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Abstract— For multi-variable static quadratic map, we
present a time-delay approach to gradient-based extremum
seeking (ES) with measurement noise, and provide a mean-
square exponential ultimate boundedness (MSEUB) analysis.
We consider the uncertain map where the Hessian matrix H
has a nominal known part and norm-bounded uncertainty, the
extremum point belongs to a known ball, and the extremum
value to a known interval. By applying a time-delay approach to
the resulting stochastic ES system, we arrive at the neutral type
time-delay system with stochastic perturbations. We further
present the latter system as a retarded one and employ the
variation of constants formula for the MSEUB analysis. Under
the assumption that the upper bound of the 6th moment of the
estimation error is a known arbitrarily large constant L, explicit
condition in terms of simple scalar inequality depending on the
bound L, tuning parameters and the intensity of measurement
noise is established to guarantee the MSEUB analysis of the
ES control systems. Example from the literature illustrates the
efficiency of the new approach.

I. INTRODUCTION

ES is a model-free adaptive optimization control method
which deals with dynamic problems where the input-output
mapping relationship is unknown but its extremum values
exist. ES control has attracted much attention and has been
investigated from quite different aspects (see [1], [2], [3]).
In the ES process, the measurements are usually noisy. For
instance, the search path needs to be adjusted by measuring
the output which is normally corrupted by measurement
noise, this brings some difficulties in the stability analysis. To
solve the difficulties caused by stochastic perturbations, some
important results have been proposed for the research on the
stochastic ES (see [4], [5], [6]). In [6], the authors studied
the discrete-time ES with deterministic perturbations in the
presence of stochastic noise via the stochastic approximation
method. To guarantee the convergence of the algorithm,
the boundedness of iteration sequence was assumed. The
classical stochastic approximation methods and the general
stochastic averaging theory provide the qualitative analysis
only, and cannot quantitatively give the upper bounds on the
parameters that preserve the stability.

Recently, a new constructive time-delay approach to the
continuous-time averaging with efficient and quantitative
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bounds on the small parameter that ensures the stability was
presented in [7]. Subsequently, this approach to averaging
was successfully extended to discrete-time systems (see [8])
and applied for the quantitative stability analysis of determin-
istic ES algorithms by constructing appropriate Lyapunov-
Krasovskii (L-K) functionals (see [9], [10]). Recently, a
robust time-delay approach to ES by using the variation of
constants formula was proposed in [11], which can greatly
simplify the stability analysis and conditions compared to
L-K method.

In this paper, we develop, for the first time, a time-delay
approach to multi-variable ES with measurement noise via
MSEUB analysis of the averaged system. We consider the
uncertain map where the Hessian has a nominal known part
and norm-bounded uncertainty, the extremum point belongs
to a known ball, and the extremum value to a known
interval. We first apply a time-delay transformation to the
resulting stochastic ES system to get a neutral type time-
delay system with stochastic perturbations, and then we
further transform it to an averaged ODE stochastic perturbed
model. Finally, we use the variation of constants formula to
quantitatively analyze the MSEUB analysis of the averaged
stochastic system (and thus of the original stochastic ES
system). Assuming that the upper bound of the 6th moment
of the estimation error is a known constant L that can be
arbitrarily large, explicit condition in terms of simple scalar
inequality depending on the bound L, tuning parameters and
the intensity of measurement noise is established to guarantee
the MSEUB of the stochastic ES control systems. For the
quantitative results restricted to 1D map, see the companion
conference paper [12].

Notation: The notation (Ω,F ,P) refers to a complete
probability space with its filtration {Ft}t⩾0 satisfying the
usual conditions (i.e., it is increasing and right continuous
while F0 contains all P-null sets). The notation B(t) refers
to a (standard) one-dimensional Brownian motion defined on
the probability space. The notations |·| and ∥·∥ refer to the
usual Euclidean vector norm and the induced matrix 2 norm,
respectively.

II. A TIME-DELAY APPROACH TO ES FOR UNCERTAIN
MAP

Consider the multi-variable static map given by

dy(t) =
[
Q∗+ 1

2 (θ (t)−θ ∗)T H (θ (t)−θ ∗)
]

dt +CdB(t) ,
(1)

where y(t) ∈R is the measurable output which is corrupted
by Brownian motion B(t) ∈R, θ (t) ∈Rn is the vector input
with initial value θ (0) ∈ Rn, Q∗ ∈ R, θ ∗ ∈ Rn. Here the
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scalar C ≥ 0 is noise intensity, H =HT ∈Rn×n is the Hessian
matrix. Without loss of generality, we assume that H > 0 (or
H < 0) meaning that the static map (1) has a minimum or
a maximum value Q∗ at θ(t) = θ ∗. Following [11], in order
to derive efficient qualitative conditions, we assume that:

A1 The extremum point θ ∗ to be sought is uncertain
from a known interval θ ∗

i ∈ [θ ∗
i , θ̄

∗
i ], i = 1, . . . ,n with

∑
n
i=1

(
θ̄ ∗

i −θ
∗
i
)2

= σ2
0 .

A2 The extremum value Q∗ is unknown, but it is subject
to |Q∗|⩽ Q∗

M with Q∗
M being known.

A3 The Hessian H is uncertain and subject to H = H̄+∆H
with H̄ > 0 (or H̄ < 0) being known and ∥∆H∥⩽ κ . Here κ

is a known scalar.
Remark 1: In classical ES under stochastic noise (see

[6]), H, Q∗ and θ ∗ in (1) are assumed to be unknown, where
tuning parameters may be found from simulation only. Here
we study a “grey box” model with Assumptions A1-A3 and
provide a quantitative analysis. There is a trade-off between
the quantitative analysis with the plant information and the
qualitative analysis without the model knowledge. For the
“black box” model without Assumptions A1-A3, our method
leads to qualitative results.

