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Abstract— The high-speed, high-precision positioning of ob-
jects is a critical component in various industrial manufacturing
processes. The semiconductor die packaging, for instance,
requires the precise pickup and placement of semiconductor
dies on substrates. This is done by coupling the silicon wafer
which contains thousands of semiconductor dies, with a motion
control platform equipped with linear motor and encoder.
The motion controller relies on linear motor and encoder to
accurately position the silicon wafer at reference positions,
which are determined through the relative positions of the dies
on the wafer. However, the challenge arises when neighboring
dies get misaligned during the pickup process, making it
impossible to read the position of the die through encoder.
This paper addresses the challenge of precise alignment in
high-speed, micro-scale manufacturing environments, where
traditional methods struggle due to the disconnect between
the point-of-interest (dies) and point-of-control (motor/silicon
wafer). To overcome these challenges, we propose a Deep
Neural Network (DNN) based perception that allows for robust
sensing of die positions. We also propose a fusion mechanism to
incorporate this vision feedback with the encoder to accurately
detect the misalignment and compensate for it before periodic
pickups of the dies. We use a software-in-the-loop validation
framework to demonstrate that our proposed method could
successfully eliminate the misalignment before the pickup in
the range under consideration.

I. INTRODUCTION

The high-speed, high-precision positioning system rep-
resents a fundamental component within numerous indus-
trial manufacturing systems. Typically, these systems are
responsible for transporting objects to predefined pick-up
or placement locations with the help of intelligent motion
control systems [1], where specialized mechanisms retrieve
or deposit the objects. For example, in the die-bonding
process of semiconductor manufacturing a fundamental task
is picking up the semiconductor die from the silicon wafer
and placing it onto the substrate. This is done by mounting
the wafer on top of a physical platform (e.g. wafer stage) with
linear motor and encoder to apply force on the platform to
move the wafer (which is the point-of-control) at predefined
reference positions and accurately read the position of the
platform at high rates. The reference positions corresponds
to the thousands of dies (point-of-interest) on the wafer,
and are defined through the initial layout of all the dies
with respect to the wafer ensuring that a particular die
gets aligned with the pickup position when the wafer is
moved there, as shown in Fig. 1. Once the dies reach the
reference position, they are periodically picked up for further
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processes like quality inspection and ultimately placed onto
the substrates. Picking up the die has an unintended conse-
quence of misaligning the neighboring dies from their initial
positions. The performance of these systems depends on the
precise alignment of the object with the pick-up or placement
location. This requires accurately sensing the position of the
object, which is a challenging task especially in domains like
semiconductor manufacturing, not only due to the micro-
scale precision (product size of 200 µm to 10 mm) and
extremely high throughput (production rate of more than
72,000 units/hour ≈ 50ms per product [2]) required in such
domains, but also a fundamental disconnect between the
point-of-interest (dies) and point-of-control (motor/wafer).
This means that any noise added to the point-of-interest is
hard to detect, and therefore compensated through the motion
controller. Therefore, multi-sensor approaches with vision-
based perception to read the position of the point-of-interest
are being researched. The vision-based sensing methods are
capable of reading the true position (with disturbances) of the
point-of-interest which when incorporated efficiently with
the motion controller can precisely position the point-of-
interest to the reference. Although classical computer vision
algorithms have been around for a while, they are less
robust and require a lot of manual configurations to locate
a particular object in an image. Therefore, Deep Neural
Network (DNN) based solutions are more favorable as they
are robust and can be used to detect the positions of the
objects in an image with high-precision. This comes at a
cost of higher computation and processing delays, making it
challenging to incorporate them with motion control systems.

