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Abstract— In this paper, we propose a new algorithm to
solve the Inverse Stochastic Optimal Control (ISOC) problem
of the linear-quadratic sensorimotor (LQS) control model. The
LQS model represents the current state-of-the-art in describing
goal-directed human movements. The ISOC problem aims at
determining the cost function and noise scaling matrices of the
LQS model from measurement data since both parameter types
influence the statistical moments predicted by the model and are
unknown in practice. We prove global convergence for our new
algorithm and at a numerical example, validate the theoretical
assumptions of our method. By comprehensive simulations,
the influence of the tuning parameters of our algorithm on
convergence behavior and computation time is analyzed. The
new algorithm computes ISOC solutions nearly 33 times faster
than the single previously existing ISOC algorithm.

I. INTRODUCTION

Inverse Optimal Control (IOC) methods [1] have gained
significant research interest in the last years, from a
theoretical- as well as application-oriented perspective. IOC
methods answer the inverse question of OC problems: when
are observed trajectories or control laws optimal, i.e. the
result of an OC solution. Hence, IOC approaches aim at
identifying the unknown cost function from observed trajec-
tories, the so-called ground truth (GT) data, that are assumed
to be optimal. An important application of IOC methods
is the identification of goal-directed human movements.
While there are strong indications (see e.g. [2], [3]) that
goal-directed human movements can be described by an
OC model, the corresponding cost function is unknown in
practice and needs to be identified from measurement data
to verify the model hypothesis or to use the identified model
for the design of human-machine systems (e.g. prediction,
classification or support of human movements). For deter-
ministic OC models (see e.g. [3]), IOC methods are applied
with these goals for example in [4]–[6]. However, deter-
ministic OC models describe human movements by the so-
called feedforward planning approach [7]. Via the OC model
only the process of specifying a desired trajectory by the
human is described. This movement planning stage follows
a separated execution stage where the desired trajectory is
tracked. Hence, sensory feedback on the movement trajectory
is not taken into account adequately. Currently, feedback
control approaches [7] based on stochastic optimal control
(SOC) models are more promising since they consider the
continuous sensory feedback of the human on its movement
trajectories and are able to explain the stochastic nature of
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them [2], [7]. The current main representative of these ap-
proaches is the linear-quadratic sensorimotor (LQS) control
model, which is derived from the linear-quadratic Gaussian
(LQG) model by adding a control-dependent noise process
to the state and a state-dependent noise process to the output
equation. Both extensions are used to reflect the special
characteristics of the stochastic nature of human movements,
i.e. faster movements are performed and perceived more
inaccurately [2], [8]1.

As for deterministic OC models, for SOC models an
identification method is needed to determine their unknown
parameters from measurement/GT data in order to verify
the model hypothesis in a specific task in a data-driven
manner [9] or to use the identified models for the design
of human-machine systems. Until very recently [10], an
approach that solves this Inverse Stochastic Optimal Control
(ISOC) problem for the LQS model was missing and only
impractical special cases, like the LQG model [11] or well-
selected parameters of the LQS model [12], were considered
so far. For the LQS model, the ISOC problem consists
of identifying the cost function and noise scaling matrices
since both parameter types influence the predicted statistical
moments of the system quantities. However, our previous
method [10] still shows high computation times (nearly one
day on a standard PC) and lacks a guaranteed, proved global
convergence behavior. Both challenges are solved in this
paper by proposing a new ISOC algorithm with proved global
convergence, which solves the ISOC problem in a simulation
example nearly 33 times faster than our previous method
[10]. Based on the simulation example, we furthermore
validate the theoretical assumptions of our new approach and
analyze the influence of its tuning parameters on convergence
behavior and computation time.

II. PROBLEM DEFINITION

As explained in Section I, when describing the human
biomechanics with a state equation, we need to consider a
control-dependent noise process {

∑c
i=1 σ

u
i ε

(i)
t BFiut}:

xt+1 = Axt +But + Σααt +

c∑
i=1

σui ε
(i)
t BFiut, (1)

where x ∈ Rn denotes the system state, u ∈ Rm the control
variable, {αt} a standard white Gaussian noise process in
sample space Rp and {εt} (εᵀt =

[
ε

(1)
t . . . ε

(c)
t

]
) a

standard white Gaussian noise process in sample space Rc.

1With the LQS model, the human hand is typically modeled as point
mass since the biomechanics of the complete human arm are nonlinear in
general.
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Furthermore, A, B, Σα and Fi are matrices of appropriate
dimension, where A and B may depend on time. The
random variables ε(i)

t are scaled with a constant σui ∈ R
and with ut [8]. The stochastic process {xt} is initialized
with E {x0} and cov (x0,x0) = Ωx0 . Human perception is
described by an output equation with a state-dependent noise
process {

∑d
i=1 σ

x
i ε

(i)
t HGixt} in the LQS model:

yt = Hxt + Σββt +

d∑
i=1

σxi ε
(i)
t HGixt, (2)

where y ∈ Rr denotes the observed output, {βt} a standard
white Gaussian noise process in sample space Rq and {εt}
(εᵀt =

[
ε
(1)
t . . . ε

(d)
t

]
) a standard white Gaussian noise

process in sample space Rd. Moreover, H , Σβ and Gi are
matrices of appropriate dimension, where H may depend on
time. Similarly to (1), the random variables ε(i)t are scaled
by a constant σxi ∈ R and xt [8]. The random variables xt,
αt, εt, βt and εt at time t are assumed to be independent
to each other. The performance criterion which drives the
goal-directed human movements is given by

J = E

{
xᵀ
NQNxN +

N−1∑
t=0

xᵀ
tQtxt + uᵀ

tRut

}
, (3)

where QN =
∑SN

i=1 sN,iqN,iq
ᵀ
N,i (qN,i ∈ Rn, sN,i ∈ R),

Qt =
∑SQ

i=1 sQ,iqQ,t,iq
ᵀ
Q,t,i (qQ,t,i ∈ Rn, sQ,i ∈ R) and

R =
∑SR

i=1 sR,iqR,iq
ᵀ
R,i (qR,i ∈ Rm, sR,i ∈ R).

