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Recursive learning of feedforward parameters in high-tech motion systems:
An experimental case study

Thijs van Keulen!2, Bram Kleefstra!, Ruud Beerens

Abstract— This article provides an experimental case study
of a state-of-the-art recursive feedforward parameter learning
framework on a high-tech industrial metrology and inspection
machine. The aim of the learning framework is to recursively
adapt the feedforward parameters to compensate for time-
varying and position-dependent system behavior, e.g., caused
by wear, position and temperature dependent actuator char-
acteristics, changes in shape and stiffness due to thermal
expansion, and sample time jitter. The strength of the approach
is demonstrated through experiments on a high-tech motion
system which show a peak error reduction of circa 45%
compared to the industrial controller with offline calibrated
feedforward parameters.

I. INTRODUCTION

High-tech motion systems such as industrial printers,
electron microscopes, lithography machines, and metrol-
ogy inspection tools experience an ever-increasing demand
in positioning accuracy and throughput, which translates
to stringent requirements on motion control performance.
Whereas feedback control is essential for achieving exter-
nal disturbance suppression, feedforward control aims at
compensation for reference-induced disturbances, which is
crucial for achieving accurate reference tracking.

Feedforward control for high-tech motion systems is often
designed based on a limited-order parametric model resem-
bling the reciprocal plant dynamics. Such a compensation
structure utilizes higher-order derivatives of the reference
position, e.g., velocity, acceleration, jerk, and snap to gen-
erate the force trajectory that leads to optimal reference
tracking. In this feedforward structure, acceleration induced
forces relate to the inertial forces of the system, along with
velocity-related forces caused by, e.g., viscous friction or
motor damping forces. A jerk related feedforward term is
used to compensate digital-to-analog converter effects and
(sub)sample time mismatch between feedback and accelera-
tion feedforward [13], and snap feedforward can be used to
compensate for compliance in the system [5], [12].

Given the complexity of the controlled plant, feedforward
accuracy is hindered by, e.g., the limited structure of the
feedforward model, time or position dependency of the
controlled plant dynamics, or calibration errors. In order
to improve feedforward accuracy, and, thereby, reference
tracking performance, several learning strategies exist that
aim at correcting for position dependency or plant variations
by online learning or adaptation of the feedforward signal.
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A well known example is iterative learning control, see,
e.g., [8], where a feedforward signal is updated between iter-
ations of a repetitive positioning task. Further advancements
has led to increased robustness to setpoint variations, see,
e.g., [18], [7]. Iterative feedforward tuning [4], [1] exploits a
data-driven optimization of feedforward parameters in either
a physics-guided structure or a FIR filter. These techniques,
however, are only suitable for motion systems with repetitive
servo tasks, and may, therefore, be restrictive.

Adaptive control, see, e.g., [15], [9], provides a continu-
ous feedforward parameter adaptation by solving an online
parameter estimation problem recursively. However, these
methods are sensitive to bias due to, e.g., measurement noise,
which is addressed in, e.g., [16] and [17], by compiling
an approach for recursive feedforward estimation based on
instrumental variables. In particular, the approach in [17] is
a continuous-time approach to online parameter adaptation,
which continuously updates feedforward parameters during
machine operation and is robust to any bounded setpoint
variation. Specifically, the method uses a low complexity
model of the controlled plant in combination with basis
functions and selected sub-optimal feedforward parameters
as instrumental variables to recursively -and bias free- esti-
mate the optimal feedforward parameters. The plant model
is hereby used to extract individual contributions of the
feedforward parameters on the (measured) positioning error,
based on which the optimal feedforward parameters are
estimated in order to minimize the error. The framework
exploits the time-scale separation principle well known in
the context of extremum-seeking control, see, e.g., [19],
by employing fast parameter estimation and relatively slow
parameter updates.

This paper presents the implementation and an experi-
mental performance assessment of the feedforward parameter
learning framework presented in [17] on the wafer stage of a
state-of-the-art industrial metrology inspection machine, used
in the production process of microchips. This system has
inherently position-dependent dynamics due to its geometry,
motor constant variations and cable slabs. Frictional effects,
that are hard to measure and to compensate for by offline
calibrated feedforward parameters, play a significant role.

