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Abstract— In this paper, we consider a multi-agent system,
where part of the agents interact with a system that can
be externally controlled. Such a system can be thought as a
super-agent or the environment the multi-agents operate in. We
model the agents’ decision process as a Markov Chain and the
externally controlled system as a linear dynamical system. We
formulate the problem of controlling the probability that a set
of agents make a specific decision as a Model Predictive Control
problem. Such a control problem formulation is completed by
a controllability analysis of the system. Simulation results from
a small-scale example reveal the potential of the considered
modeling and control framework for applications where the
decisions of a set of agents are to be influenced to achieve a
desired objective.

I. INTRODUCTION

Exploiting multi-agent models, preferably stochastic, to
gain a deeper understanding of the communications and in-
terconnections between agents within a network has become
increasingly significant. This topic is of main interest to com-
panies, that seek strategies to influence their customers [1],
and to political factions, which aim to shape the preferences
of voters [2]. Beyond these examples, a more profound
comprehension of the interactions between agents could lead
to improvements in other fields, such as transportation [3]
and smart systems [4]. In a network of agents, the opinion
can be influenced by external factors or by the action of one
or multiple agents (malicious or benevolent). The problem of
modeling such interactions or studying how to force network
agents to change their decisions has been addressed in the
past.
Within the literature, we can broadly categorize such re-
search into two distinct approaches. On one side, there
are papers that primarily strive to describe and understand
the interactions between agents. These works predominantly
concentrate on studying and learning the complexity of these
interactions, aiming to gain insights into the underlying
dynamics and decision-making processes. On the other side,
we find works that, while recognizing and acknowledging
the existence of these interactions, aim at controlling the
network, towards specific objectives or desired states. These
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two approaches, though interconnected, represent distinct
research directions within the field of agent-based systems
and social network dynamics.
Belonging to the first approach, in [5] the authors ac-
knowledge the presence of direct influences within social
networks and aim to estimate these influences, from partial
observations. In [6], the authors concentrate on addressing
the issue of modeling interactions within a social network
by utilizing Markovian models. Specifically, they assume that
sharing opinions might induce a transformation in the agents’
decision-making processes. Moving to [7], the authors extend
upon the insights drawn from the aforementioned work. In
their approach, they combine the concepts of attraction and
repulsion between agents, thus accounting for interactions
that alter the conventional transition rates between states.
Conversely, some works have concentrated on the identifica-
tion of one or more agents (or nodes) to control and guide
the entire network toward a desired state. In [8], the authors
develop an algorithm for the selection of control nodes and
the design of control inputs to steer a network towards a
specific target state. Another approach can be found in [9],
where the authors propose a dynamical model that is under
the influence of a leader agent. They assume that the leader
has the capacity to influence the other surrounding agents in
the network.
In the present work, our approach aligns with the second
category of papers, utilizing some insights from the first
category. Thus, we propose a framework that leans more
towards the control of opinions, rather than the modeling
of interactions. Our framework involves the integration of
an opinion dynamics model, specifically a Discrete Time
Markov Chain, with a general dynamical model in which
the control input is applied. The first model describes the
evolution of the state of one or more target agents within
a network. The other model characterizes the evolution of a
specific agent, referred to as controller agent, which belongs
to the network but we assume it to be controllable and
immune to the influences of the other agents, similar to the
approach outlined in [10]. However, in this configuration, the
controller agent has the capacity to influence the states of the
target agents through interactions.
Our approach can be compared to a more conven-
tional framework related to Markov Decision Processes
(MDP) [11], which is employed to study the decision-making
process of a stochastic agent. In this framework, the optimal
policy, which represents the sequence of actions to undertake,
is determined by maximizing the cumulative reward. Within
the context of MDP, the agent has the capacity to make
various choices to accomplish a specific goal. This can be
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viewed as a form of control action executed by the agent on
its own decision-making process. Instead, our framework is
based on the assumption that there exists an external input
capable of manipulating the states of the agents, which is an
outer contribution that can affect the system.
This paper is organized as follows. Section II presents a
motivating example for our framework, while Section III
establishes the mathematical basis of our model. Section IV
states how the controller is derived, and Section V presents
the simulation results. Finally, conclusions are drawn in
Section VI.

II. ILLUSTRATIVE EXAMPLE

The next example illustrates our objectives and intentions,
along with a possible application setup.