Fig. 1. Set of semiconductor dies located on a silicon wafer. The encoder
reads the position of the wafer and the camera captures an image of the
(partial) die(s) in the ROI. The dies are positioned at the reference by moving
the wafer.
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Contributions: The paper proposes the use of Deep Neu-
ral Network (DNN) based perception for vision-in-the-loop
(VIL) systems in high-precision motion control. In particular,
we consider the alignment problem in semiconductor die
packaging. To efficiently use the vision feedback with the
encoder readings, a fusion mechanism is introduced. For
validation of the VIL system with the proposed fusion
mechanism, a software-in-the-loop (SIL) framework is devel-
oped. With the help of this SIL framework, we evaluate the
performance of the closed-loop system with different vision
sampling rates. We further present a worst-case analysis to
eliminate the misalignment in a die positioning system.

II. MOTIVATION AND PROBLEM STATEMENT

In this section, we introduce the application of a high-
precision motion control system for die positioning in semi-
conductor die packaging (Fig. 1). We introduce the overall
system architecture and relevant design elements as shown
in Fig. 2. Next, we formulate the system dynamics and
introduce the multi-sensor sensing setup and the relevant
challenges in designing a multi-sensor estimator and con-
troller for these kinds of systems.

Fig. 2. Block diagram of the system, with the linear encoder and camera
as sensors, multi-sensor estimator, and PID controller.

A. System description

For the scope of the paper, for simplicity, we consider a
one-dimensional system, though the same approach applies
to the actual system, which is two-dimensional, without
any significant modifications. The system is composed of
a linear motor which is used to control the position of the
platform which has the silicon wafer with thousands of dies
systematically placed onto it. This pattern is defined by the
coordinates representing the ideal position of the dies di with
respect to the center of the wafer. For example, in Fig. 1 since
the dies 1, 2, and 3 are on the right side of the center of the
wafer d1, d2 and d3 are negative constants. In practice, as the
dies are distributed uniformly on the wafer, these values can
be defined by just two parameters, the die size and the center-
to-center distance between the neighboring dies. The primary
goal of the motion control system is to accurately position
these semiconductor dies one after the other at the reference
position where they can be picked up. To achieve this task
the output of linear motors is sensed by encoder, which
accurately read the movements of the motor and therefore
the wafer (point-of-control). The positioning task is achieved
by defining a set of control references with the help of the
ideal positions of the semiconductor dies with respect to the
wafer i.e. di. For example, to maintain the throughput of

more than 72,000 units per hour a die is picked up every
50 ms. During pickup, the neighboring dies get misaligned
from their initial positions. This misalignment is denoted by
mi

k with respect to the ideal position of the die. To sense
this misalignment vision feedback is used by capturing the
images of the die in the camera’s Region of Interest (ROI)
and using an object detector to get the true position of the die
and thus the misalignment of the die from its ideal position.

B. System dynamics

The discretized dynamics of the motion control platform
are represented by the following equations:

xk+1 = φxk + γuk (1)

zk =Cxk (2)

The system is an eighth-order single input single output
system, where xk is the state vector, uk is the input (force
applied by the motor) and zk is the output (position of the
wafer) at an instance k. The matrices φ and γ are the discrete-
time state transition, input matrices for the base sampling
period of hencoder obtained by:

φ = eAhencoder , (3)

γ =
∫ hencoder

0
eAtdtB, (4)

where A∈R8×8, B∈R8×1 and C∈R1×8 represent the system
matrices obtained by system identification using the data
collected from the machine.

C. Multi-sensor sensing setup

As mentioned earlier, the system has two sensors i.e. linear
encoder and the camera. Encoder has a sampling period of
hencoder and its readings are available almost instantly. It
measures the linear displacement of the wafer in one sample
as zw

k and the coordinate of the wafer at any instance k with
respect to the reference is obtained by:

zk =
k

∑
n=0

zw
k ,

where zw
0 is the initial coordinate of the center of the wafer,

which is a known constant. The encoder feedback for the die
with index i (as shown in Fig. 1 for die 1 which is about to
be picked up) is determined using

zi
e,k = zk +di (5)

The camera has a sampling rate of hcamera and the center of
its region of interest (ROI) is aligned with the origin. The
images are captured after every hv =

⌈
hcamera
hencoder

⌉
number of

encoder samples, i.e. one image is captured after every hv
encoder samples. To obtain the vision feedback, the image
imgk, captured by the camera at an instance k is passed
to a DNN-based object detector (Section IV) which has a
worst-case execution time of τvision, so the vision feedback is
obtained τv =

⌈
τvision

hencoder

⌉
samples after the image is captured.