The remainder of this article is organized as follows. In
Section II, we provide a closed-loop system description and a
parameterized feedforward control design. The learning feed-
forward framework of [17] and its implementation aspects
are discussed in Section III. The experimental performance
assessment is presented in Section IV, and conclusions are
provided in Section V.
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II. FEEDBACK AND FEEDFORWARD CONTROL DESIGN
FOR HIGH-TECH MOTION SYSTEMS

In this section, we present a model of the dynamics of
a high-tech motion system and the design of the reference
trajectory. Furthermore, the design of the feedback and
feedforward control is elaborated.

A. System dynamics
High-tech motion systems can generally be described by
[5], [6]
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in which s is the Laplace variable, m is the mass of the
system, ( is the viscous damping parameter, Ngo, are the
number of flexible modes, u; and v, are the associated
eigenmode vectors, wy is the kth resonance frequency, (j
is the damping of the kth flexible mode. Note that, at
lims_,0 P(s), the flexible modes have a static contribution,
namely, a constant defined as Pyrpo = P(0) € R, i.e., the
compliance of the system.

B. The reference trajectory

The reference trajectory for motion systems can be shaped
to minimise the duration of a move to a desired position,
to comply with the force and power limits of the actuator
by limiting the velocity and acceleration values, and to
mitigate the excitation of resonances in the plant by selecting
appropriate jerk and snap values, see [2], [14].

To ensure convergence of the optimization process, the
following assumptions are required.

Assumption 1. The reference trajectory of the system is
assumed to be a non-zero trajectory.

Assumption 2. The first four derivatives of the position set-
point are bounded, i.e., the velocity, acceleration, jerk and
snap. Furthermore, zero velocity is assumed at the start and
the end of the reference trajectory.

Assumption 1 provides a persistence-of-excitation condi-
tion to the optimization problem while Assumption 2 ensures
a bounded solution.

C. Control design

The control design includes a combination of feedforward
and feedback, see Fig. 1.

The feedback control entails Proportional-Integral-
Derivative and second-order Low-Pass (PID+LP) filtering,
see, e.g., [10]
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where k;, is the proportional gain, wq the derivative fre-

quency, w; the integrator frequency, wy, the cut-off frequency

of the low-pass filter and (i, the damping of the low-pass
filter.

In addition to (2), notch filtering can be used to dampen
excited flexible plant modes
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Here, 3. ; and 3, ; are the damping parameters, and w; ; and
wyp,; are the notch pole and zero frequency of the gth notch
filter, respectively. The feedback control is then defined by:

Cfb(S) = Opid(s) : Cnotch(s)- €]

The feedforward control uses the reference trajectory to
calculate the force input required to move the system in a
desired way. The optimal feedforward resembles the inverse
of the plant, Cg(s) = P~1(s), such that, y = P(s)P~1(s)r.
However, in the case of high-tech motion systems (1), invert-
ing P(s) yields an improper transfer function. Nevertheless,
in [6] it is shown that, although inverting the plant is not
possible, the feedforward control can be modelled as a linear
combination of feedforward parameters and derivatives of the
reference signal. Conventionally, these feedforward parame-
ters are calibrated offline. However, as indicated before, the
plant behavior can vary in time.

Fig. 1. Interconnection of a system working in a closed loop with plant
P, Trajectory Planner (TP), feedback control Cf, and feedforward control
Ceg, and Learning Framework (LF).

Agains this backdrop, we define the following feedforward
control structure

Cia(s,0) = (s +1hs” + O(s)¥(s), ©)

where 6 and m are the offline calibrated damping and
mass estimates, respectively, ©(s) € R** is a vector of
feedforward parameters that can compensate time-varying
plant behavior

O(s) = [ Ov(s) Ba(s) 6;(s) 0a(s) ], (6)

in which, 6., 6., 6;, and 84, are the velocity, acceleration, jerk
and snap parameters, respectively. Furthermore, ¥ € R**!
denotes an array of basis functions given by

Us)=[s s* s s ]T. (7

The relation between reference signal r and error signal
e, is described by the following transfer function,
1— P(s)C; C]
H(s0) = ¢ = L LWC(5.0)
r 1+ P(S)Cﬂ)(s)
Under the assumptions [17] that 6, < m and that the rigid-

body approximation P(s) = m321+ % of (1) is accurate at

®)
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frequencies below the first resonance, we can approximate
(8) by

H(s,0) = —S5,(5)O(s)¥(s), )
where .
& P(s)
o) = B ) o) (10

is the rigid-body process sensitivity function estimate. Cru-
cially for the learning framework, relation (9) is linear in the
parameters O.