Example 1: A population of consumers is partitioned in
groups G1 and G2, based on, e.g., common attitudes or
habits, and there is no interaction between them. The in-
dividuals of G1 and G2 are asked to make a decision and
purchase a new t-shirt to replace their own. A correlation
between the colors of the old and new t-shirts is found to hold
with a known probability. Furthermore, the probability of
individuals in each group owning t-shirts of different colors,
such as red, yellow, or blue is known.
A t-shirt firm wants to improve the sales of blue t-shirts and
look for sales, sponsorship, and advertisement policies to
convince consumers in G1 and G2. However, G1 and G2 are
affected by the price differently and the individuals of each
group are influenced by the decisions made by the individuals
of the other group.
Our (the firm’s) objective is to decide the price of the t-
shirts to control the probability that members of G1 and G2

purchase a new blue t-shirt.
In the rest of the paper, we build a modeling and control
framework that can be deployed in applications where,
similarly to Example 1, the behavior (alternatively, decisions
or opinions) of a set of stochastic and interacting agents is
affected, to some extent, by the evolution of a process that
can be externally controlled, e.g., the environment the agents
operate in.

III. MATHEMATICAL MODEL

Similarly to [6], we employ a discrete-time version of
a Markov Chain (DTMC) to describe the decision-making
process of a stochastic agent r. The DTMC is described by
the equation

Πr(k + 1) = (Q(r))TΠr(k) (1)

with initial condition Πr(0) = Πr(0). Πr(k) ∈ Rm×1

is the state probability vector at time instant k such
that Πr(k)T1 = 1 (where 1 is a column vector with all
the entries equal to 1) and m corresponds to the number of
discrete states the agent r can evolve to. Q(r) is the transition
probability matrix and must be row-stochastic (Q(r)1 = 1),
with all the entries in [0, 1].
A set of n ≥ 1 Markovian agents evolving accordingly to (1)

can be considered as a Markovian network [6]. The evolution
of the network is given by

Π(k + 1) = QTΠ(k), (2)

where Π(k) is the probability vector of the network. To
distinguish between the single case, we call the states of
the network configurations. Specifically, a single network
configuration is given by the combination of the states of all
the agents. Assuming that each agent can achieve m states
and denoting with Sr the set of states of the agent r, the set
of configurations S of the network has dimension p = mn

and it is generated as

S = S1 × · · · × Sr × · · · × Sn, (3)

with × the Cartesian product.
If the agents are independent, then the matrix Q ∈ Rp×p is
simply given by

Q = Q(1) ⊗ · · · ⊗Q(r) ⊗ · · · ⊗Q(n), (4)

with ⊗ the Kronecker product. Conversely, if they are not
independent, their interactions can influence one another, and
this influence is captured by the structure of the matrix Q.
In the literature (see [6], [7]), the interactions among agents
are modeled through a modification of the transition matrix,
leading to the equation

Π(k + 1) = Q̃TΠ(k) = (Q+Ω(ᾱ))TΠ(k). (5)

In (5), Ω(ᾱ) models the interactions described by the pa-
rameter vector ᾱ. As mentioned in Section I, while the focus
of [6] is primarily adjusting the values of ᾱ based on the
network structure, our objective is to control Π(k), given a
desired probability vector Πdes to achieve.
Our aim is to integrate the Markov model of the evolution
of one (1) or more (2) agents (target agents), with a model
that describes the evolution of the agent that we can control
(controller agent), assuming it to be independent with respect
to the target agents, as in [10]. In this work, we assume
that the controller agent is the environment the target agents
are placed in. The model W describing the evolution of the
target agents’ opinions, together with the dynamics of the
environment, is

Π(k + 1) = QTΠ(k) + µ(k, x(k)), (6a)
x(k + 1) = f(x(k), u(k)). (6b)

In W , (6a) represents the evolution of the target agents,
and (6b) the evolution of the environment. In particular, Π(k)
describes the evolution of the state probabilities of the target
agents, based on their intrinsic behavior, given by Q. The
influence from the controller agent, under the assumption
that it is independent of the target agents, is given by the
bias vector µ(k, x(k)). Lastly, the controller agent state dy-
namics is given by the function f(x(k), u(k)). This function
could be either linear or nonlinear (based on the scenario),
and it is controlled by the control input u(k). Moreover,
in (6a), µ(k, x(k)) can be seen as the control input directly
applied on the DTMC.
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In this first step, we want to keep the model W linear.
Therefore, we make two assumptions:

1) the influence µ(k, x(k)) that the environment ex-
erts on the target agents is linear w.r.t. x(k), so
that µ(k, x(k)) = Hx(k), and

2) the evolution of the environment is ruled by a linear
discrete system x(k + 1) = Ax(k) +Bu(k).