The object detector returns the true coordinate of the die
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with respect to the origin. The vision feedback, denoted by
zi

v,k+τv
is also able to determine the misalignment mi

k of the
die from its ideal position.

D. Problem statement
In the context of the multi-sensor multi-die positioning

system, the control problem is to design a controller with out-
put uk that can accurately position the die at the references.
To sense the misalignment with the help of above mentioned
two sensors with different sampling rates and delays, an
estimator is required that can accurately estimate the actual
position of the die, i.e. ideal position and the misalignment
from the ideal position.

III. RELATED WORK

Visual perception is emerging as a crucial approach for
sensing in high-precision motion control systems, especially
in applications like industrial manufacturing such as semi-
conductor die packaging as these systems are becoming more
sophisticated and performance-demanding. Although sensors
such as encoder, potentiometric, and hall effect sensors have
been a go-to choice for these systems, they are not enough
to deal with the dynamically changing environments of these
systems.

In recent years, there have been significant advancements
in the field of computer vision, particularly in the devel-
opment of deep learning algorithms such as Deep Neural
Networks (DNNs). These networks have shown promising
results in several computer vision tasks, like [3] and [4] for
image classification, [5], [6] and [7] for object detection,
and [8] for segmentation. They provide a significant per-
formance improvement over their classical computer vision
counterparts like [9] and [10] to identify and locate an object
in an image.

Visual perception has been studied extensively, especially
in semiconductor manufacturing for tasks such as defect
detection in [11], [12] and [13]. Where [11] uses classical
computer vision, [12] and [13] use DNN-based approaches
to detect semiconductor dies with faults. Even though these
methods have proven to be effective in detecting and locating
the dies with defects on the wafer, they are only used without
any real-time constraints as seen in the die positioning
applications. Therefore, using visual perception for object
detection in high-precision die positioning systems presents
challenges, such as the need for computational resources and
significant delays in processing times. Strategies to use vision
feedback in closed-loop system have been proposed in [14]
and [15] which uses classical computer vision algorithm,
which although requires less processing, but requires a signif-
icant manual configuration for each product and are generally
less robust to the dynamic nature of these systems. Therefore
incorporating DNNs as a means of visual perception in
performance-demanding motion control systems remains a
challenging task.

IV. DNN-BASED OBJECT DETECTION PIPELINE

To develop a robust object detection model specifically
designed for locating semiconductor dies within a region of

interest (ROI), we leverage the Faster R-CNN [6] architecture
with a ResNet-50 [4] feature pyramid network (FPN) [16],
known for its precision and speed in computer vision tasks.
The Faster R-CNN model detects the object by drawing a
bounding box around the object, represented by coordinates
of the top-left and bottom-right corners of the box. Our
approach begins with transfer learning, fine-tuning a model
pre-trained on the COCO [17] dataset with our dataset
generated with the help of the SIL framework described
in Section VI. The dataset is composed of around 2,000
top-down images of semiconductor dies, which are used
for fine-tuning and testing the model performance. This
fine-tuning process allows the network to adapt its feature
representations to the unique characteristics of our data, a
crucial step for achieving high accuracy in object detection.
The object detection pipeline shown in Fig. 3 comprises
several key components each performing a crucial task to
obtain the accurate position of the die. The components with
their functions are discussed below.