III. FEEDFORWARD PARAMETER LEARNING FRAMEWORK

A. Problem description

Consider now the learning objective to adapt the feedfor-
ward parameters O in (5) such that the squared servo error
gets minimized:

O*(t) = arg min/ e(1,0(7))dr

o) J_uoo

Y

To limit the solution space, a constant parameter estimate is
considered in a receding horizon of past measurement data.
In this context, we can construct the parameter estimation
problem with solution:

t

0" =arg min/ e?(r,0)dr (12)
© Jt-T

in which T is the learning horizon and ©" is a vector

of constant parameters that provides the best fit in the

considered horizon of past data.

B. Parameter estimation

To adapt the feedforward control, we thus seek a mapping
of measured error e to the parameter set ©. To this end, let
us choose the following receding-horizon objective function:

V(t,0)) = %/H (e(T,@(T)) — @(T,éw)é‘s)QdT, (13)

where O(.) are the actual applied feedforward parameters
within the learmng hor1zon O € R*! is the scaling of the
columns of (¢, 9 ) € RT*4 ie., the regressors defined
as
o(t,8") = H(tO " )r, (14)

in which H is defined in (9) and ©'* € R4*! are selected
constant sub-optimal compensation parameters used as in-
strumental variables (IV) [3].

Since (13) is quadratic in the parameters a least-squares
solution of the objective function is given by

=5, 1 t T 5
o= [l @T(r)®(r)dr /mq) (r.©

IV

Je(r, ©)dr
(15)

The recursive least squares solution is computationally
expensive. To reduce the memory allocation, the moving-
average filter from (15) is replaced by a first-order low-
pass filter and the term W is replaced with a

constant C, leadlng to the approximate least-squares solution

& =T co (k8" )ek 0O). (16)
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Here, wt = % is the cut-off frequency of the low-pass filter
that replaces the moving average.

C. Parameter adaptation

Immediate adaption of the estimated feedforward param-
eters O in (5) would affect the solution (16) in future
time. Therefore, a relatively slow adaption of the feedforward
parameters is needed [17] compared to the learning horizon
required to estimate ©°.

Against this backdrop, consider a slow linear dynamic
system, where the input is the estimated scaling parameter
©? and the output is the adapted feedforward parameter set,
© used in (5):

F(s)=[ % % <4 @] (17)

where wy, w,, wj and wy are the adaption frequencies of the
feedforward parameters. Note that, the following condition
must hold { Wy, Wa, Wj, Ws } < wr, for the adaption
not to affect the estimation this is based on the time-scale
separation principle [17], as shown later in this section.

Crucial for the stability of the learning framework is time-
scale separation [11]. Using the time-scale separation princi-
ple, we demand the adaption of the feedforward parameters
to be sufficiently slow. This way, the feedforward parameter
over the finite time window is considered to be steady-state
and will not influence the parameter estimate in the next
step of the recursive scheme. In order to demonstrate this,
we show that the change in time of O(¢ ) (6) ( ) is small
compared to the change of ©°(¢ ) 4o ( ). The
update rate is defined with wp = T‘ In thls context, we
obtain the update-rate of (16) as a low-pass filter with the
learning horizon as cut-off frequency:

1 de’ —IV =5
—— =C®(t,06 t,0(t)) — 0°(t).
= 008 el 0(1) — 6°(1)
Note that, e(t, 9(¢)) is dependent on O(t). To demonstrate
that the dependency of e(t, ©(t)) on O(t) does not introduce
instability, we need to show that, on the time frame of the
parameter estimation, the rate of change of O(t) in time,

‘f (t), is negligible. We define the dynamics of %(? (t) by

(18)

a = WFéé(t),

see (17). We normalise the time variable with the frequency
wr, 0 = wrt and rewrite (19) as

