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Abstract— Control of network systems with uncertain local
dynamics has remained an open problem for a long time. In
this paper, a distributed minimax adaptive control algorithm
is proposed for such networks whose local dynamics has an
uncertain parameter possibly taking finite number of values.
To hedge against this uncertainty, each node in the network
collects the historical data of its neighboring nodes to decide its
control action along its edges by finding the parameter that best
describes the observed disturbance trajectory. Our proposed
distributed adaptive controller is scalable and we give both
lower and upper bounds for its ℓ2 gain. Numerical simulations
demonstrate that once each node has sufficiently estimated its
local uncertainty, the distributed minimax adaptive controller
behaves like the optimal distributed H∞ controller in hindsight.

I. INTRODUCTION

Control of large-scale and complex systems is often
performed in a distributed manner [1], as it is practically
difficult for every agent in the network to have access to the
global information about the overall networked system while
deciding its control actions. On the other hand, designing
optimal distributed control laws when the networked system
dynamics are uncertain still remains an open problem. This
naturally calls for a learning-based controller to be employed
in such uncertain settings. Learning based controllers for
network systems is very much in its infancy and recently
a scalable solution was proposed in [2]. Adaptive control
in the centralised setting has been investigated a lot starting
from [3], where an adaptive controller was shown to learn
the system dynamics online through sufficient parameter
estimation and then control it. Multiple model-based adaptive
control formulation has been known to handle uncertainty in
system dynamics and an extensive literature in that topic can
be found in [4]–[9]. Another promising approach was intro-
duced in [10] with the minimax problem formulation where
the resulting full information problem of higher dimension
was solved using Dynamic Programming. Minimax adaptive
control formulation was specialized to linear systems with
unknown sign for state matrix in [11], and to finite sets of
linear systems in [12]–[14]. In general, minimax adaptive
control problems are challenging mainly due to the explo-
ration and exploitation trade-off that inevitably comes with
the learning and the controlling procedure.

On the other hand, designing optimal distributed control
laws that address the uncertainty prevailing over true model
of the networked system still remains an open problem.
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Though we can approach this problem from the multiple
model-based adaptive control techniques, the resulting con-
troller does not facilitate a distributed implementation as
the controller solutions are often dense in nature. Aiming
for a distributed implementation adds an additional layer
of complexity to the existing challenges of any centralised
adaptive control algorithm. However, there are certain classes
of systems for which scalable implementation of distributed
minimax adaptive control is possible, such as systems with
inherent structure that open up the door for optimal control
laws to be structured as well. Such system models are
common in many infrastructural networks such as irrigation
and transportation networks.

Control of buffer networks and linear models of transporta-
tion in [15] has paved the ways for designing distributed
robust controllers for some special class of systems. We
consider class of systems in our research, where the original
system comprises of subsystems with local dynamics, that
only share control inputs. A closed-form expression for the
distributed H∞ optimal state feedback law for systems with
symmetric and Schur state matrix was computed in [16],
where the total networked system comprised of subsystems
with local dynamics, that share only control inputs and
each control input affecting only two subsystems. Similarly,
a closed-form expression for a decentralised H∞ optimal
controller with diagonal gain matrix for network systems
having acyclic graphs was computed in [17]. In all these
previous works, the network dynamics are known exactly.

Contributions: We extend the problem setting in [16] by
considering finite number of possible local dynamics in each
node and control action along each edge. The highlight of
our work is that we propose learning in network systems
for addressing uncertainty in local dynamics along with
disturbance rejection. Our main contributions are as follows:

1) A scalable & distributed minimax adaptive control al-
gorithm for uncertain networked systems is developed.
Each node in the network hedges against the uncertainty
in its local dynamics by maintaining the history of just
its neighboring nodes and finds the controller at any
time by choosing the model that best describes the local
disturbance trajectory (See equation (23)).

2) Both lower and upper bounds for the ℓ2 gain associated
with the proposed distributed minimax adaptive control
algorithm are given (See Lemma 2 & Theorem 1).