A. Feature extractor

The ResNet-50 FPN model takes the input image and gen-
erates feature maps from the image. These feature maps are
spatially scaled down (1/4, 1/8, 1/16, and 1/32) dimensions of
the input image with 256 channels, generated from the output
of different layers of ResNet-50 model and they contain
high-level information about the composition of the input
image and allow the model to identify the objects at various
scales. These scaled-down feature maps are then passed to
the subsequent layers to locate and classify the object that
might be present.

B. Region Proposal Network

Faster R-CNN incorporates a region proposal network (RPN)
to generate potential bounding box proposals around the
semiconductor die. The RPN scans the feature maps pro-
duced by the backbone and provides the regions that might
contain the semiconductor die. RPN does this by utilizing
anchor boxes, which are pre-defined bounding boxes of
different scales and aspect ratios that serve as references.
At different spatial positions in the feature map, the RPN
generates multiple proposals using these anchor boxes. The
output of the RPN is the set of regions in the image that
might contain the die (Fig. 3, RPN block) with a rough esti-
mation of the die’s size. This along with their corresponding
feature maps is passed to the ROI pooling layer.

C. ROI Pooling

Since the feature maps have different scales the output of
previous layers needs to be made consistent to be fed to the
subsequent fully connected layers. Thus, ROI pooling needs
to be applied to these regions to ensure that they all have a
consistent size, the same as the dimension of the next fully
connected layer.

2005



Fig. 3. DNN-based object detection pipeline for misalignment detection. Comprising of Faster R-CNN architecture with ResNet-50 FPN with NMS
post-processing to obtain the vision feedback zv,k+τv for imgk .

D. Classification and Regression

The fixed-size feature maps from the ROI pooling are
passed through fully connected layers. These layers branch
out into two output layers - one for object classification and
the other for bounding box regression. Object classification
determines the chance of the object belonging to a certain
pre-defined class which in our case is the semiconductor die.
Bounding box regression refines the anchor boxes around the
die and gives a precise estimation of the die position and its
shape.

E. Post-processing

The output of fully connected layers results in one or
more bounding boxes drawn around the semiconductor die.
To refine these predictions and eliminate redundancy, Non-
Maximum Suppression (NMS) is used. NMS is a crucial
post-processing step that ensures only the most relevant
bounding boxes are retained. NMS works by iteratively
selecting the bounding box with the highest confidence score
and suppressing (removing) any other boxes that have a
significant overlap with it. This process continues until all
boxes have been evaluated. The result is a set of non-
overlapping bounding boxes, each corresponding to a distinct
die in the image if multiple dies are present. The bounding
box output is generated as the top-left and bottom-right
corner of the die, the center of the die is the mid-point of
these two. In cases where a partially occluded die is present
in the image, no vision feedback is generated. The position
of the relevant die is then converted to the world coordinates
by using the camera calibration parameters. As these are
obtained through visual feedback, they accurately tell the
position of the die with respect to the reference and are thus
used to compute the misalignment of the die from its ideal
position.

V. DNN-BASED ESTIMATION AND CONTROL

The position estimates from the two sensors have different
sampling rates and delays. Furthermore, in the case of DNN-
based feedback, there can be situations when the die is not
entirely present in the ROI and misalignment can not be
estimated. To run the control loop at the rate of 1/hencoder
an estimator is required which can incorporate the feedback
from the two sensors.

A. DNN-based estimation

The goal of the DNN-based estimation block is to give an
accurate estimate of the position of the die to the motion
controller. It updates the misalignment value after every
successful detection of the die in the image as follows:

mi
k = zi

v,k−τv
− zi

e,k−τv
(6)

where mi
0 is the actual misalignment of the die, zi

v,k−τv
is the

delayed vision feedback, i.e. the position dies at an instance
k−τv obtained at an instance k and zi

e,k−τv
is the position of

the die sensed by the encoder when the image was captured
to obtain the vision feedback. With this, the true position of
the die is estimated by:

ẑk = zi
e,k +mi

k (7)

This position estimation is used by the controller to move the
wafer ensuring precise positioning of the die at the reference.