Solving the LQS optimal control Problem 1 models the
optimization performed by the human in its perception-action
cycle.

Problem 1: Find an admissible control strategy ut =
πt(u0, . . . ,ut−1,y0, . . . ,yt−1) for the system defined by (1)
and (2) such that (3) is minimal.

Due to the multiplicative noise processes in (1) and
(2), the separation theorem does not hold [8], [13]–[15].
Following the procedure proposed in [8], Lemma 1 shows
the solution of Problem 1 considered throughout the paper
which takes the interdependence between controller and filter
into account.

Lemma 1: Let R and ΣβΣβ
ᵀ be positive definite.

Furthermore, let the history of control and output
values for the admissible control strategies ut =
πt(u0, . . . ,ut−1,y0, . . . ,yt−1) (cf. Problem 1) be repre-
sented by the estimation x̂t of a linear filter:

x̂t+1 = Ax̂t +But +Kt (yt −Hx̂t) + Σγγt, (4)

where Kt (∀t ∈ {0, . . . , N − 1}) are constant filter matrices
of appropriate dimension and {γt}2 a standard white Gaus-
sian noise process in Rl scaled by a constant matrix Σγ

of appropriate dimension. Then, the optimal control law is

2The random variables γt are independent to xt, αt, εt, βt and εt.

given by ut = πt(x̂t) = −Ltx̂t with3

Lt =
(
R+BᵀZxt+1B

+
∑
i

(σui )2F ᵀ
i B

ᵀ
(
Zxt+1+Zet+1

)
BFi

)−1

BᵀZxt+1A.

(5)

Moreover, the optimal constant filter matrices Kt are given
by4

Kt = AP et H
ᵀ
(
HP et H

ᵀ + ΣβΣβ
ᵀ

+
∑
i

(σxi )2HGi

(
P et +P x̂t +P x̂et +P ex̂t

)
Gᵀ
iH

ᵀ
)−1

.

(6)
Proof: With the assumption on a linear filter providing

a sufficient statistic for the history of control and output
values, we can derive a Bellman equation based on [16,
Lemma 3.2, p. 261]. Minimizing J (3) w.r.t. the admissible
control strategy π0,π1, . . . yields

min
π0,...

J = E

{
min
π0,...

E {E {J | x0, x̂0} | x̂0}
}
. (7)

By defining a value function

Vt(xt, x̂t) = E
{
xᵀ
NQNxN

+

N−1∑
τ=t

xᵀ
τQτxτ+uᵀ

τRuτ | xt, x̂t
}

(8)

and its optimized version V ∗t (x̂t) =
minπt,... E {Vt(xt, x̂t) | x̂t}, from (7) the recursive
Bellman equation

Vt(xt, x̂t) = E{xᵀ
tQtxt+u

ᵀ
tRut

+ Vt+1(xt+1, x̂t+1) | xt, x̂t} (9)

follows. Now, it can be shown by induction (backwards,
starting with t = N ) that the value function Vt is quadratic,
i.e. Vt(xt, x̂t) = xᵀ

tZ
x
t xt+e

ᵀ
tZ

e
t et+zt (et = xt− x̂t) [8].

Moreover, by computing V ∗t (x̂t) from Vt(xt, x̂t), the linear
control law πt(x̂t) = −Ltx̂t with (5) results. The calcula-
tion of V ∗t and πt is performed using (9) and assuming a
given, fixed sequence of filter gains Kt. In order to find the
optimal filter matrices, J is minimized w.r.t. to K0,K1, . . .
with assumed fixed control matrices Lt. This can be done
via forward recursion Kt = arg minKt

E
{
V ∗t+1(x̂t+1)

}
(∀t ∈ {0, . . . , N − 1}), which yields (6).

Since Lt is derived under the assumption of specific filter
gains Kt and the filter gains vice versa, their calculation
is done via an iterative procedure starting with a guess for
Kt. This leads to an alternating optimization (AO) [17]. In
each AO optimization (with respect to Lt or Kt) a unique
global optimizer exists due to R and ΣβΣβ

ᵀ being positive
definite. If in one AO optimization step the global optimal
solution for Lt or Kt results, global convergence for the

3Recursive formulas for Zxt and Zet can be found in [8].
4Recursive formulas for P x̂t , P et and P x̂et = P ex̂t can be found in [8].
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other parameter type follows [17, Theorem 2]. This behavior
is guaranteed e.g. in the LQG case (separation theorem).

The statistical moments of {xt} according to Theorem 1
characterize the predictions of the LQS model.

Theorem 1: Applying the optimal control strategy accord-
ing to Lemma 1 to the system defined by (1) and (2) leads
to the mean E {xt} and covariance Ωxt = cov (xt,xt):[

E {xt+1}
E {x̂t+1}

]
= At

[
E {xt}
E {x̂t}

]
, (10)[

Ωxt+1 Ωxx̂t+1

Ωx̂xt+1 Ωx̂t+1

]
= At

[
Ωxt Ωxx̂t
Ωx̂xt Ωx̂t

]
Aᵀ
t

+

[
Ωξ 0
0 Ωη +KtΩ

ωKᵀ
t

]
+

[
Ω̄x̂t 0
0 Ω̄xt

]
,

(11)

with Ωξt = ΣαΣαᵀ, Ωηt = ΣγΣγᵀ, Ωωt = ΣβΣβ
ᵀ, Ω̄x̂t =∑

i(σ
u
i )2BFiLt

(
Ωx̂t + E {x̂t}E {x̂t}ᵀ

)
Lᵀ
tF

ᵀ
i B

ᵀ, Ω̄xt =∑
i(σ

x
i )2KtHGi (Ωxt + E {xt}E {xt}ᵀ)Gᵀ

iH
ᵀKᵀ

t ,

At =

[
A −BLt

KtH A−KtH −BLt

]
(12)

and E {x̂0} = E {x0}, Ωx̂xt = Ωxx̂t = Ωx̂t = 0.
Proof: See [10, Lemma 2].