3) The efficacy of the proposed distributed minimax adap-
tive control is demonstrated using a large-scale buffer
network with 104 nodes (where computing a centralized
controller is costly) where controller implementation
does not require the knowledge about the ℓ2 gain.
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Following a short summary of notations, this paper is or-
ganized as follows: In §II, the main problem formulation
of distributed minimax adaptive controller is presented. The
proposed distributed implementation of the minimax adaptive
control algorithm along with the computation of the lower
and upper bounds for its ℓ2 gain are given in §III. The
proposed algorithm is then demonstrated in §IV. Finally, the
main findings of the paper are summarised in §V along with
some directions for future research.

NOTATIONS

The cardinality of the set A is denoted by |A|. The set of
real numbers, integers and the natural numbers are denoted
by R,Z,N respectively. For N ∈ N, we denote by JNK :=
{1, . . . , N}. Given a set A, the notation vec(A) denotes the
vector formed using the elements of A. A vector of size n
with all values being one is denoted by 1n. For matrix A ∈
Rn×n, we denote all its eigenvalues, transpose and its trace
by eig(A), A⊤ and Tr(A) respectively. A symmetric matrix
P is called positive definite (positive semi-definite) if ∀x ∈
Rn\{0}, x⊤Px > 0 (x⊤Px ≥ 0) and is denoted by P ≻
0(P ⪰ 0). An identity matrix in dimension n is denoted by
In. Given x ∈ Rn, A ∈ Rn×n, B ∈ Rn×n, the notations |x|2A
and ∥B∥2A mean x⊤Ax and Tr

(
B⊤AB

)
respectively. We

sometimes use asterisks to shorten symmetric expressions,
e.g. A⊤B(⋆) means A⊤BA.

II. PROBLEM FORMULATION

Control of spatially invariant systems has a rich literature
in control theory (see [15] and the references therein) where
networked systems such as linear models of transportation
and buffer networks are studied in great detail. We consider
special class of systems where the original system comprises
of subsystems with local dynamics, that only share control
inputs. Note that such systems can be naturally associated
with a graph and hence we depict the subsystems as nodes
and control inputs as edges between the nodes they affect.

A. Network Model

We model such networked dynamical system in discrete
time setting with a graph G comprising a node set V
representing |V| = N subsystems and edge set E ⊂ V × V
representing a set of |E| = E communication links amongst
the subsystems. The incidence matrix encoding the edge
set information is denoted by I ∈ RN×E . We denote by
Ni = {j ∈ V : (j, i) ∈ E}, the neighbor set of agent i,
whose states are available to agent i through E . The degree
of node i ∈ V is denoted as di := |Ni|. The set of inclusive
neighbors of agent i is denoted by Ji := {i} ∪ Ni. Let
d := max{di | i ∈ V}. We associate with each node
i ∈ V , a state xi(t) ∈ R at time t ∈ N. Each subsystem
Σi corresponding to node i ∈ V updates its own states by
interacting with its neighbors as

xi(t+ 1) = aixi(t) + b
∑

(i,j)∈E

uij(t) + wi(t), (1)

where ai ∈ (0, 1), b > 0 and uij(t) = −uji(t) meaning
that what is drawn from subsystem j is added to subsystem
i. The additive disturbance wi(t) ∈ R affecting the node
i ∈ V is adversarial in nature. Note that the dynamics of
each node in the network is coupled with the other nodes only
through their control inputs. The concatenated states of all
nodes, the control inputs along the edges and the adversarial
disturbances acting on each node are denoted as

x(t) =
[
x1(t) · · · xN (t)

]⊤ ∈ RN , (2)

u(t) = vec
(
{uij(t)}(i,j)∈E

)
, and (3)

w(t) =
[
w1(t) · · · wN (t)

]⊤ ∈ RN (4)

respectively. Hence, the system described by (1) can be
equivalently written compactly as

x(t+ 1) = Ax(t) +Bu(t) + w(t), (5)

with A ∈ RN×N being symmetric and Schur stable, and
B = bI, with I ∈ RN×E being the incidence matrix of the
underlying graph. Note that, BB⊤ = b2II⊤ = b2L, where
L denotes the Laplacian matrix associated with the graph G.