B. Motion controller

The motion controller uses a PID controller with a set of
references ri. These set of references are target coordinates of
the wafer that ensures ith die to be at origin and are therefore
defined as ri =−di.

The error for the PID controller at any given instance is
thus computed as:

ei
k = ri− ẑk (8)

and the controller output uk is given by:

uk = Kpei
k +Ki

k

∑
i=0

ei
k +Kd(ei

k− ei
k−1)

where Kp, Ki, and Kd are proportional, integral, and deriva-
tive constants respectively.

C. Control with DNN-based estimation

The logic of the die positioning system for the multi-die sce-
nario with DNN-based estimation is shown in Algorithm 1.
The images are captured after every hv sample (line 7) and
sent to the DNN-based object detection pipeline to detect the
die’s true position. Depending on the position of the die in
the captured image, there can be two possible outputs of the
vision feedback :
1) Die is not detected: When the die is partially present in the
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Fig. 4. Timing diagram of the encoder, camera, object detection and estimator blocks

Algorithm 1 control with DNN-based estimation
1: k← 0, i← 1
2: for i← 1 to N do ▷ N = number of dies
3: ri←−di

4: mi
k← 0

5: while k ̸= i(PickupPeriod/hencoder) do
6: if k mod hv is 0 then
7: imCapture← k ▷ imgk→ Object Detector
8: else if k is (imCapture+ τv) then
9: if zi

v,k−τv
̸= null then

10: mi
k← zi

v,k−τv
− zi

e,k−τv
11: end if
12: end if
13: ẑk← zi

e,k +mi
k

14: ei
k← ri− ẑk ▷ ei

k→ PID controller
15: k← k+1
16: end while
17: end for

camera ROI estimating the center of the die is not possible
since extrapolation is not possible due to the irregular shape
of the dies, therefore a complete die needs to be in the ROI
to be able to detect misalignment. In that case, mi

k remains
0 and the controller relies on the encoder feedback to move
the die toward the reference and inside the ROI. While that
happens the vision pipeline keeps running.
2) Die is detected: When the first vision feedback is obtained,
and the misalignment is known, the controller gets the up-
dated ẑk from the estimator. After every successful detection
of the die ẑk is updated and the detected misalignment is used
by the estimator till the next update. Thus the misalignment
used in equation 7 is same for k ∈ [nhv + τv,(n+1)hv + τv),
where n ∈W. The inner loop (line 5) ensures that the die is
picked up at a time corresponding to its pickup period, and
the outer loop (line 2) updates the die index and the reference
associated with it. Fig. 4 shows how these two conditions
affect the estimator output for handling vision feedback for
three images imgk, imgk+n and imgk+(n+1)hv . Since imgk
doesn’t have the die inside the ROI, the estimator output
ẑk+τv is the same as encoder feedback at that instance i.e.
zi

e,k+τv
. Whereas for imgk+nhv , since the die is present in ROI,

the misalignment mi
k+nhv+τv

is computed as per equation 6,

which is used till next vision feedback is available at instance
k+(n+1)hv + τv.

VI. SIL VERIFICATION FRAMEWORK

To validate the proposed method for correcting misalignment
in the semiconductor die packaging, we create a model of
discrete-time dynamics of the wafer for multi-die positioning
scenarios within the Unity engine [18]. The object detec-
tor, controller, and estimator are developed in Python. The
Python script acts as a server and the Unity model as a client,
both operating in synchronous simulation for software-in-
the-loop (SIL) verification as shown in Fig. 5. The base
sampling period hencoder is 0.125ms, which is also used
to obtain φ and γ in equations 3 and 4. The framework
allows image captures at a rate of 1/hencoder, which is not
possible to achieve in the real system but allows us to
gain important insights on controller performance by varying
vision feedback rates.