Although Theorem 1 gives recursive formulas to compute
mean E {xt} and covariance Ωxt of the system state, i.e. in
context of human movement modeling the average behavior
and the variability patterns of the movements, unknown
model parameters need to be identified from human measure-
ment data before the model can be used. This leads to the
inverse problem (cf. Problem 2) of the LQS optimal control
Problem 1. From GT data (cf. Definition 1) that are assumed
to be measured realizations of the stochastic processes of
(in general only some) system states resulting in the LQS
model with unknown GT parameters θ∗ (cf. Assumption 1),
sufficient approximations of mean m̂t and covariance val-
ues Ω̂x

∗

t are computed. Then, the ISOC problem aims at
finding parameters θ4 that yield a stochastic process {x4t }
with matching mean and covariance values to the GT data.
Corollary 1 defines the parameter θ that influence the model
predictions E {xt} and Ωxt and thus, need to be identified.
Identifying cost function and noise scaling matrices from GT
data distinguishes the ISOC problem from deterministic IOC
problems, which only search for cost function parameters.

Corollary 1: Applying the optimal control strategy
according to Lemma 1 to the system defined by (1) and
(2) leads to the mean E {xt} (10) and covariance Ωxt (11),
which both depend on θ =

[
sᵀ σᵀ

]ᵀ ∈ RΘ with sᵀ =[
sN,1 . . . sN,SN

sQ,1 . . . sQ,SQ
sR,1 . . . sR,SR

]
and

σᵀ =
[
vec (Σα)

ᵀ
vec
(
Σβ
)ᵀ

σu1 . . . σuc σx1 . . . σxd
]

5.
Proof: The dependencies can directly be derived from

Theorem 1: (10) and (11) depend on At which in turn
depends on Lt; then, Lt on R and σui and via Zxt on QN ,
Qt, σxi and Kt, which finally depends on Σβ and via P et
on Σα.

5We assume Σγ = 0 throughout the paper. Its consideration would be
straightforward.

Definition 1: The GT data are realizations of an unknown
stochastic process {Mx̄t}, where x̄ ∈ Rn and the system
state x in (1) represent the same physical quantities. Fur-
thermore, M ∈ Rn̄×n follows from the identity matrix by
deleting rows that correspond to states/quantities that are not
measured in the GT data. Finally, m̂t and Ω̂x

∗

t are mean and
covariance values computed from the realizations of {Mx̄t}.

Assumption 1: The GT data are realizations of the
stochastic process {Mx∗t }, where {x∗t } results from the
application of the admissible control strategy that is optimal
w.r.t. the GT parameters θ∗ (cf. Lemma 1) to the system (1),
(2): m̂t ≈ E {Mx∗t } and Ω̂x

∗

t ≈MΩx
∗

t M
ᵀ hold.

Assumption 2: The matrices A, B, Fi, H and Gi are
known as well as the vectors qN,i, qQ,t,i and qR,i.

Problem 2: Find parameters θ4 such that the stochastic
process {x4t }, which results from the application of the
admissible control strategy that is optimal w.r.t. the pa-
rameters θ4 (cf. Lemma 1) to the system (1), (2), yields
E
{
Mx4t

}
= m̂t and MΩx

4

t Mᵀ = Ω̂x
∗

t .
Remark 1: Although the stochastic processes {αt}, {εt},

{βt}, {εt} and {γt} in (1), (2) and (4) are Gaussian, {xt}
is not, due to the multiplicative noise processes in (1) and
(2) (see also [15]).

III. BI-LEVEL-BASED INVERSE STOCHASTIC OPTIMAL
CONTROL

In this section, we propose our new ISOC algorithm to
solve Problem 2 which is based on a bi-level structure. Bi-
level-based algorithms are common to solve inverse problems
of optimal control (see e.g. [5], [6], [9], [10], [18]). In
general, in such methods a parameter optimization problem
is defined where the objective function quantifies how well
the trajectories, which are optimal w.r.t. a current guess of the
cost function and the noise scaling parameters, match the ob-
served trajectories in the GT data. Since the optimization of
this objective function requires for each function evaluation
the solution of a SOC problem, a so-called bi-level structure
results. Typically, it is unknown or need to be verified if the
GT trajectories are indeed a SOC solution, i.e. Assumption 1
cannot be guaranteed. In these situations, it is inevitable to
have a bi-level-based ISOC approach, at least as baseline
method for more advanced ones, since only bi-level-based
algorithms with global convergence behavior guarantee the
best possible parameters w.r.t. the chosen metric to define the
objective function of the parameter optimization problem.

In Subsection III-A, we define the parameter optimization
problem of our new ISOC algorithm. Then, we explain our
new approach to solve it in Subsection III-B (so-called upper
level optimization) and how we treat its non-convexity. In
Subsection III-C, the solution to the SOC problem, which is
a constraint of the parameter optimization problem defined
in Subsection III-A and called lower level optimization, is
discussed.

A. Parameter Optimization Problem

Problem 3 defines the parameter optimization derived from
Problem 2. The objective function JISOC(θ, m̂t, Ω̂

x∗

t ) is
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based on the variance accounted for (VAF) metric, success-
fully applied for model regression with real data [9], [12].
The optimization w.r.t. θ is performed on a feasible set U
to guarantee the existence of a well-defined SOC solution in
the lower level constituted by constraints (14c) and (14d).