B. An Optimal Distributed H∞ Controller

For systems described by (1), it was shown in [16] that
an optimal distributed H∞ controller is given by

K = B⊤(A− I)−1, (6)

as long as the dynamics of each node i ∈ V satisfies the
following condition

a2i + 2b2di < ai. (7)

The condition (7) is related to the speed of information
propagation through the network as well as its connectivity
defined using the parameters ai, b, di, and the bound on the
maximum eigenvalue of the symmetric normalized Laplacian
matrix of the underlying network’s graph. More details on
the local condition of nodes described by (7) is available in
subsection IV.B of [16]. Further, (7) can be written using the
compact notations as

A2 +BB⊤ ≺ A. (8)

Since ai ∈ (0, 1), (1) is inherently stable. Then, it is best
to quantify the amplification caused by just the disturbance
to the system when a zero control is applied. We have the
following lemma that computes the ℓ2 gain of the subsystem
Σi with zero control inputs.

Lemma 1. Let uij(t) = 0 for all (i, j) ∈ E in (1). Then,

∥Σi∥H∞
≤ 1

1− ai
. (9)

Proof. Note that (1) relates to a first-order stable system with
zero control input for which its ℓ2 gain1 is given by

∥Σi∥H∞
≤ 1

1− ai
.

1See [14] for the definition of ℓ2 gain.
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C. Distributed Minimax Adaptive Control Problem

In the problem setting considered in this paper, the true
system model ai in (1) governing the dynamics of each node
i ∈ V is unknown. In that case, a natural direction would be
to investigate the ℓ2 gain under the uncertain ai setting. It
immediately follows from (9) that under zero control inputs

∥Σi∥H∞
≤ 1

1−max ai
. (10)

To have an idea about what maximum values each ai can
take, we equivalently rewrite (7) to see that(

ai −
1

2

)2

+ 2b2di −
1

4
< 0

⇐⇒ 1

2
−
√

1

4
− 2b2di < ai <

1

2
+

√
1

4
− 2b2di.

Since ai ∈ (0, 1) and di ≥ 1,∀i ∈ V , we see that

1

4
− 2b2di > 0 ⇐⇒ b <

√
1

8di
.

Since the above condition is true ∀i ∈ V , we get b <
√

1
8d .

To have a concrete problem setting and to synthesize a
distributed control with node level uncertainty, we have the
following two assumptions to characterize the uncertainty in
the local dynamics of each node in the network.

Assumption 1. For every node i ∈ V , the parameter

ai ∈ Ai, (11)

where Ai is a finite set in (0, 1) with M ∈ N≥2 elements
and each element in Ai satisfies (7).

Assumption 2. The dynamics of node i ∈ V is independent
of the dynamics of its neighbor j ∈ Ni. This means that the
choice of any one of the M values of ai ∈ Ai being the true
ai does not influence any one of the M values of aj ∈ Aj

being the true aj for every neighbor j ∈ Ni. Hence, there
are F := MN possible realisations of system matrix A and
the set of all feasible realisations of A is denoted as A.

Given that the local dynamics of each node in the network
is being uncertain, the controller should first learn the local
dynamics accurately and then guarantee robustness against
the adversarial disturbance acting on the node. This clearly
calls for a learning-based control policy which aims to learn
the uncertain parameter through the collected history of
system data. However, we also need to compare the learning
based control policy’s resulting ℓ2 gain for the system with
respect to the one with zero control input given by (9). A
control policy is termed as admissible if it is stabilising and
has causal implementation. The control input along each
edge (i, j) ∈ E depends upon the historical data of only
the nodes i, j ∈ V and is given by

uij(t) = πt

(
{xj(τ)}tτ=0 , {uij(τ)}t−1

τ=0 | ∀j ∈ Ji

)
, (12)

where πt ∈ Π and Π denotes the set of all admissible control
policies. To this end, we now formally define the distributed

minimax adaptive control problem statement to be solved by
every node i ∈ V along with ui(t) = vec({uij(t)}j∈Ni)
denoting the vector of control inputs along the edges that
are incident at node i.

Problem 1. Let γ > 0 and T ∈ N denote the given time
horizon. With the uncertainty set Ai for every node i ∈ V
given by (11), find a distributed control policy πt ∈ Π,∀t ∈
[0, T ] in the lines of (12) to solve

inf
π∈Π

∑
i∈V

sup
ai∈Ai,wi,T

T∑
τ=0

(
|xi(τ)|2 + |ui(τ)|2 − γ2 |wi(τ)|2

)
︸ ︷︷ ︸

Jπ
i

.