In order to derive less conservative results, following [13]
we will first diagonalize the nominal part of the map by using
an orthogonal transformation. Since H̄ > 0 (or H̄ < 0), there
exists an orthogonal matrix U ∈ Rn×n such that

UH̄UT = diag
{

h̄1, h̄2, · · · , h̄n
}
≜ H̄ , (2)

where UUT = I and ∥U∥= 1. Then we have

H ≜UHUT =UH̄UT +U∆HUT ≜ H̄ +∆H . (3)

From (2) and (3), (1) can be further reduced to

dy(t) =
[
Q∗+ 1

2 (ϑ (t)−ϑ ∗)T H (ϑ (t)−ϑ ∗)
]

dt +CdB(t) ,
(4)

where
ϑ (t) =Uθ (t) , ϑ

∗ =Uθ
∗. (5)

Define the real-time estimates θ̂ (t) and ϑ̂ (t) of θ ∗ and ϑ ∗,
respectively, with the estimation errors:

θ̃ (t) = θ̂ (t)−θ
∗, ϑ̃ (t) = ϑ̂ (t)−ϑ

∗. (6)
Design θ̂ (t) =UTϑ̂ (t), then from (5) and (6), we have

θ̃ (t) = θ̂ (t)−θ
∗ =UT (

ϑ̂ (t)−ϑ
∗)=UT

ϑ̃ (t) .
Since U satisfies ∥U∥= 1, we get

|θ̃ (t) |⩽ ∥UT∥|ϑ̃ (t) |= |ϑ̃ (t) |⩽ ∥U∥|θ̃ (t) |= |θ̃ (t) |,
namely, |ϑ̃ (t) | = |θ̃ (t) |. Then, it is sufficient to consider
bounds on ϑ̃ -system.
For (4), the gradient-based ES algorithm is designed as

ϑ (t) = ϑ̂ (t)+S (t) , dϑ̂ (t) = KM (t) ·dy(t) (7)

with initial value ϑ̂ (0) ∈ Rn, where S(t) and M(t) are the
dither signals satisfying

S (t) = [a1 sin(ω1t) , · · · ,an sin(ωnt)]T ,

M (t) =
[

2
a1

sin(ω1t) , · · · , 2
an

sin(ωnt)
]T

,
(8)

in which ai are real numbers, ωi ̸= ω j ̸= 0, i ̸= j and ωi/ω j
are rational numbers. To be specific, we let

ωi =
2πli

ε
, li ∈ N+, i = 1, . . . ,n. (9)

The adaptation gain K is chosen as
K = diag{k1,k2, · · · ,kn} , i = 1, . . . ,n (10)

such that KH̄ is Hurwitz (for instance, K = kIn with a scalar
k < 0 or > 0). From (4), (6) and (7), we have

dϑ̃ (t) =KM (t)Q∗dt + 1
2 KM (t) ϑ̃ T (t)H ϑ̃ (t)dt

+KM (t)ST (t)H ϑ̃ (t)dt

+ 1
2 KM (t)ST (t)H S (t)dt

+CKM (t)dB(t) , t ⩾ 0.

(11)

In view of (3), system (11) can be rewritten as
dϑ̃ (t) = KM (t)Q∗dt + 1

2 KM (t) ϑ̃ T (t)H̄ ϑ̃ (t)dt
+KM (t)ST (t)H̄ ϑ̃ (t)dt
+ 1

2 KM (t)ST (t)H̄ S (t)dt
+ω (t)dt +CKM (t)dB(t) , t ⩾ 0

(12)

with
ω (t) = KM (t)

[ 1
2 ϑ̃ T (t)∆H ϑ̃ (t)

+ST (t)∆H ϑ̃ (t)+ 1
2 ST (t)∆H S (t)

]
.

(13)

For the initial value ϑ̃ (0), solution of (12) is a stochastic
process ϑ̃ (t) with probability 1 satisfying (see [14])

ϑ̃ (t) = ϑ̃ (0)+
∫ t

0 [KM (s)Q∗

+ 1
2 KM (s) ϑ̃ T (s)H̄ ϑ̃ (s)

]
ds

+
∫ t

0 KM (s)ST (s)H̄ ϑ̃ (s)ds
+ 1

2
∫ t

0 KM (s)ST (s)H̄ S (s)ds
+

∫ t
0 ω (s)ds+

∫ t
0 CKM (s)dB(s), t ⩾ 0,

(14)

where the last stochastic integral is in the sense of Itô type.
Remark 2: Since θ (t) = UTϑ (t) and θ̂ (t) = UTϑ̂ (t),

then from (7) it is easy to present the gradient-based ES
algorithm for the original ES problem as follows:

θ (t) = θ̂ (t)+UTS (t) , dθ̂ (t) =UTKM (t) ·dy(t) . (15)

By using this algorithm and noting that θ̃ (t) =UTϑ̃ (t), we
can obtain part (ii) in Theorem 1 below.

For the stability analysis of the ES system (12), inspired by
[7], [12], we first apply the time-delay approach to averaging
of (12). Let ωi be defined in (9). Integrating from t − ε to t
and dividing by ε on both sides of equation (12), for t ⩾ ε

we have
1
ε

∫ t
t−ε

dϑ̃ (s) = 1
ε

∫ t
t−ε

KM (s)Q∗ds
+ 1

2ε

∫ t
t−ε

KM (s) ϑ̃ T (s)H̄ ϑ̃ (s)ds
+ 1

ε

∫ t
t−ε

KM (s)ST (s)H̄ ϑ̃ (s)ds
+ 1

2ε

∫ t
t−ε

KM (s)ST (s)H̄ S (s)ds
+ 1

ε

∫ t
t−ε

ω (s)ds+ 1
ε

∫ t
t−ε

CKM (s)dB(s).