Definition 2: The feasible set U is given by

U = {θ ∈ RΘ : θi ∈ [ai, bi],∀i ∈ {1, . . . ,Θ}}, (13)

where ai, bi ∈ R and bi > ai (∀i ∈ {1, . . . ,Θ}), such that
for every θ ∈ U Lemma 1 can be applied and such that
θ∗ ∈ U if Assumption 1 holds.

Problem 3: Find a global optimizer θ4 of

min
θ

JISOC(θ, m̂t, Ω̂
x∗

t ) =

min
θ
−
wᵀ

mmVAF(θ, m̂t) +wᵀ
v vec

(
ΩVAF(θ, Ω̂x

∗

t )
)

‖wm‖1 + ‖wv‖1
(14a)

s.t. θ ∈ U (14b)
Lt,Kt = arg min

Lt,Kt

J(θ) (Lemma 1) (14c)

E {xt} (10),Ωxt (11) with Lt,Kt,θ (Theorem 1)
(14d)

where

mVAF
i =

1−
∑N
t=0 ((E {Mxt})i − m̂i,t)

2∑N
t=0

(
m̂i,t − 1

N+1

∑
t m̂i,t

)2

 , (15)

ΩVAF
ij =

1−

∑N
t=0

(
(MΩxtM

ᵀ)ij − Ω̂x
∗

ij,t

)2

∑N
t=0

(
Ω̂x
∗
ij,t − 1

N+1

∑
t Ω̂x

∗
ij,t

)2

 (16)

with i, j ∈ {1, . . . , n̄} and wm ∈ Rn̄ as well as wv ∈ Rn̄n̄
are arbitrary weighting vectors.

In general, JISOC(θ, m̂t, Ω̂
x∗

t ) is non-convex (cf. As-
sumption 3). Furthermore, Assumption 46 motivates the use
of derivative-based optimization solvers with numerically
approximated derivatives since analytical expressions of the
derivatives cannot be given due to the bi-level structure (see
(14c) and (14d)). Finally, Lemma 2 characterizes the set T
of global optimizers of (14).

Assumption 3: JISOC(θ, m̂t, Ω̂
x∗

t ) is non-convex w.r.t. θ.
Assumption 4: JISOC(θ, m̂t, Ω̂

x∗

t ) is (at least) twice con-
tinuously differentiable w.r.t. θ.

Definition 3: Let T ⊆ U be the set of global optimizers
of (14).

Lemma 2: Let Assumption 4 hold. Then, T 6= ∅. More-
over, if Assumption 1 holds additionally, every θ ∈ T solves
Problem 2 and for every θ ∈ T JISOC(θ, m̂t, Ω̂

x∗

t ) = −1.
Proof: Since U is compact and JISOC(θ, m̂t, Ω̂

x∗

t )
continuous w.r.t. θ (cf. Assumption 4), (at least) one global
maximizer and minimizer exists for JISOC(θ, m̂t, Ω̂

x∗

t ) on

6In references on bi-level-based algorithms (see e.g. [5], [6], [10], [18]),
the necessity of derivative-free optimization solvers is postulated. However,
with our definition of the optimization problem (14), we show in Sub-
section IV-B numerically that JISOC(θ, m̂t, Ω̂x

∗
t ) has indeed sufficient

differentiability characteristics.

U . Hence, T 6= ∅ follows. Now, let Assumption 1 hold
additionally. First, we have JISOC(θ∗, m̂t, Ω̂

x∗

t ) = −1,
which is the global minimal value due to the used VAF
metric for mVAF

i (15) and ΩVAF
ij (16), and since θ∗ ∈ U (see

Definition 2), θ∗ ∈ T 6= ∅ follows and every θ ∈ T needs
to yield JISOC(θ, m̂t, Ω̂

x∗

t ) = −1.
Remark 2: If Assumption 1 does not hold,

T 6= ∅ still holds according to Lemma 2. However,
JISOC(θ, m̂t, Ω̂

x∗

t ) = −1 cannot be guaranteed for θ ∈ T .
The elements of T yield the best possible fit of the
LQS model to m̂t and Ω̂x

∗

t computed with the GT data.
Assumption 1 is not fulfilled if either too few realizations
are measured for sufficient approximations of mean and
covariance values or the LQS model is not valid to describe
the GT data.

B. Upper Level Optimization: Threshold Random Linkage
Algorithm with Approximation of Regions of Attraction

In this subsection, we propose two algorithms, together
with their convergence proofs, to solve Problem 3. Lemma 2
shows that under Assumption 1 these solutions solve Prob-
lem 2 as well. Algorithm 2 is our main algorithm, influ-
enced by [19], [20] and called Threshold Random Linkage
Algorithm with Approximation of Regions of Attraction
(TRLwARoA). The main idea of our algorithms is to use a
derivative-based constrained local optimization solver Υ ac-
cording to Definition 4 that converges to a local minimizer of
(14). Then, this local solver is combined with a globalization
strategy to account for the non-convexity of JISOC(θ).

Definition 4: Let Assumption 4 hold and let a feasible
set U (cf. Definition 2) be given. A constrained local
optimization solver Υ : U → U yields θmin = Υ(θ0),
where θmin ∈ Θmin and θ0 ∈ ΘRoA(Θmin). Here, Θmin

denotes a connected subset of all local minimizers {θmin ∈
U : ∃N (θmin) such that JISOC(θ) ≥ JISOC(θmin),∀θ ∈
N (θmin)} (with N (θmin) as neighborhood of θmin) and
ΘRoA(Θmin) the Region of Attraction (RoA) of Θmin, i.e.
ΘRoA(Θmin) = {θ ∈ U : ∃θmin ∈ Θmin such that ∀θ ∈
N (θmin)∃θ′min ∈ Θmin : θ′min = Υ(θ)}.