(13)

It is evident from (13) that there is a dynamic game being
played between the control input ui (minimising player) and
the adversaries2 namely the disturbance wi and the uncertain
parameter ai ∈ Ai (maximising players). Specifically, we
are interested in obtaining a condition on the ℓ2 gain of the
network system γ such that the dynamic game associated
with the Problem 1 has a finite value (that is, Jπ

i < ∞).
For each node i ∈ V , denote the minimum and max-

imum value of ai respectively as ai := min{Ai}, and
ai := max{Ai}. Similarly, denote the network level min-
imum and maximum values as a = max{a1, . . . , aN} and
a = min{a1, . . . , aN} respectively. Further, denote A :=
diag(a1, . . . , aN ) and A := diag(a1, . . . , aN ) respectively.
Note that ∀p ∈ JF K, we see that

aIN ⪯ A ⪯ Ap ⪯ A ⪯ aIN . (14)

Using (14), Assumption 1 could be modified as a continuum
of system matrices instead of finite number of matrices.

III. DISTRIBUTED MINIMAX ADAPTIVE CONTROLLER
WITH LOWER & UPPER ℓ2 GAIN BOUNDS

With the uncertainty given by (11), the corresponding ℓ2
gain of the optimal distributed minimax adaptive controller
namely γ† is not yet known. Note that Problem 1 has a finite
value if and only if γ ≥ γ†. First, we present the proposed
distributed minimax adaptive control strategy followed by
lower and upper bounds for the ℓ2 gain γ† corresponding to
the proposed controller addressing problem 1.

A. Design strategy for a sub-optimal distributed minimax
adaptive control algorithm

We describe a sub-optimal distributed minimax adaptive
control algorithm given the set Ai for every node i ∈ V . It is
possible to establish an one-to-one correspondence between
Problem 1 and the centralised minimax adaptive control
problem setting given in [12]. However, as the number of
nodes N grow, computing a centralized controller becomes
expensive. To hedge against the uncertainty in the system
matrix A, one can consider collecting historical data. Given
the large-scale network setting, the highlighting point of our
approach is that it is not necessary for a node i ∈ V to

2The supremum with respect to T in (13) is achieved by letting T → ∞.
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collect the history for the entire network. Each node i ∈ V
in the network has access to only local information from its
neighbors at a time. Hence, the process of hedging against
the uncertainty prevailing over its dynamics ai ∈ Ai involves
collecting historical data from only its local neighbors Ni to
arrive at its own control action by finding a model that best
describes the disturbance trajectory up to that time. Note that
the disturbance at time t ∈ N can be inferred from (1) as

wi(t) = aixi(t) + b
∑
j∈Ni

uij(t)− xi(t+ 1). (15)

Let us denote the control vector containing all edges incident
to node i ∈ V as

uNi
(t) =


uij1(t)
uij2(t)

...
uijdi

(t)

 . (16)

Note that for the distributed control policy to fit the descrip-
tion given in (12), every node i ∈ V collects only the local
neighbor information data in the form of sample covariance
matrix with t ∈ N and Z(i)(0) = 0 as

xi(t+ 1) = vi(t), (17a)

Z(i)(t+ 1) = Z(i)(t) +

−vi(t)
xi(t)
uNi(t)

−vi(t)
xi(t)
uNi(t)

⊤

. (17b)

Note that with the above construction,∥∥∥[1 ai b1⊤
di

]⊤∥∥∥2
Z(i)(t)

=

t−1∑
τ=0

|wi(τ)|2 . (18)

Our approach is to select a model at every point in time that
best describes the disturbance trajectory given by (18).

B. Lower bound for ℓ2 gain

It is known that the distributed minimax adaptive con-
troller can never do better than the distributed H∞ optimal
controller as the latter operates with the knowledge of the
true system dynamics. This implies that we can obtain
lower bound for the ℓ2 gain corresponding to the distributed
minimax adaptive controller using the associated ℓ2 gain of
the distributed H∞ optimal controller. The following lemma
formally establishes this fact.