Fig. 5. Synchronous simulation framework for vision-in-the-loop system

A. Simulation flow

The simulation begins by initializing the Python server and
Unity client. During the initialization process, references are
generated for the controller based on the number of dies
and their ideal positions. After the initialization, the main
control loop starts where the Unity client sends the sensor
data to the Python server which is then used by the object
detector and fusion module to compute the control action as
per the logic discussed in the previous section. The Unity
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model waits till the control action is received and processes
the control action in the context of the current state. Based
on the control action the force is applied to the wafer and
the updated sensor readings are taken and sent to the Python
server. To maintain the production throughput of more than
72,000 units per hour, a die has to be picked up every 50ms
which is implemented in the periodic pickup block.

B. Multi-die scenario

The multi-die scenario involves 3 dies of size 200µm×
200µm with 300µm center-to-center distance between neigh-
bouring dies. With the initial wafer position, zw

0 = 1200µm,
the ideal positions di of dies with respect to the wafer are
d1 = −900µm, d2 = −600µm and d3 = −300µm respec-
tively. From equation 5 the ideal coordinates of the dies with
respect to origin are 300 µm, 600 µm and 900 µm respectively.
For the dies to be picked up every 50 ms they have to reach
the reference with an error of less than ±20µm (±10% of
the die size) which corresponds to the physical limitation
of the pickup mechanism. Although we consider three die
scenarios, the framework can be used to generate different
scenarios with different die features (like their sizes, and
center-to-center distances) for many dies.

VII. RESULTS

To analyze the behavior of the multi-die positioning sys-
tem we use the above-mentioned SIL framework and the
die configuration with the two misalignment profiles m1 and
m2 described in Table I. Along with the two misalignment
profiles, an ideal scenario is considered with no misalignment
in die positions.

A. Performance metrics

To study the performance of the motion control system
with vision feedback we consider two key metrics Steady
State Value (SSV) i.e. the position of the dies at every 50 ms
mark when they have to be picked up and Mean Absolute
Error of the estimator during every 50 ms run.

TABLE I
CONFIGURATION OF MULTI-DIE SCENARIO

Die
(i)

Initial die Position
(zi

e,0)
Control Reference

(ri) m1 m2

1 300 900 -20 20
2 600 600 -25 25
3 900 300 -30 30

B. Closed-Loop Performance without vision feedback

The solid lines in Fig. 6 show the position of the individual
dies during the motion control cycle for their pickup, without
vision feedback. For the ideal scenario (shown in red) since
there is no misalignment the dies reach the reference with
close to zero steady-state value with the controller settling
time of 49.75 ms. Whereas in cases with misalignment m1
(blue) and m2 (green), the pickup is not guaranteed as they
reach the reference with the same misalignment since it is
not detected by the encoder feedback.
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Fig. 6. Coordinates of dies for motion control with and without vision
feedback for misalignment profiles m1 and m2 compared with the ideal
scenario.

C. Closed-loop performance with vision feedback

The dotted lines in Fig. 6 show the performance of the
die positioning system with the vision feedback of hv = 128
with τv = hv−1 so that the vision feedback is made available
to the controller as fast as possible. hv = 128 means that
an image is captured every hv×hencoder = 128×0.125ms =
16ms and if the die is present in the camera’s ROI, the vision
feedback is used to estimate the true position of the die. So
in both cases m1 and m2 the misalignment is detected for
all the dies in time and they converge towards the reference.

D. Design space exploration

The closed-loop performance depends heavily on how fre-
quently the vision feedback can be provided to the controller
i.e. vision sampling rate (hv). To study the effect of hv on
the controller performance we consider three cases with hv =
8,64,128. Fig. 7 and Fig. 8 show how the controller error
(equation 8) is computed for different vision sampling rates.
The spikes in the plots show when the first vision feedback is
made available to the controller as per equation 7. The plots
also show the point when the images corresponding to these
corrections are captured, i.e. the first image with the die in
ROI. Although the object detection pipeline keeps running,
it is clear from the plots that the controller only needs the
vision feedback at least once to correct the misalignment.