(16)

Denote
G(t) = 1

ε

∫ t
t−ε

(s− t + ε) f (s)ds, t ⩾ ε, (17)
where f is defined by

f (t) =KM (t)
[
Q∗+ 1

2 ϑ̃ T (t)H̄ ϑ̃ (t)

+ST (t)H̄ ϑ̃ (t)+ 1
2 ST (t)H̄ S (t)

]
.

(18)

Then we can present the left-hand of (16) as
1
ε

∫ t
t−ε

dϑ̃ (s)dt = d
[
ϑ̃ (t)−G(t)

]
+ 1

ε

∫ t
t−ε

ω (s)dsdt + 1
ε

∫ t
t−ε

CKM (s)dB(s)dt
−ω (t)dt −CKM (t)dB(t) , t ⩾ ε.

(19)

For the first term on the right-hand side of (16), we get
1
ε

∫ t
t−ε

KM (s)Q∗ds = Q∗

ε
Kcol

{
2
ai

∫ t
t−ε

sin( 2πli
ε

s)ds
}n

i=1
= 0,
(20)

where
∫ t

t−ε
sin( 2πli

ε
s)ds = 0 (i = 1, . . . ,n) is employed. Then

system (12) can be further expressed as
dϑ̃ (t) = ( f (t)+ω(t))dt +CKM (t)dB(t) , t ⩾ 0. (21)
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By applying Itô formula (see Theorem 1.6.4 of [14]) and
(21), we obtain

dϑ̃ T (t)H̄ ϑ̃ (t) = 2( f (t)+ω (t))T H̄ ϑ̃ (t)dt
+C2MT (t)KH̄ KM (t)dt +2CMT (t)KH̄ ϑ̃ (t)dB(t) .(22)

With (22) and
∫ t

t−ε
KM (s)ds = 0, we can present the second

term on the right-hand side of (16) as
1

2ε

∫ t
t−ε

KM (s) ϑ̃ T (s)H̄ ϑ̃ (s)ds
= 1

2ε

∫ t
t−ε

KM (s) ϑ̃ T (t)H̄ ϑ̃ (t)ds
− 1

2ε

∫ t
t−ε

KM (s)
[
ϑ̃ T (t)H̄ ϑ̃ (t)− ϑ̃ T (s)H̄ ϑ̃ (s)

]
ds

=−Y1 (t)−Y2 (t)−Y3 (t) , t ⩾ ε, (23)
where

Y1 (t) = 1
ε

∫ t
t−ε

∫ t
s KM (s)( f (τ)+ω (τ))T H̄ ϑ̃ (τ)dτds,

Y2 (t) = C
ε

∫ t
t−ε

∫ t
s KM (s)MT (τ)KH̄ ϑ̃ (τ)dB(τ)ds,

Y3 (t) = C2

2ε

∫ t
t−ε

∫ t
s KM (s)MT (τ)KH̄ KM (τ)dτds. (24)

Note that
∫ t

t−ε
M (s)ST (s)ds = εIn since∫ t

t−ε

2a j
ai

sin( 2πli
ε

s)sin( 2πl j
ε

s)ds =
{

ε, i = j,
0, i ̸= j.

Then by (21) we can calculate the third term on the right-
hand side of (16) as

1
ε

∫ t
t−ε

KM (s)ST (s)H̄ ϑ̃ (s)ds
= 1

ε

∫ t
t−ε

KM (s)ST (s)H̄ ϑ̃ (t)ds
− 1

ε

∫ t
t−ε

KM (s)ST (s)H̄
[
ϑ̃ (t)− ϑ̃ (s)

]
ds

= KH̄ ϑ̃ (t)−Y4 (t)−Y5 (t) ,

(25)

where
Y4 (t) = 1

ε

∫ t
t−ε

∫ t
s KM (s)ST (s)H̄ ( f (τ)+ω (τ))dτds,

Y5 (t) = C
ε

∫ t
t−ε

∫ t
s KM (s)ST (s)H̄ KM (τ)dB(τ)ds.

(26)
For the fourth term on the right-hand side of (16), we have

1
2ε

∫ t
t−ε

KM (s)ST (s)H̄ S (s)ds

= 1
ε

Kcol
{

∑
n
i=1

a2
i h̄i
ak

∫ t
t−ε

sin2( 2πli
ε

s)sin( 2πlk
ε

s)ds
}n

k=1
= 0,

(27)

where
∫ t

t−ε
sin2 ( 2πli

ε
s)sin( 2πlk

ε
s)ds = 0 has been used. Then

employing (19), (20), (23), (25) and (27), we have
d[ϑ̃ (t)−G(t)] = KH̄ ϑ̃ (t)dt −∑

5
i=1 Yi (t)dt

+ω (t)dt +CKM (t)dB(t) , t ⩾ ε.
(28)

The solution of system (16) is also a solution of the time-
delay system (28). Thus, the stability of (16) can be guaran-
teed by the stability of (28). Finally, we set

z(t) = ϑ̃ (t)−G(t) , (29)

system (28) can be transformed to

dz(t) = KH̄ z(t)dt + ω̄ (t)dt +CKM (t)dB(t) , t ⩾ ε
(30)

with
ω̄ (t) = KH̄ G(t)−∑

5
i=1 Yi (t)+ω (t) . (31)

If ϑ̃ (t) (and thus z(t)) is of the order of O(1) in the mean
square sense, the terms G(t) ,Yi (t)(i = 1,3,4) defined in
(17), (24) and (26), respectively, are of the order of O(ε2),
ω (t) defined in (13) is of the order of O(κ2) and the terms
Yi (t)(i = 2,5) defined in (24) and (26), respectively, are of
the order of O(C2) in the mean square sense. Therefore,
ω̄ (t) is of the order of O(max{ε2,κ2,C2}) in the mean
square sense. Thus, for small ε > 0, κ > 0 and C > 0, system
(30) can be regarded as a perturbation of the linear system

dz(t) =KH̄ z(t)dt, which is exponentially stable since KH̄
is Hurwitz. Via (29), the resulting bound on |z| will lead to
the bound on ϑ̃ : |ϑ̃ | ≤ |z|+ |G|. The bound on z will be
found by utilizing the variation of constants formula to (30).
For future use, we denote