19)

doe WF ~5
. 2
do wT® (o) (20
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Using the new time variable o, (18) rewrites as

e’ _ N

- = o, 6" )e(o,0(0)) — O (0).
Knowing that the initial condition of O(t) is ©(0) = OV,
we can solve (20) as

2

O(0) =0 +¢ / ’ ©°(r)dr, (22)
0

where ¢ = :}’—fr is a small, dimensionless parameter. Since
we can select wt > wp, we can consider ¢ negligibly small.
Using the singular perturbation method [11], we can set € =
0 in (22), which results in ©(c) = ©'V. Following this, ©(c)
can be considered ‘“quasi-steady-state” [11] and substituted
in (21) to show the parameter estimation is not dependent
on the parameter update:
50

49 _ co(0,8V )e(o, 01V) — (o).

do
This yields a non-varying ©(¢) on the time frame nor-
malised to the parameter estimation time-scale, o = wrt.
Considering the relatively slow adaption of the feedforward
parameters, the following situations are possible:

(23)

o The plant characteristics do not change over time, this
framework will yield the same solution as the infinite
horizon case, only as fast as the adaption function in
A7)

o The plant characteristics change faster than the adap-
tion function in (17), the solution of the feedforward
parameter will be averaged out, depending on the rate
of change of the feedforward parameter and the adaption
frequency;

o The plant characteristics change slower than the adap-
tion function in (17) the change in the feedforward
parameter will be fully captured by the learning frame-
work.

Thus, the feedforward parameters will be estimated in a
stable manner.

IV. EXPERIMENTAL CASE STUDY

In this section we present an experimental case study on
an industrial metrology inspection machine. We provide a
system description, after which we present and discuss the
experimental results.

A. System description

The case study is performed on the wafer stage of an
industrial metrology inspection machine used in the pro-
duction process of microchips. Modern microchips contain
several layers that all need to align on top of each other as
accurately as possible. Such an overlay property is measured
by a metrology inspection machine, which positions a wafer
under on optical sensor using a wafer stage. The sensor
measures overlay by emitting light onto specific markers
at several locations on the wafer and measures back the
diffraction pattern. The intensity difference of the scattered
light pattern is translated to a metric for overlay accuracy. To

{} y X-beam

wafer <3

Y-beam

Fig. 2. Schematic representation of the wafer stage of the optical
metrology inspection machine. The point-of-interest (POI) is measured using
interferometers.
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Fig. 3. Wafer stage reference profile in x direction, comprising of large
and small point-to-point moves.

inspect all markers on the wafer, the wafer stage performs
a point-to-point motion profile from one marker to the next,
with stringent requirements on settling time and peak-to-peak
positioning errors during overlay measurements.

Consider Fig. 2, which depicts a schematic represenation
of the wafer stage. The stage consists of two perpendicular
beams, actuated at each side, dragging along a wafer carrier.
The logical degrees of freedom are the translations in z and y
direction, and individual rotations of the beams. A geometric
decoupling method maps the actuator forces to forces and
moments acting on the logical degrees of freedom. In this
study, we consider only motion in x direction subject to a
reference profile that is typical for normal operation of the
machine, see Fig. 3. The reference profile consists of several
large and small point-to-point moves, covering the full wafer
in = direction.

The default feedforward strategy (i.e., the current state-
of-practice) consists of offline calibrated mass feedforward,
delay compensation, and compliance compensation, see, €.g.,
[12]. The latter corrects the measured wafer stage position
for contributions related to compliancy (see Sec. II-A), which
prevents the feedback controller to react on compliancy
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related errors. For the learning framework, we employ a feed-
forward structure with mass, jerk, and velocity dependent
parameters, i.e., 0,, 8;, and 0,, respectively. Since compli-
ance compensation is already applied, snap feedforward is
not used.

B. Experimental results

We will now compare the performance of the wafer stage
for 1) the case without the feedforward learning framework
applied (i.e., using the default feedforward setting), and
for 2) the case with the learning feedforward algorithm
enabled. Recall that compliance compensation remains intact
for both cases. Performance is qualified by settling time
and positioning errors in the time intervals where overlay
measurements of the markers take place, typically between
Sms and 15ms after each point-to-point move ends (the
allowable settling time is Sms).