In Definition 4, we consider connected sets of local min-
ima due to the well-known ambiguity of solutions of ISOC
problems [1], [10]. For example, if Assumption 1 is fulfilled,
every θ =

[
λs∗ᵀ σ∗ᵀ

]ᵀ ∈ T with λ ∈ R≥0 and such
that θ ∈ U . Hence, sufficient conditions for strict optimizers
are normally not fulfilled in ISOC problems. The shape
of the RoA ΘRoA of a set Θmin depends on the concrete
implementation of the used local solver. However, there are
convergence results for basic implementations of SQP and
interior-point (IP) algorithms (see e.g. [21, Theorem 18.3,
Theorem 19.1]) that are applicable for (14). Later we use
an IP algorithm as local solver. Since JISOC(θ) as well as
the inequality constraints given by U are continuously dif-
ferentiable and since the LICQ hold ∀θ ∈ U (cf. Lemma 3),
from [21, Theorem 19.1] the convergence of IP algorithms
to first-order optimal points follows.

Lemma 3: Let a feasible set U according to Definition 2
be given. The linear independence constraint qualification
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Algorithm 1: Pure Multi-Start ISOC Algorithm.

Input: m̂t, Ω̂x
∗

t , U , kmax

Output: θ4, JISOC(θ4, m̂t, Ω̂
x∗

t )
Draw θ(1), . . . ,θ(kmax) samples from uniform

distribution in U
Set k = 1 and JOPT =∞
while k ≤ kmax do

Compute θmin = Υ(θ(k)) with Υ applied to (14)
if JISOC(θmin, m̂t, Ω̂

x∗

t ) < JOPT then
θ4 = θmin

JOPT = JISOC(θmin, m̂t, Ω̂
x∗

t )

k ← k + 1

return θ4, JISOC(θ4, m̂t, Ω̂
x∗

t )

(LICQ) holds ∀θ ∈ U .
Proof: Since U is a hyperrectangle, all constraints are

given by θi − ai ≥ 0 and −θi + bi ≥ 0 (i ∈ {1, . . . ,Θ}).
For the set of their gradients {ei,−ei, i ∈ {1, . . . ,Θ}} (ei
as i-th standard basis vector of RΘ) follows. Now, since
bi > ai, the linear dependent vectors ei and −ei cannot
correspond to active constraints at the same point. Thus, from
the independence of ei and ej (∀i, j ∈ {1, . . . ,Θ} with i 6=
j), we conclude the LICQ ∀θ ∈ U .

Suppose a constrained local optimization solver Υ accord-
ing to Definition 4 is given, we can find a global optimizer
θ4 of (14) by starting it from kmax uniformly sampled points
in U . This leads to Algorithm 1 and Theorem 2.

Theorem 2: Let Assumption 4 hold and let a feasible set U
(cf. Definition 2) as well as a constrained local optimization
solver Υ according to Definition 4 be given. Algorithm 1
yields θ4 ∈ T (cf. Definition 3) if (at least) one sample
point θ(k) ∈ ΘRoA(T ).

Proof: From Definition 4, we have θ4 = Υ(θ(k)) with
θ(k) ∈ ΘRoA(T ).

The probability of choosing a uniformly sampled point
θ(k) ∈ ΘRoA(T ) is given by [22]

P (θ(k)∈ΘRoA(T )) = 1−
(

1− vol (ΘRoA(T ))

vol (U)

)kmax

, (17)

where vol (·) denotes the volume of the corresponding space.
Hence, since T 6= ∅ follows from Lemma 2, an appropriate
local solver needs to guarantee vol (ΘRoA(T )) 6= 0. Then,
kmax → ∞ guarantees P (θ(k) ∈ ΘRoA(T )) → 1. Starting
a local solver from every sample point θ(k) results in
impractical computation times. Therefore, we include two
filters to determine if a local solver is started at the current
sample point θ(k). First, a distance filter is implemented
motivated by [19]. A local solver is only started from θ(k)

if the distance

δ(k) =

{
δ

(k)
c if ∃i<k :JISOC(θ(i))<JISOC(θ(k))

∞ otherwise
, (18)

where δ
(k)
c = mini<k{

∥∥θ(k) − θ(i)
∥∥

2
: JISOC(θ(i)) <

JISOC(θ(k))}, to previously checked sample points θ(i) (i ∈

Algorithm 2: TRLwARoA ISOC Algorithm.

Input: m̂t, Ω̂x
∗

t , U , kmax, γ, v
Output: θ4, JISOC(θ4, m̂t, Ω̂

x∗

t )
Draw θ(1), . . . ,θ(kmax) samples from uniform

distribution in U
Set k = 1, l = 0 and JOPT =∞
Compute α (19)
while k ≤ kmax do

Compute δ(k) (18)

if δ(k) > α ∧
∥∥∥θ(k) − θ(i)

min

∥∥∥
2
≥ vδ(i)

RoA,∀i ∈
{1, . . . , l} then
l← l + 1

Compute θ(l)
min = Υ(θ(k)) with Υ to (14)

δ
(l)
RoA =

∥∥∥θ(l)
min − θ(k)

∥∥∥
2

if JISOC(θ
(l)
min, m̂t, Ω̂

x∗

t ) < JOPT then
θ4 = θ

(l)
min

JOPT = JISOC(θ
(l)
min, m̂t, Ω̂

x∗

t )

k ← k + 1

return θ4, JISOC(θ4, m̂t, Ω̂
x∗

t )

