and analyzed regarding the robustness of
the classifiers. In addition, the impact of the architecture
and size of MLP and RF on their robustness properties is
to be evaluated. Furthermore, methods for relearning, e.g.,
considering transfer learning algorithms, are to be developed
to tackle the problem of out-of-distribution classification.
Finally, regarding real world applications, the analyses are to
be done with measurement data and the online applicability
of the presented classifiers on microcontrollers is to be
studied. A test bench is currently under construction for this
reason.
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