1st image with 
die in ROI

Die 1 Die 2 Die 3

0.150.100.050

300 hv=8
hv=64
hv=128

E
rr

or
 [

µ
m

]

Time [s]
Fig. 7. Controller error with vision feedback rate hv = 8, 64,128 for
misalignment profile m1

Table II shows the performance (SSV and MAE) of the
closed-loop system with different vision sampling rates. In
the cases with an SSV in the range of [−20 µm,20 µm] the
dies are within the acceptable misalignment range, and can
be picked up. So in case of m2, for die 1 with a misalignment
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Fig. 8. Controller error with vision feedback rate hv = 8, 64,128 for
misalignment profile m2

of 20 µm and the controller with no vision feedback, it
reaches the reference with an SSV of 20.30 µm, which is
out of the acceptable range of SSV.

TABLE II
PERFORMANCE OF THE CLOSED-LOOP SYSTEM

m1 m2

hv Die SSV
µm

MAE
µm Pick-up SSV

µm
MAE
µm Pick-up

Without
vision

feedback

1 -19.61 20.0 Yes 20.30 20.0 No

2 -24.70 25.0 No 25.47 25.0 No

3 -29.34 30.0 No 30.32 30.0 No

8
1 0.31 2.61 Yes 0.36 3.03 Yes

2 0.25 2.51 Yes 0.13 3.00 Yes

3 0.23 2.89 Yes 0.18 4.14 Yes

64
1 0.53 6.68 Yes 1.02 6.90 Yes

2 -0.29 8.2 Yes 1.02 8.47 Yes

3 -0.20 9.91 Yes 0.99 9.93 Yes

128
1 -1.29 13.16 Yes 3.59 12.89 Yes

2 -1.87 16.27 Yes 3.80 16.09 Yes

3 -2.97 19.36 Yes 4.08 19.29 Yes

E. Worst case analysis

From Fig. 7 and Fig. 8 it is clear that the controller needs
at least one vision feedback to compensate for the mis-
alignment. After receiving the vision feedback, the controller
requires a certain time to compensate for the misalignment
using only the encoder feedback with period hencoder. For
example in Fig. 6, the vision feedback is available at 130 ms
and the controller has around 20 ms to move the die 3 to the
reference. We refer to this time as the time to reject distur-
bance, which depends on the magnitude of the disturbance
and when the first vision feedback is made available to the
controller, and for the range of misalignment considered in
this work, it is around 20 ms. The delay in receiving the
vision feedback after the image capture is τv (≈ hv in our
case). In addition, a delay is imposed due to the time when
the die enters the ROI to the time when the processing of the
corresponding image starts. In the worst case, this delay can
be as long as hv i.e. in the scenario when the die enters the
ROI just after an image is captured. In total the worst case
time to correct the misalignment using vision feedback is ≈
2×hv+ time to reject disturbance. In our work, for hv = 128

the worst case correction time would be 2×16+20 = 52ms.
This further imposes the maximum effective vision sampling
period for a given application scenario.

VIII. CONCLUSION AND FUTURE WORK

In the domain of vision-in-the-loop control systems, many
works have been reported in the literature that use classical
vision processing algorithms, which are manually configured
to detect high-level features (like edges), of the objects in
the images to generate the feedback for the system. To the
best of our knowledge, this is the first work that exploits the
robustness of DNN-based perception in closed-loop motion
control systems. We demonstrated the effectiveness of the
proposed method using an industrial case study. This opens
up many future directions such as model optimization to
reduce the compute time, model deployment on edge com-
pute platforms, and fusion of the vision feedback with other
sensing technologies and many more. Implementing multi-
sensor system comes with unique challenges of it’s own, our
work needs synchronization between the two sensors, which
in practice can be challenging.
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