Consider Fig. 4, which shows the convergence of the feed-
forward parameters during execution of the reference profile.
The figure shows (slow) convergence towards nominal feed-
forward parameter values, but also the effect of continuous
learning of the parameters is visible (see the insets). Namely,
small variations in the feedforward parameters over time
arise as a result of position-dependent effects, such as varying
friction, cable deformation, and motor constant variation.

We will now illustrate the performance benefits of the
learning feedforward algorithm compared to the default
feedforward. To this end, consider Fig. 5, which depicts the
positioning error profile for three point-to-point moves in
the reference with different move sizes. For each individual
move, we define the time instant where the move ends as
t = 0. After the move ends, we allow Sms of settling

'53.85

53.8 /\A“/\\
6

0 2 4 6 8 10
100 - 1
o 80f :
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60 1
40 ]
0 2 4 6 8 10
time [s]
Fig. 4. Convergence of the learning feedforward parameters.

Fig. 5.
sizes.

time after which an overlay measurement (i.e., acquirement)
takes place, which, in this case, takes 10ms. These relevant
time instances are indicated in Fig. 5 by the vertical blue
lines. The error contribution related to the mass and jerk
feedforward parameter manifests itself during acceleration
and deceleration phases, and therefore plays a significant role
in settling performance. The default mass feedforward (and
delay compensation) is clearly not optimal, since the appli-
cation of the learning feedforward results in an overshoot
reduction up to 50% in the time interval where an overlay
measurement takes place (i.e., at ¢ € [5,15]|ms). The peak-
to-peak error for each move in this time interval is given
by

ep2p = | max (e(t)) — min (e(t)) |, (24)
with e(t), ¢t € [5,15]ms, the position error. The peak-to-
peak error is shown to reduce up to 45%, which results in a
significantly more accurate overlay measurement.

Let us now elaborate on the performance benefits of the
learning feedforward on the complete reference, after the
feedforward parameters have nominally converged. Specifi-
cally, we take the last 100 moves of the total reference (which
contains 252 moves in total) to omit the initial transient
effects of the learning algorithm. We inspect both the peak-
to-peak error for each move, as defined in (24), and the
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default feedforward

learning feedforward
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acquirement end
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Position errors for three point-to-point moves with different move
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moving average (MA) at t = bms for each move, i.e,

1 t+T
epmalt) = ?/ e(r)dr, (25)
t

with T' = 10ms the acquirement time. We use the MA value
at t = bms (i.e., at the start of an overlay measurement) as a
metric for transient performance. Consider Fig. 6, where the
MA and peak-to-peak error distribution for 100 subsequent
wafer stage moves are depicted. A consistent improvement
on both metrics can be observed for the learning feedforward
algorithm compared to the default feedforward strategy.

Finally, we observe that the velocity component (which
is not present in the default feedforward strategy) of the
learning feedforward results in improved reference track-
ing by compensating for, e.g., viscous friction (which is
generally uncertain and time-varying). The significance of
its contribution is clearly visible in the Cumulative Power
Spectral Density (cPSD) of the position error of the complete
reference, presented in Fig. 7, which provides a metric for
the total energy of the servo signals.

|- default feedforward [ learning feedforward
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> > 04
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MA %107 ep2p x107

Fig. 6. Distribution of the Moving Average (MA) at ¢ = 5ms (left) and
peak-to-peak error in the interval ¢ € [5,15]ms for 100 subsequent wafer
stage moves.
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Fig. 7. Cumulative Power Spectral Density of the measured positioning
errors.

V. CONCLUSION AND FUTURE WORK

This paper studied a feedforward parameter learning
framework. The learning framework decomposes the mea-
sured error in to the effect of individual feedforward parame-
ters. The proposed method is evaluated with an experimental
case study on the wafer-stage of a metrology and inspection
machine. In this case study the performance increase for
the learning framework becomes apparent. The experimen-
tal case study shows a reduction in peak-to-peak error of
45% compared to the default production controller. Future
work will focus on extending the learning framework with
nonlinear feedback control, and a multi-input multi-output
implementation of the learning framework.
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