KM = ∥K∥= max
i=1,...,n

|ki| , H̄M =
∥∥H̄

∥∥= max
i=1,...,n

∣∣h̄i
∣∣ ,

Θm = min
i=1,...,n

∣∣kih̄i
∣∣ , ΘM = max

i=1,...,n

∣∣kih̄i
∣∣ ,

(32)
and

∆ f = 3∑
n
i=1

4k2
i

a2
i

[
L2/3H̄2

M
4 +σ2H̄2

M ∑
n
i=1 a2

i

+
(

Q∗
M + H̄M

2 ∑
n
i=1 a2

i

)2
]
,

∆ω = 3
4 ∑

n
i=1

4k2
i

a2
i

[
L2/3 +4σ2

∑
n
i=1 a2

i +
(
∑

n
i=1 a2

i
)2
]
,

∆Y1 = 2
(

∑
n
i=1

4k2
i

a2
i

)(
∑

n
i=1

4k2
i h̄2

i
a2

i

)[
4σ2Q∗

M
2 +

(
H̄2

M + 3κ2

4

)
×
(

L+4∑
n
i=1 a2

i L2/3 +σ2
(
∑

n
i=1 a2

i
)2
)]

,

∆Y2 =
σ2

2

(
∑

n
i=1

4k2
i

a2
i

)(
∑

n
i=1

4k2
i h̄2

i
a2

i

)
,

∆Y3 =
1
16

(
∑

n
i=1

4k2
i

a2
i

)2(
∑

n
i=1

4k2
i h̄2

i
a2

i

)
,

∆Y4 =
2H̄2

M
3 ∑

n
i=1

4k2
i

a2
i

∑
n
i=1 a2

i
(
∆ f +κ2∆ω

)
,

∆Y5 =
1
2

(
∑

n
i=1

4k2
i

a2
i

)(
∑

n
i=1

4k2
i h̄2

i
a2

i

)
∑

n
i=1 a2

i ,

∆̄(ε,C) = 2ε2Θ2
M∆ f +6κ2∆ω +2ε2 (∆Y1 +3∆Y4)

+6εC2
(
∆Y2 + εC2∆Y3 +∆Y5

)
. (33)

Theorem 1: Let A1-A3 be satisfied and KH̄ be Hurwitz,
where K is the adaptation gain given by (10). Suppose system
(12) has a unique solution on [0,∞) and E|ϑ̃(t)|6 ⩽ L <
∞, t ⩾ 0 with L being an arbitrarily large known constant.
Given σ0 in A1 and σ satisfying 0<σ0 <σ < L1/6, consider
the closed-loop system (12) with ωi given by (9) and the
initial condition E|ϑ̃(0)|2 ⩽ σ2

0 . Given tuning parameters
ai (i = 1, . . . ,n) and ε∗,C∗ > 0, let the following inequality
holds:

Φ = 12σ2
0 +4ε∗

[
6σ

(
∆

1/2
f +κ∆

1/2
ω

)
+3C∗2

∑
n
i=1

4k2
i

a2
i

+
7ε∗∆ f

6

]
+ 6∆̄(ε∗,C∗)

Θ2
m

+ 3C∗2

Θm
∑

n
i=1

4k2
i

a2
i
−σ2 < 0,

(34)
where Θm is given by (32) and ∆̄(ε,C), ∆ f , ∆ω are given by
(33). Then for all ε ∈ (0,ε∗] and C ∈ [0,C∗] , the following
holds:

(i) The solution of (12) satisfies
E|ϑ̃(t)|2 < E|ϑ̃(0)|2 +2εσ

(
∆

1/2
f +κ∆

1/2
ω

)
+ εC2

∑
n
i=1

4k2
i

a2
i
< σ2, t ∈ [0,ε] ,

E|ϑ̃(t)|2 < 12e−2Θm(t−ε)E|ϑ̃(0)|2 +4εe−2Θm(t−ε)

×
[
6σ

(
∆

1/2
f +κ∆

1/2
ω

)
+3C2

∑
n
i=1

4k2
i

a2
i
+ ε∆ f

]
+ 6∆̄(ε,C)

Θ2
m

+ 3C2

Θm
∑

n
i=1

4k2
i

a2
i
+

2ε2∆ f
3 < σ2, t ⩾ ε,

(35)

meaning that the ball

E|ϑ̃ |2 ⩽ 6∆̄(ε,C)
Θ2

m
+ 3C2

Θm
∑

n
i=1

4k2
i

a2
i
+

2ε2∆ f
3

(36)

is exponential attractive with a decay rate δ = Θm.
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(ii) Consider θ̂ (t) =UTϑ̂ (t) and θ ∗ =UTϑ ∗, where ϑ̂ (t)
is defined by (7). Then θ̃ (t) = θ̂ (t)−θ ∗ satisfies (35) and
(36) with ϑ̃(t) replaced by θ̃ (t).

Proof 1: See Appendix.
Remark 3: Given parameters L, σ0, σ , ai and ki, (34)

is always feasible for small enough ε∗ and C∗. To achieve
the convergence of the ES algorithm and obtain the ultimate
bound (UB) of ϑ̃(t) (also θ̃ (t)), as done in [15], [6] and
[12], we introduced the condition that E|ϑ̃(t)|6 is a priori
bounded by a known constant L. The imposed bound L is
only required to be finite and can be arbitrarily large. In
this sense, Theorem 1 guarantees semi-global convergence
for small enough ε∗ and C∗. The introduced boundedness
assumption is realistic for practical applications (see [15],
[6]). In addition, Though that ε∗ and C∗ decrease as L
increases via (34), we can still achieve not too small ε∗ and
C∗ by choosing suitable ai, and ki (i = 1, . . . ,n) when L is
large enough. This has been illustrated in Example below
and the one in [12].