{1, . . . , k− 1}) is greater than a threshold α. Sample points
with JISOC(θ(k)) ≤ JISOC(θ(i)) (∀i ∈ {1, . . . , k − 1}) are
always used as starting points (δ(k) =∞). With the distance
filter, a sample point density in U independent from the size
of U is maintained by adapting α to the size of U . Suppose
U is divided into hyperspheres S with radius α. Then, α is
chosen such that the number of hyperspheres fitting into U
is constant: const = vol(U)

vol(S) . This leads to

const =
Γ
(

Θ
2 + 1

)
vol (U)

π
Θ
2 αΘ

⇒ α = γ

(
Γ

(
Θ

2
+ 1

) Θ∏
i=1

(bi − ai)

) 1
Θ

, (19)

where γ = π−
1
2 const−

1
Θ is a tuning parameter for the

distance filter and Γ denotes the gamma function.
The second filter to further reduce the number of local

solver starts is a RoA filter. If a local minimum is found,
i.e. θ(l)

min = Υ(θ(k)), the RoA ΘRoA(θ
(l)
min) is approximated

by a hypersphere {θ ∈ U :
∥∥∥θ − θ(l)

min

∥∥∥
2
< vδ

(l)
RoA}, where

δ
(l)
RoA =

∥∥∥θ(k) − θ(l)
min

∥∥∥
2

and v denotes a tuning parameter
guaranteeing Assumption 5.

Overall, our TRLwARoA is given by Algorithm 2 and in
Theorem 3, its global convergence is shown.

Definition 5: Let MJISOC(m) = {θ ∈ U : JISOC(θ) ≤
m} with m ∈ [−1,∞) be the m-level set of JISOC. The set
MJISOC(m∗) is the optimal level set where m∗ is the highest
value such that T are the only local minima inMJISOC(m∗).

Assumption 5: For all θ(l)
min found by Algorithm 2 {θ ∈

U :
∥∥∥θ − θ(l)

min

∥∥∥
2
< vδ

(l)
RoA} ⊆ ΘRoA(θ

(l)
min).
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Theorem 3: Let Assumptions 4 and 5 hold and let a
feasible set U (cf. Definition 2) as well as a constrained local
optimization solver Υ according to Definition 4 be given.
Algorithm 2 yields θ4 ∈ T (cf. Definition 3) if (at least)
one sample point θ(k) ∈ ΘRoA(T ) ∩MJISOC(m∗).

Proof: We need to verify that θ(k) ∈ ΘRoA(T ) ∩
MJISOC(m∗) is not filtered by the distance and RoA filter.
Then, θ4 ∈ T follows from Definition 4. First, since θ(k)

cannot be in the RoA of different local minima, θ(k) is not
filtered by the RoA filter due to Assumption 5 and θ(k) ∈
ΘRoA(T ). Furthermore, θ(k) is not filtered by the distance
filter since ∀θ ∈MJISOC(m∗) JISOC(θ) ≤ JISOC(θ(i)) with
θ(i) /∈MJISOC(m∗) and uniformly sampled in U .

Remark 3: Typically,MJISOC(m∗) ⊆ ΘRoA(T )7. Hence,
by reducing the number of local solver starts with the
distance filter, the requirement on the sampling procedure
(at least one sample point θ(k) ∈ ΘRoA(T )∩MJISOC(m∗))
gets more restrictive. However, by lowering γ this more
restrictive assumption can be relaxed and for γ → 0 θ(k) ∈
ΘRoA(T ) is sufficient (cf. Theorem 2). Thus, in case of
problems with small vol

(
MJISOC(m∗)

)
γ can be used to

maintain convergence under the best possible performance
improvement of the distance filter.

Remark 4: Theorem 2 and 3 show that the main re-
quirement on the local solver Υ (cf. Definition 4) is to
guarantee vol (ΘRoA(T )) 6= 0, which can be motivated by
the convergence of e.g. basic IP methods to KKT points of
(14) (see before). Note that the algorithms do not depend on
vol (ΘRoA(Θmin)) 6= 0 for every Θmin. Furthermore, most
implementations of constrained local optimization solvers
will even guarantee convergence to local minima, e.g. due to
corrections on Hessian approximations, which is beneficial
for Algorithm 2 due to the RoA filter.

C. Lower Level Optimization

The lower level of our bi-level-based ISOC algorithm is
given by the constraints (14c) and (14d) of (14) and for their
computation Assumption 2 is needed.

In general, the assumption on a linear non-adaptive filter in
Lemma 1 leads to suboptimal solutions to SOC Problem 1.
However, exact solutions are still an open question. They
exist for the fully observable case8 (yt = xt) [8], [23] but
in case of partial state information only suboptimal solutions
were proposed (see e.g. [8], [13]–[15]).

IV. NUMERICAL EXAMPLE

After introducing an example system and the imple-
mentation of Algorithms 1 and 2 in Subsection IV-A, in
Subsection IV-B, Assumptions 3 and 4 are validated nu-
merically. Furthermore, Lemma 1 is compared to other
(suboptimal) control strategies for Problem 1 and we show
that vol (ΩRoA(T )) 6= 0 for our used IP implementation.
Finally, in Subsection IV-C and IV-D the new TRLwARoA

7From Lemma 2, T 6= ∅ and due to the assumed continuity of JISOC(θ)
(cf. Assumption 4), we have vol

(
MJISOC (m∗)

)
6= 0

8The setup of (14) for the fully observable case is straightforward and
all our algorithms and statements can be applied as well.

ISOC algorithm is analyzed regarding its tuning parameters
and compared to State-of-the-Art (SoA) algorithms.