Lemma 2. Given the uncertainty set Ai for every node i ∈ V
described by (11),

γ† ≥
∥∥∥((A− I)2 +BB⊤)−1

∥∥∥ 1
2︸ ︷︷ ︸

:=γ†

. (19)

Proof. Note that given a known (A,B) pair, Theorem 1
of [16] gives an explicit expression for the controller gain
matrix and the corresponding ℓ2 gain achieved by the con-
troller from the disturbance to the error. That is, given

(A,B) matrices, the respective ℓ2 gain γ⋆ is achieved by
the controller given by (6) and γ⋆ is given by

γ⋆ :=
∥∥∥((A− I)2 +BB⊤)−1

∥∥∥ 1
2

. (20)

Since A is diagonal and Schur stable, we observe that the
lower bound for the ℓ2 gain γ† is achieved when A = A and
hence the result follows.

C. Distributed implementation for minimax adaptive control
algorithm and its ℓ2 gain upper bound.

We now present the proposed sub-optimal distributed
minimax adaptive control algorithm using the strategy given
by (17) and also give an upper bound γ† for the ℓ2 gain. That
is, our formulation provides a family of (sub-optimal) dis-
tributed minimax control policy parameterized by γ, which
are guaranteed to exist ∀γ > γ† ≥ γ†. Note that getting
an upper bound γ† is not straightforward as there several
approaches to get one. Since we plan on utilising the ideas
from [12], we enforce the following additional assumption
which essentially restricts the class of systems for which a
readily available upper bound γ† can be inferred.

Assumption 3. The matrices triple (A,A,B) satisfy

A(I −A) ≻ BB⊤ ≻ A−A− (I −A)(I −A). (21)

Note that there exists B satisfying (21) if

A ⪯ 1

2
(I +A). (22)

Theorem 1. Let the uncertainty set Ai for every node i ∈ V
be given by (11) and additionally let (A,A) satisfy (21).
Then, the distributed control policy that addresses Problem
1 shall result in the following control input along each edge
(i, j) ∈ E given by

uij(t) =
bxi(t)

a†i (t)− 1
− bxj(t)

a†j(t)− 1
, where (23a)

a†⋄(t) = argmin
a⋄∈A⋄

∥∥∥[1 a⋄ b1⊤
d⋄

]⊤∥∥∥2
Z(⋄)(t)

, ⋄ = {i, j}.

(23b)

Further, the dynamic game associated with the Problem 1
under the control policy (23) will have a finite value (i.e.,
Jπ
i < ∞) with

P = (I −A)−1 (24)

and

γ =
∥∥∥((I −A)(I −A) +A−A+BB⊤)−1

∥∥∥ 1
2

2
. (25)

Proof. To ensure that the dynamic game associated with
Problem 1 has a finite value, we invoke Theorem 3 from [12].
That is, we look for a matrix P such that for all x ∈ RN ,
k, l, p ∈ JF K, except if k ̸= l = p and Acl

kp = Ak + BKp,
the following linear matrix inequality holds:

|x|2Plp
≥ |x|2Q + |Kpx|2R +

∣∣(Acl
kp +Acl

lp)x/2
∣∣2
(P−1

kl −γ−2I)−1

− γ2
∣∣(Acl

kp −Acl
lp)x/2

∣∣2 .
(26)
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On the other hand, to get a conservative value for the
associated dynamic game, it is sufficient to prove that the
following standard H∞ coupled Riccati inequality (obtained
by reducing (26) by setting k = l and with any p defining
the controller) given by

P ⪰ I +K⊤ K

+ (A+BK)⊤
(
P−1 − γ−2I

)−1
(A+BK), (27)

holds for any controller K = B⊤(A′−I)−1 and A,A′ ∈ A.
Now, using (24) and (25), we get

P−1 − γ−2I ⪰ A(I −A)−BB⊤ ⪰ A(I −A′)−BB⊤ (28)

as any A ⪯ A and any A′ ⪰ A. Further, (21) guarantees that

(I +A)(I +A) +A−A+BB⊤ ≻ 0.