Remark 4: We give a discussion about the effect of
tuning parameters on ε∗, C∗, the decay rate δ and UB. For
simplicity, we let ki = k (i = 1, . . . ,n). For given L (large
enough), ai and σ > σ0 > 0, it is clear that Φ in (34) is an
increasing function w.r.t |k|, ε∗ and C∗. Therefore, ε∗ and C∗

decrease as |k| increases. On the other hand, the decay rate
δ = Θm = min

i=1,...,n
|kh̄i| increases as |k| increases. So we can

balance δ , ε∗ and C∗ by adjusting the gain K. In addition,
by using the similar arguments in Remark 3 of [11], we can
find the relatively small UB for given large enough L and
the other available parameters.

III. EXAMPLE

Following [3], we apply our theory to the source seeking
example in which the scalar output is subject to measurement
noise (without delays). The noisy output function y satisfies
(1) with

Q∗ = 1, H =

[
−2 −2
−2 −4

]
, θ

∗ =

[
0
1

]
. (37)

We can get an orthogonal matrix

U =

[
0.5257 0.8507
−0.8507 0.5257

]
(38)

such that

H̄ =UHUT =

[
−5.2361 0

0 −0.7639

]
(39)

If H is uncertain with ∥∆H∥⩽ κ , we choose κ = 0.003. We
let L = 100 and select the tuning parameters of gradient-
based ES algorithm (15) as

k1 = 0.2 ·10−3,k2 = 0.1 ·10−2, a1 = a2 = 0.5. (40)

To calculate UB, we choose ρ = β = 10−3 following Remark
2 in [11]. The results that follow from Theorem 1 for known
(κ = 0) and uncertain (κ = 0.003) H are shown in Table I,
in which UB corresponds to ε = ε∗.

Moreover, if L = 10000, we choose
k1 = 0.2 ·10−4,k2 = 0.1 ·10−3, a1 = a2 = 0.5, (41)

the results that follow from Theorem 1 for uncertain (κ =
0.001) H are shown in Table II.

TABLE I
VALUES OF δ , C∗ , ε∗ AND UB IN VECTOR SYSTEMS UNDER (40)

ES: sine wave σ0 σ δ C∗ ε∗ UB
Known H 0.5 1.84 0.0008 0.1 0.0366 0.2205

Uncertain H 0.5 1.84 0.0008 0.1 0.0228 0.2851

TABLE II
VALUES OF δ , C∗ , ε∗ AND UB IN VECTOR SYSTEMS UNDER (41)

ES: sine wave σ0 σ δ C∗ ε∗ UB
Uncertain H 0.5 1.85 0.8 ·10−4 0.1 0.0190 0.3885

IV. CONCLUSIONS

This paper developed a time-delay approach to multi-
variable ES corrupted by white noise for static quadratic
maps. Given a known arbitrarily large bound L on the 6th
moment of estimation error, explicit condition in terms of
simple inequality depending on the bound L, tuning param-
eters and noise intensity was established to guarantee the
MSEUB of the ES control systems for uncertain static maps.
The quantitative UB of seeking error was also presented.
Future works may include the study on ES with stochastic
perturbations for non-quadratic maps and dynamic maps.

APPENDIX

Since θ̂ (t) =UTϑ̂ (t), it is not difficult to obtain part (ii)
from part (i). Thus, we just need to prove part (i). The proof
is divided into three parts. (A) First, under (42) and (43)
below, we present the upper bound of E|ϑ̃(t)|2 for t ∈ [0,ε] as
well as E |ω̄ (s)|2 for t ≥ ε; (B) Second, we show the practical
stability of z-system in (30) (and thus ϑ̃ -system in (12)). (C)
Third, we show the availability of (43) by contradiction.

Proof of the part A. From the assumption that E|ϑ̃(t)|6 ⩽
L < ∞, t ⩾ 0 and Hölder′s inequality, we have

E|ϑ̃(t)|2 ≤ L1/3, E|ϑ̃(t)|4 ≤ L2/3, t ≥ 0. (42)
We assume that

E|ϑ̃(t)|2 < σ
2, t ⩾ 0 (43)

with 0 < σ < L1/6. By A2, (8), (10) and (32), it follows from
(18) that

| f (t)|⩽
√

∑
n
i=1

4k2
i

a2
i

[
Q∗

M + H̄M
2

(
|ϑ̃(t)|+

√
∑

n
i=1 a2

i

)2
]

=

√
∑

n
i=1

4k2
i

a2
i

[
Q∗

M + H̄M
2

(
|ϑ̃(t)|2

+2
√

∑
n
i=1 a2

i |ϑ̃(t)|+∑
n
i=1 a2

i

)]
, t ⩾ 0.

(44)
Via (42)-(44), we further have

E | f (t)|2 ⩽ ∑
n
i=1

4k2
i

a2
i

[
3H̄2

M
4 E|ϑ̃(t)|4

+3H̄2
M ∑

n
i=1 a2

i E|ϑ̃(t)|2 +3
(

Q∗
M + H̄M

2 ∑
n
i=1 a2

i

)2
]

< 3∑
n
i=1

4k2
i

a2
i

[
L2/3H̄2

M
4 +σ2H̄2

M ∑
n
i=1 a2

i

+
(

Q∗
M + H̄M

2 ∑
n
i=1 a2

i

)2
]
= ∆ f , t ⩾ 0,

(45)
where ∆ f is given by (33). Noting from A3, (3) and UTU = I
that

∥∆H ∥=
√

λmax (U∆HUTU∆HUT) = ∥∆H∥⩽ κ, (46)