A. Example System and Implementation

Our simulation example is given by a planar point-to-point
human hand movement, where the human hand is modeled as
point mass. The exact definition can be found in [10]. The GT
parameters θ∗ are given by: θ∗ =

[
s∗ᵀ σ∗ᵀ

]ᵀ
with s∗ =[

1 1 0.04 0.04 0.0004 0.0004 1
4210−5 1

4210−5
]ᵀ

and σ∗ =
[
01×8 0.02 0.02 0.2 0.2 1 1 0.5 0.1

]ᵀ
.

From the GT parameters, m̂t and Ω̂x
∗

t follow according
to Lemma 1 and Theorem 1. Hence, due to the simulation
scenario Assumptions 1 and 2 are fulfilled. Lastly, the
lower bounds of the feasible set U are defined by ai = 0
(∀i ∈ {1, . . . , 6, 9, . . . , 16, 23, 24}) and ai = 10−10

(∀i ∈ {7, 8, 17, . . . , 22}) and wm =
[
0.9 0.9 0.9 0.9

]ᵀ
and wv =

[
0.1 01×4 0.1 01×4 0.1 01×4 0.1

]ᵀ
are

used to set up (14).
The implementation of the algorithms was done in Matlab

2021b on a standard PC with a Ryzen 9 5950X. As local
optimization solver Υ, the IP method of the fmincon
solver of the Matlab environment is used. First and second
order derivatives are numerically approximated. Both ISOC
algorithms were implemented via parallel computing on the
16 cores available on the CPU (scalable to more cores) by
starting local optimizations on these cores in parallel.

B. Numerical Validation of the Assumptions

First, we motivate the validity of Assumption 4.
Hereto, we compute the 276 projections of
JISOC(θ) on the θi-θj-planes (i, j ∈ {1, . . . , 24},
j > i). The value of JISOC(θ) is calculated
∀θ =

[
. . . θ∗i−1 θi θ∗i+1 . . . θ

∗
j−1 θj θ∗j+1 . . .

]ᵀ
with

θi/j = λθ∗i/j and λ chosen in 101 equidistant steps from
[0.5, 1.5] if θ∗i/j 6= 0. If θ∗i/j = 0, 101 equidistant steps
for θi/j from [0, 1] are chosen. Finally, an evaluation of
JISOC(θ) at equidistant grid points for every θi-θj-plane
follows (see red crosses in Fig. 1a for θ1-θ2-plane).
Now, by fitting 2D polynomials of order five to the grid
points of JISOC(θ) for every θi-θj-plane, we achieve
R2 values of > 0.999 (R2 = 0.99986 for θ1-θ2-plane
in Fig. 1a, minimal value of all polynomial fits). The
quantitative and qualitative results (see surface plot in
Fig. 1a) of this fitting procedure and the approximated
shape of JISOC(θ) through the evaluation at the grid points
(the results for the other θi-θj-planes look very similar)
provide strong indications that JISOC(θ) is an analytical
function like the polynomial fits. Thus, JISOC(θ) can be
assumed to be (at least) twice continuously differentiable
(cf. Assumption 4). Fig. 1b depicts the 1D projection of
JISOC(θ) at θ = θ∗ + λ(θ

(l)
min − θ∗), where θ(l)

min denotes a
local minimum. It clearly shows the assumed non-convexity
of JISOC(θ) (cf. Assumption 3).

Next, we look at ΘRoA(T ). By applying Algorithm 1 with
kmax = 20000 and bi = 2 (∀i ∈ {1, . . . , 24}) to the GT
data, 692 local solver runs converge to a θ4 ∈ T . Hence,
vol (ΘRoA(T ) 6= 0 follows for the used IP implementation
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Fig. 1: Validation of Assumptions 3 and 4.

TABLE I: Mean, maximal and minimal relative change 4J
of performance criterion (3) with different control strategies.
Strategy of Lemma 1 (non-adaptive Kt) serves as the refer-
ence value.

Lemma 1 with
adaptive Kt [8] vs.

non-adaptive Kt

[14] vs. Lemma 1
with non-adaptive

Kt

4Jmean −1.1 % 1.4 %

4Jmax 2.9 % 5.7 %

4Jmin −7.0 % −3.8 %

and furthermore, we approximate vol(ΘRoA(T ))
vol(U) ≈ 692

20000 =

0.0346 and have with kmax = 10000 P (θ(k) ∈ ΘRoA(T )) ≈
1 according to (17).

Finally, following the discussion on the suboptimality of
the solution to the lower level optimization in Subsection III-
C, Table I shows the comparison of two other suboptimal
control strategies to the one of Lemma 1. The comparison is
performed for 20 parameters θ: θ∗ and θ with θi = λθ∗i (λ
randomly from [0.5, 1.5]) if θ∗i 6= 0, θi randomly from [0, 1]
otherwise (∀i ∈ {1, . . . , 24}). Both strategies can lead to an
improvement as well as a worsening of J with negligible
relative change in average. Hence, Lemma 1 is the best
choice since it furthermore enables the use of Theorem 1
due to its non-adaptiveness.

C. Analysis of the Tuning Parameters of Algorithm 2

In the following, we analyze the convergence behavior
and the computation time of our new TRLwARoA ISOC
Algorithm 2 w.r.t. to different choices of its tuning pa-
rameters, i.e. upper bounds bi of feasible set U , tuning
parameters γ of the distance filter and v of the RoA filter.
We set kmax = 10000 since it is sufficient for P (θ(k) ∈
ΘRoA(T )) ≈ 1 (see Subsection IV-B). Table II shows the pa-
rameter combinations evaluated, where bi is chosen equally
∀i ∈ {1, . . . , 24}. With every tuning parameter combination,
Algorithm 2 was executed 10 times. As evaluation metrics,
the average computation time tmean

comp, the average number
of started local solvers #Υmean and the worst objective
function value Jmax

ISOC achieved during these 10 runs are used.
Furthermore, we define a run of Algorithm 2 as converged to
a global optimizer if for the achieved JISOC value JISOC ≤

TABLE II: Tuning parameter analysis for Algorithm 2.