To show that (27) holds, we use (28) to see that

I +K⊤K + (A+BK)⊤(P−1 − γ−2I)−1(A+BK)

⪯ I + (I −A′)−1BB⊤(I −A′)−1

+ (I −A′)−1
(
(I −A′)A−BB⊤) ((I −A′)A−BB⊤)−1

× ((I −A′)A−BB⊤)(I −A′)−1

= I + (I −A′)−1BB⊤(I −A′)−1

+ (I −A′)−1((I −A′)A−BB⊤)(I −A′)−1

= I + (I −A′)−1A

⪯ I + (I −A)−1A

= P.

The reasoning behind a finite value for the associated dy-
namic game is that the control law given by (23) indicates
that every node i ∈ V selects the model that best describes
the disturbance trajectory modelled using the collected his-
tory (Z(i)(t)) in a least-square sense and then employs the
corresponding optimal distributed H∞ control law at every
time step t by taking the certainty equivalence principle as
in [10]. It was already proven in [12] that such a control law
(now in the distributed form for every node i ∈ V) given by
(23) yields a finite value for dynamic game given in Problem
1 meaning that, Jπ

i < ∞ and this completes the proof.

Remarks: The choice of P in general determines the
price for learning the uncertain parameter in local dynamics
and specifically the choice in (24) results in a conservative
cost. There are other choices for the P matrix which rather
satisfy a much stronger (26) and thereby can reduce the cost
conservatism in a much better way. However, it is difficult to
find one at this point in the distributed setting while dealing
with the associated combinatorics.

IV. NUMERICAL SIMULATION

A. Simulation Setup

To demonstrate our proposed approach, we consider a
large-scale buffer network with N = 104 nodes where com-
puting a centralised controller is non-trivial and expensive.
We let b = 0.1 so that the input matrix for the whole network
is simply the scaled incidence matrix, B = bI , with I

0 5 10 15 20 25 30
−10

−5

0

5

10

Time

x† − x⋆: white noise w

u† − u⋆: white noise w

Fig. 1: The behaviour of the uncertain network controlled by
minimax adaptive controller (with superscript †) eventually
coinciding with that of the distributed H∞ controller (with
superscript ⋆) under the effect of a random adversarial
disturbance is depicted here. The difference of states from
both controllers corresponding to all the nodes in the network
is shown in blue color and the difference of control inputs
corresponding to all the edges in the network is shown here
in red color. The solid lines correspond to the mean values
and the shaded regions their respective variance.

being the incidence matrix of the associated tree graph. Two
different models (M = 2) were generated randomly for each
node i ∈ V satisfying (7). The total time horizon was set to
be T = 30. To simulate the above system with a disturbance
signal, we chose a zero mean random signal with covariance
of 0.1IN . Model number two from the set Ai was picked
and fixed to be the true system model governing its dynamics
for every node i ∈ V throughout the time horizon. For every
node i ∈ V , the distributed minimax adaptive control inputs
were computed using (23) and the distributed H∞ control
inputs were computed as described in Corollary 1 of [16]
using the true ai ∈ Ai.

B. Results & Discussion

The bounds from Lemma 2 and Theorem 1 were found
out to be 12.72 and 354.33 respectively. We observed that
both the distributed minimax adaptive control policy and
the distributed H∞ control policy were stabilising. That is,
the behaviour of the distributed minimax adaptive and the
distributed H∞ controllers get very similar after certain point
in time as shown in Figure 1, where the stabilised states of all
nodes are shown. The respective control inputs behaving very
similar to each other is shown in Figure 1. The time when
both these policies coincide is still an open problem as we
conjecture that there might exist adversarial disturbance poli-
cies for some node in the network that can keep the controller
continuously guessing about its local dynamics model uncer-
tainty. The code is made available at https://gitlab.
control.lth.se/regler/distributed_mac.
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V. CONCLUSION

A distributed minimax adaptive controller for uncertain
networked systems was presented in this paper. Based on
the local information collected by each node in the network,
the distributed minimax adaptive controller selects the best
model that minimizes the disturbance trajectory hitting that
node and selects the corresponding distributed H∞ control
law. Our proposed distributed implementation scales linearly
with the size of the network. Both lower and upper bounds
for the associated ℓ2 gain of the controller were obtained.
Future work will seek to extend the framework to uncertain
networked systems with output model.
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