534



then via (8), (13) and (46), we get
|ω (t)|⩽ |KM (t)|

[ 1
2 |ϑ̃(t)|2 ∥∆H ∥

+ |S (t)| |ϑ̃(t)|∥∆H ∥+ 1
2 |S (t)|

2 ∥∆H ∥
]

⩽ κ

2

√
∑

n
i=1

4k2
i

a2
i

(
|ϑ̃(t)|2 +2

√
∑

n
i=1 a2

i |ϑ̃(t)|+∑
n
i=1 a2

i

)
,

(47)

by which and (42)-(43), we further have for t ⩾ 0
E |ω (t)|2 ⩽ 3κ2

4 ∑
n
i=1

4k2
i

a2
i

[
E|ϑ̃(t)|4

+4∑
n
i=1 a2

i E|ϑ̃(t)|2 +
(
∑

n
i=1 a2

i
)2
]
< κ2∆ω ,

(48)

where ∆ω is given by (33). From Theorem 1.5.8 of [14],
there holds

E
∫ t

0 MT (s)Kϑ̃ (s)dB(s) = 0. (49)

By applying Itô formula (see Theorem 1.6.4 of [14]),
Hölder′s inequality, (43), (45), (48) and (49), we get the
upper bound of the solution ϑ̃(t), t ∈ [0,ε] of (12) (also
(21)) in the mean-square sense as follows
E|ϑ̃(t)|2 ⩽ E|ϑ̃(0)|2 +2E

∫ t
0 | f (s)| |ϑ̃(s)|ds

+2E
∫ t

0 |ω (s)| |ϑ̃(s)|ds+C2E
∫ t

0 |KM (s)|2 ds

⩽ E|ϑ̃(0)|2 +2
[
E
∫ t

0 | f (s)|
2 ds

]1/2 [
E
∫ t

0 |ϑ̃(s)|2ds
]1/2

+2
[
E
∫ t

0 |ω (s)|2 ds
]1/2 [

E
∫ t

0 |ϑ̃(s)|2ds
]1/2

+ εC2
∑

n
i=1

4k2
i

a2
i

< E|ϑ̃(0)|2 +2εσ

(
∆

1/2
f +κ∆

1/2
ω

)
+ εC2

∑
n
i=1

4k2
i

a2
i
.

(50)
The first inequality in (35) follows from (50) since Φ < 0 in
(34) implies σ2

0 +2ε∗σ(∆
1/2
f +κ∆

1/2
ω )+ε∗C∗2

∑
n
i=1

4k2
i

a2
i
<σ2.

Next, we find the upper bound of E |ω̄ (s)|2 for t ≥ ε . From
(17) and (44), we get

E |G(t)|2 = E
∣∣ 1

ε

∫ t
t−ε

(s− t + ε) f (s)ds
∣∣2

⩽ 1
ε

∫ t
t−ε

(s− t + ε)2E | f (s)|2 ds < ε2∆ f
3 , t ⩾ ε,

(51)

then

E
∣∣KH̄ G(t)

∣∣2 ⩽ ∥∥KH̄
∥∥2E |G(t)|2 < ε2Θ2

M∆ f
3 , t ⩾ ε.

(52)
where ΘM is given by (32). By (18), (32), (42), (43) and
using Hölder′s inequality, we obtain

E
∣∣∫ t

s KM (s) f T (τ)H̄ ϑ̃ (τ)dτ
∣∣2

⩽ 4∑
n
i=1

4k2
i

a2
i
E
[(∫ t

s Q∗
M

∣∣KH̄ M (τ)
∣∣ |ϑ̃(τ)|dτ

)2

+ 1
4

(∫ t
s

∣∣KH̄ M (τ)
∣∣∥∥H̄

∥∥ |ϑ̃(τ)|3dτ
)2

+
(∫ t

s |S (τ)|
∣∣KH̄ M (τ)

∣∣∥∥H̄
∥∥ |ϑ̃(τ)|2dτ

)2

+ 1
4

(∫ t
s |S (τ)|

2 ∣∣KH̄ M (τ)
∣∣∥∥H̄

∥∥ |ϑ̃(τ)|dτ

)2
]

⩽ 4
(

∑
n
i=1

4k2
i

a2
i

)(
∑

n
i=1

4k2
i h̄2

i
a2

i

)[
Q∗2

ME
(∫ t

s |ϑ̃(τ)|dτ
)2

+
H̄2

M
4 E

(∫ t
s |ϑ̃(τ)|3dτ

)2
+ H̄2

M ∑
n
i=1 a2

i E
(∫ t

s |ϑ̃(τ)|2dτ
)2

+
H̄2

M
4

(
∑

n
i=1 a2

i
)2E

(∫ t
s |ϑ̃(τ)|dτ

)2
]

⩽ 4
(

∑
n
i=1

4k2
i

a2
i

)(
∑

n
i=1

4k2
i h̄2

i
a2

i

)
(t − s)

×
[
Q∗2

M
∫ t

s E|ϑ̃(τ)|2dτ +
H̄2

M
4

∫ t
s E|ϑ̃(τ)|6dτ + H̄2

M ∑
n
i=1 a2

i

(53)

×
∫ t

s E|ϑ̃(τ)|4dτ +
H̄2

M
4

(
∑

n
i=1 a2

i
)2 ∫ t

s E|ϑ̃(τ)|2dτ

]
< 4

(
∑

n
i=1

4k2
i

a2
i

)(
∑

n
i=1

4k2
i h̄2

i
a2

i

)
(t − s)2 [

σ2Q∗2
M + H̄2

M

×
(

L
4 +∑

n
i=1 a2

i L2/3 + σ2

4

(
∑

n
i=1 a2

i
)2
)]

, 0 ⩽ s ⩽ t.