γ = 0.6 γ = 0.7 γ = 0.8

v
=

0

bi = 2

#Υmean 719.8 96.3 24.6

#l 10 9 7

tmean
comp 258.2 min 42.1 min 24.1 min

bi = 20

#Υmean 680.7 86.4 24.2

#l 10 8 3

tmean
comp 313.2 min 78.2 min 48.9 min

v
=

0
.7

bi = 2

#Υmean 386.9 69.1 20.2

#l 10 9 5

tmean
comp 137.0 min 36.8 min 14.3 min

bi = 20

#Υmean 419.8 67.3 20.5

#l 10 7 1

tmean
comp 173.9 min 39.2 min 15.6 min

v
=

0
.9

bi = 2

#Υmean 33.3 18.1 9.1

#l 3 1 1

tmean
comp 15.8 min 14.4 min 9.1 min

bi = 20

#Υmean 33.4 13.3 9.4

#l 0 1 2

tmean
comp 17.9 min 9.4 min 8.0 min

−0.999 holds. The number of converged runs is denoted as
#l. Table II shows #Υmean, #l and tmean

comp for the evaluated
tuning parameter combinations. With v = 0 Assumption 5
is guaranteed and for γ = 0.6 all 10 runs converge. By
increasing v to v = 0.7, Assumption 5 can still be considered
as fulfilled (#l = 10) and due to the RoA filter, performance
is improved significantly: #Υmean and tmean

comp are nearly
halved9. Now, by increasing γ to γ = 0.7, #Υmean and
tmean
comp are reduced by more than 80 % and 70 %, respectively

(for v = 0 and v = 0.7). However, with γ = 0.7 convergence
does only occur in 7−9 of the 10 runs, but a local minimum
with an objective function value close to the global one is
always achieved in the not-converged runs: Jmax

ISOC < −0.98.
Due to these near global minima, vol

(
MJISOC(m∗)

)
is small

in our case and we need to choose γ according to Remark 3,
sufficiently small but as large as possible. For γ = 0.8 or
v = 0.9, #l ≤ 5 except for γ = 0.8, v = 0 and bi = 2 with
#l = 7. Hence, in these cases either the RoA filter (v = 0.9)
or the distance filter (γ = 0.8) hinders convergence due to not
fulfilled Assumption 5 or Remark 3. Noticeably, for γ = 0.8
with v = 0 or v = 0.7 and for γ = 0.6 with v = 0.9, still
Jmax

ISOC < −0.98. Overall, the best tuning parameters for our
example system are v ≤ 0.7 and γ = 0.6− 0.7 independent
from the choice of upper bounds bi (∀i ∈ {1, . . . , 24}).

D. Comparison to State-of-the-Art-Algorithms

Table III shows the comparison of the TRLwARoA ISOC
algorithm to different SoA methods. First, the results of our
grid-search (GS) and bi-level-based ISOC algorithm [10] are
included and second, we designed an additional new bi-level-
based ISOC algorithm where the upper level optimization
problem is solved by the Matlab implementation of the
algorithm proposed in [24]. Here, promising starting points
for local solver runs in U are heuristically determined by a
scatter search (ScS) algorithm. We set kmax = 10000, γ =

9Mean number of local solver starts #Υmean is nearly independent from
the choice of bounds due to the adaptive threshold α (19).
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TABLE III: Comparison of the TRLwARoA algorithm to the
grid-search-based (GS) method [10] and the algorithm based
on the scatter search (ScS) procedure in [24].

TRLwARoA ScS GS [10]
#l 10 8 −

Jmax
ISOC −0.9993 −0.9986 −0.9987

tmean
comp 36.6 min 114.2 min 1194.0 min

0 10 20 30 400

0.05

0.1

E{
p

x
}

in
m

GS
TRL
GT

0 10 20 30 400

0.5

1

1.5 ·10−4

co
v(

p
x
)

in
m

2

0 10 20 30 400

0.25

0.5

Time Steps

E{
ṗ

x
}

in
m s

0 10 20 30 400

2

4

6 ·10−3

Time Steps

co
v(

ṗ
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Fig. 2: Mean and covariance of position px and velocity ṗx
of the human hand in the example system. Values achieved
with GT parameters and parameters identified with the
TRLwARoA algorithm and the method in [10] are shown.

0.7 and v = 0 for the TRLwARoA and kmax = 5000 (best
performance of ScS) for the ScS algorithm. The parameters
for the GS-based method as well as the upper bounds of the
feasible set U are the same as in [10]. For the stochastic
algorithms, TRLwARoA and ScS, 10 runs were performed.
Table III highlights that only the TRLwARoA algorithm
yields convergence in all 10 runs. Moreover, it computes
ISOC solutions ca. 3 and 33 times faster than the ScS and
GS, respectively. Finally, Fig. 2 illustrates the match with the
GT data achieved by the parameters θ4 identified with the
TRLwARoA algorithm (θ4 with Jmax

ISOC chosen).

V. CONCLUSION

In this paper, we present a new algorithm to solve the
ISOC problem for the LQS control model. The ISOC prob-
lem consists of determining cost function and noise scaling
parameters from measurement (GT) data. Both parameter
types influence the model predictions (statistical moments
of the system quantities) of the LQS model. We overcome
convergence problems and high computation times of our
previous method [10] by proving global convergence and
achieving computation times that are nearly 33 times smaller.
Based on simulations, the tuning parameters of our new
algorithm are analyzed and shown to be intuitively tuneable.
Furthermore, the theoretical assumptions are validated nu-
merically. In the future, we are going to apply our newly
developed algorithm to real human measurement data.
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