By (13), (32), (42), (43) and Hölder′s inequality, we have
E
∣∣∫ t

s KM (s)ωT (τ)H̄ ϑ̃ (τ)dτ
∣∣2

⩽ 3∑
n
i=1

4k2
i

a2
i

[
κ2

4 ∑
n
i=1

4k2
i h̄2

i
a2

i
E
(∫ t

s |ϑ̃(τ)|3dτ
)2

+κ2
∑

n
i=1 a2

i ∑
n
i=1

4k2
i h̄2

i
a2

i
E
(∫ t

s |ϑ̃(τ)|2dτ
)2

+κ2

4

(
∑

n
i=1 a2

i
)2

∑
n
i=1

4k2
i h̄2

i
a2

i
E
(∫ t

s |ϑ̃(τ)|dτ
)2
]

⩽ 3κ2
(

∑
n
i=1

4k2
i

a2
i

)(
∑

n
i=1

4k2
i h̄2

i
a2

i

)
(t − s)

×
[ 1

4
∫ t

s E|ϑ̃(τ)|6dτ +∑
n
i=1 a2

i
∫ t

s E|ϑ̃(τ)|4dτ

+ 1
4

(
∑

n
i=1 a2

i
)2 ∫ t

s E|ϑ̃(τ)|2dτ

]
< 3κ2

(
∑

n
i=1

4k2
i

a2
i

)(
∑

n
i=1

4k2
i h̄2

i
a2

i

)
(t − s)2

×
[

L
4 +∑

n
i=1 a2

i L2/3 + σ2

4

(
∑

n
i=1 a2

i
)2
]
, 0 ⩽ s ⩽ t. (54)

Then via (53) and (54), we get

E
∣∣∣∫ t

s KM (s)( f (τ)+ω (τ))T H̄ ϑ̃ (τ)dτ

∣∣∣2
⩽ 2E

∣∣∫ t
s KM (s) f T (τ)H̄ ϑ̃ (τ)dτ

∣∣2
+2E

∣∣∫ t
s KM (s)ωT (τ)H̄ ϑ̃ (τ)dτ

∣∣2
< (t − s)2

∆Y1 , 0 ⩽ s ⩽ t,

(55)

where ∆Y1 is given by (33). From (24) and (55), we obtain
E |Y1 (t)|2

⩽ 1
ε

∫ t
t−ε

E
∣∣∣∫ t

s KM (s)( f (τ)+ω (τ))T H̄ ϑ̃ (τ)dτ

∣∣∣2 ds

<
∆Y1

ε

∫ t
t−ε

(t − s)2 ds = ε2

3 ∆Y1 , t ⩾ ε. (56)
Moreover, by using Itô isometry property (see Theorem 1.5.8
of [14]) and Hölder′s inequality, we obtain from (8) and (24)
that for t ⩾ ε

E |Y2 (t)|2 ⩽ C2

ε

∫ t
t−ε

E
∣∣∫ t

s KM (s)MT (τ)KH̄ ϑ̃ (τ)dB(τ)
∣∣2 ds

= C2

ε

∫ t
t−ε

E
∫ t

s

∣∣KM (s)MT (τ)KH̄ ϑ̃ (τ)
∣∣2 dτds

⩽ C2

ε

∫ t
t−ε

∫ t
s |KM (s)|2

∣∣KH̄ M (τ)
∣∣2E|ϑ̃(τ)|2dτds < εC2∆Y2

(57)

with ∆Y2 given by (33), for t ⩾ ε

E |Y3 (t)|2

⩽ C4

4ε2

(∫ t
t−ε

∫ t
s |KM (s)| |KM (τ)|

∣∣KH̄ M (τ)
∣∣dτds

)2

⩽ ε2C4∆Y3

(58)

with ∆Y3 given by (33), for t ⩾ ε

E |Y4 (t)|2 ⩽ 1
ε
E
∫ t

t−ε

∣∣∫ t
s KM (s)ST (s)H̄ ( f (τ)+ω (τ))dτ

∣∣2 ds

⩽ 1
ε

∫ t
t−ε

(t − s)
∫ t

s |KM (s)|2 |S (s)|2
∥∥H̄

∥∥2

×E(| f (τ)|+ |ω (τ)|)2 dτds < ε2∆Y4 (59)

with ∆Y4 given by (33), where we have noted that (45) and
(48), and for t ⩾ ε

E |Y5 (t)|2 ⩽ C2

ε

∫ t
t−ε

E
∣∣∫ t

s KM (s)ST (s)H̄ KM (τ)dB(τ)
∣∣2 ds

= C2

ε

∫ t
t−ε

∫ t
s

∣∣KM (s)ST (s)H̄ KM (τ)
∣∣2 dτds ⩽ εC2∆Y5 (60)
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with ∆Y5 given by (33). By Fubini’s theorem and Theorem
1.5.8 in [14], we have

E
(
Y T

3 (t)Y5 (t)
)
= Y T

3 (t)EY5 (t) = 0, (61)

by which and (58), (60) and (61), there holds
E |Y3 (t)+Y5 (t)|2 = E |Y3 (t)|2 +E |Y5 (t)|2

⩽ εC2
(
εC2∆Y3 +∆Y5

)
, t ⩾ ε.

(62)

Finally, from (31), (48), (56)-(60), we get
E |ω̄ (s)|2 ⩽ 6E

∣∣KH̄ G(t)
∣∣2 +6∑

2
i=1E |Yi (t)|2

+6E |Y4 (t)|2 +6E |Y3 (t)+Y5 (t)|2 +6E |ω (t)|2
< ∆̄(ε,C) , t ⩾ ε,

(63)

where ∆̄(ε,C) is given by (33). In addition, via (29), (50)
and (51), we obtain
E |z(ε)|2 ⩽ 2E|ϑ̃ (ε) |2 +2E |G(ε)|2

< 2E|ϑ̃(0)|2 +4εσ

(
∆

1/2
f +κ∆

1/2
ω

)
+2εC2

∑
n
i=1

4k2
i

a2
i
+

2ε2∆ f
3 .

(64)
Proof of the part B. To make the second inequality in (35)
hold, we use the variation of constants formula (see Theorem
3.3.1 of [14]) for (30) to obtain

z(t) = eKH̄ (t−ε)z(ε)+
∫ t

ε
eKH̄ (t−s)ω̄ (s)ds

+
∫ t

ε
eKH̄ (t−s)CKM (s)dB(s), t ⩾ ε.

(65)

Then, for t ⩾ ε

E |z(t)|2 ⩽ 3
∥∥∥eKH̄ (t−ε)

∥∥∥2
E |z(ε)|2 +3E

∣∣∣∫ t
ε

∥∥∥eKH̄ (t−s)
∥∥∥

×|ω̄ (s)|ds|2 +3E
∣∣∣∫ t

ε
eKH̄ (t−s)CKM (s)dB(s)

∣∣∣2 .
(66)

Note that∥∥∥eKH̄ t
∥∥∥=

∥∥∥diag
{

ek1h̄1t , . . . ,eknh̄nt
}∥∥∥= e−Θmt (67)

with Θm given by (32), then via (64) and (67) we have∥∥∥eKH̄ (t−ε)
∥∥∥2

E |z(ε)|2 ⩽ 2e−2Θm(t−ε)
[
E|ϑ̃(0)|2

+2εσ

(
∆

1/2
f +κ∆

1/2
ω

)
+ εC2

∑
n
i=1

4k2
i

a2
i
+

ε2∆ f
3

]
.

(68)

Via (63), (67) and Hölder′s inequality, we get

E
∣∣∣∫ t

ε

∥∥∥eKH̄ (t−s)
∥∥∥ |ω̄ (s)|ds

∣∣∣2
= E

∣∣∣∫ t
ε

e−
Θm

2 (t−s)e−
Θm

2 (t−s) |ω̄ (s)|ds
∣∣∣2

⩽
∫ t

ε
e−Θm(t−s)ds

∫ t
ε

e−Θm(t−s)E |ω̄ (s)|2 ds < ∆̄(ε,C)
Θ2

m
,

(69)

and by (67) and Itô isometry property, we find

E
∣∣∣∫ t

ε
eKH̄ (t−s)CKM (s)dB(s)

∣∣∣2
⩽ E

∫ t
ε

∥∥∥eKH̄ (t−s)
∥∥∥2

|CKM (s)|2 ds ⩽ C2

2Θm
∑

n
i=1

4k2
i

a2
i
.

(70)

Substituting (68)-(70) into (66), we arrive at
E |z(t)|2 < 6e−2Θm(t−ε)E|ϑ̃(0)|2 +2εe−2Θm(t−ε)

×
[
6σ

(
∆

1/2
f +κ∆

1/2
ω

)
+3C2

∑
n
i=1

4k2
i

a2
i
+ ε∆ f

]
+ 3∆̄(ε,C)

Θ2
m

+ 3C2

2Θm
∑

n
i=1

4k2
i

a2
i
, t ⩾ ε,

by which, (29) and (51), we further have
E|ϑ̃(t)|2 ⩽ 2E |z(t)|2 +2E |G(t)|2

< 12e−2Θm(t−ε)E|ϑ̃(0)|2 +4εe−2Θm(t−ε)

×
[
6σ

(
∆

1/2
f +κ∆

1/2
ω

)
+3C2

∑
n
i=1

4k2
i

a2
i
+ ε∆ f

]
+ 6∆̄(ε,C)

Θ2
m

+ 3C2

Θm
∑

n
i=1

4k2
i

a2
i
+

2ε2∆ f
3 , t ⩾ ε. (71)

The second inequality in (35) follows from (71) due to (34).

Proof of the part C. We show that the condition in (34)
guarantees that the bound in (43) holds.

(i) When t ∈ [0,ε], since E|ϑ̃(0)|2 ⩽σ2
0 <σ2 and E|ϑ̃(t)|2

is continuous in t, (43) holds for small enough t > 0. We
assume by contradiction that for some t ∈ (0,ε] the formula
(43) does not hold, namely, there exists the smallest t∗ (0 <
t∗ ⩽ ε) such that E|ϑ̃(t∗)|2 = σ2, E|ϑ̃(t)|2 < σ2, t ∈ [0, t∗) .
Then by the same procedures for (44)-(49), we arrive at
(50) in its non-strict version for t ∈ [0, t∗]. Furthermore, the
feasibility of Φ < 0 in (34) ensures that E|ϑ̃(t∗)|2 ⩽ σ2

0 +

2ε∗σ(∆
1/2
f + κ∆

1/2
ω )+ ε∗C2

∑
n
i=1

4k2
i

a2
i
< σ2. This contradicts

to E|ϑ̃(t∗)|2 = σ2. Hence (43) holds for t ∈ [0,ε].
(ii) When t ⩾ ε , since E|ϑ̃(ε)|2 < σ2 as shown in (i) and

E|ϑ̃(t)|2 is continuous in time, (43) holds for some t > ε .
We assume by contradiction that for some t > ε , (43) does
not hold, namely, there exists the smallest time instance t∗ ∈
(ε,∞) such thatE|ϑ̃(t∗)|2 = σ2, E|ϑ̃(t)|2 < σ2, t ∈ [ε, t∗) .
Thus E|ϑ̃(t)|2 ⩽ σ2 holds for all t ∈ [ε, t∗]. Similar to the
proof in parts A and B, we finally arrive at the non-strict
version of (71) for t ∈ [ε, t∗]. Moreover, the feasibility of (34)
ensures E|ϑ̃(t∗)|2 < σ2. This contradicts to E|ϑ̃(t∗)|2 = σ2.
Hence E|ϑ̃(t)|2 < σ2, for all t ⩾ ε . The proof is finished. ■
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