Consequently, the system W becomesΠ(k + 1)

x(k + 1)


︸ ︷︷ ︸

xa(k+1)

=

QT H

0 A


︸ ︷︷ ︸

Ã

Π(k)

x(k)


︸ ︷︷ ︸

xa(k)

+

 0

B


︸ ︷︷ ︸

B̃

u(k), (7)

where xa(k) is the augmented state, and Ã and B̃ are the
augmented matrices of the system W , under the aforemen-
tioned assumptions.
Before advancing with the design of the controller, we
undertake a preliminary study on the reachability of the
system.

A. Reachability of DTMC

In control theory [12], a discrete linear system is said to
be reachable if the rank of the reachability matrix is full.
In (7), the dynamics of DTMC are under the influence of the
state of the environment denoted as x(k), which can be seen
as the control input of the DTMC itself. Let us assume that
the evolution of the environment’s state is fully reachable.
Therefore, we have

rank(RE) = rank([B,AB, . . . , Am−1B]) = m. (8)

Notably, by construction, the environment has the same order
as the DTMC. This implies that, regardless of the initial
state x(0) = x0, it is feasible to attain any desired state for
the environment. Consequently, there are no restrictions on
the control input applied to the DTMC, and our primary
concern is to demonstrate the reachability of the DTMC
portion of the model W .
Consider the reachability matrix of the DTMC1 in (7),
where Π(k), x(k) ∈ Rm×1 and H ∈ Rm×m is non-singular,

RMC = [H, QTH, (QT )2H, . . . , (QT )m−1H]. (9)

If rank(RMC) = m, then the system is reachable. By
analyzing (9), it can be observed that the system is reachable
(since H is non-singular), and the image of RMC is

Im(RMC) = {e1, e2, . . . , em}, (10)

where ei is the ith vector of the orthonormal basis.
Given a final state Πk and initial conditions Π0, we want to
investigate if it is possible to achieve Πk through a feasible
input sequence.

Remark 1: Henceforth, we will abbreviate the forced evo-
lution component of the DTMC dynamics Hx(k) as µ(k),
as we assumed that the environment is fully reachable and
H is non-singular.

1The subsystem given by Π(k + 1) = QTΠ(k) +Hx(k).

This problem is solvable iff

Πk − (QT )kΠ0 = Rk
MC Uk, (11)

where Uk = [µ(k − 1), . . . , µ(0)]T and Rk
MC is the reach-

ability matrix at step k. Eq. (11) has a solution, namely (at
least) one input sequence, iff

Πk − (QT )kΠ0 ∈ Im(Rk
MC). (12)

The vector Πk − (QT )kΠ0 can be rewritten as a linear
combination of the orthonormal basis vectors. Thus, con-
sidering (10), the condition (12) is satisfied.
Nonetheless, it is important to note that, in our scenario,
the mere knowledge of system controllability is insufficient.
Indeed, the control input µ(k) applied in (6a) should not
alter the structural properties of a Markov Chain. For this
reason, the constraint µ(k)T1 = 0 ∀k must be enforced
for the input sequence (for the derivation and proof of this
constraint, please refer to Section IV-A). However, it is worth
noting that we can exploit the fact that the target state to be
reached must adhere to the specific constraint ΠT

k 1 = 1,
since Πk is a probability vector. In the following, we prove
that it is possible to find a feasible input sequence Uk, given
the desired probability Πk, the initial condition Π0 and the
row-stochastic transition matrix Q.

Theorem 1: Consider the linear system given by

Πk+1 = QTΠk + µk, (13)

where Πk is a vector of probabilities and Q is a row-
stochastic matrix. If this system is reachable for a given
initial condition Π0 and a final state vector Πk, then the input
sequence Uk = [µ(k−1), . . . , µ(0)]T satisfies the constraint:

UT
k 1 = 0. (14)

Proof: Consider the probability evolution (11). By
definition, Πk and Π0 are probability vectors and therefore

ΠT
k 1 = 1 , ΠT

0 1 = 1. (15)

Thus
(Πk)

T1 = ((QT )kΠ0 +Rk Uk)
T1

1 = ((QT )kΠ0)
T1︸ ︷︷ ︸

a

+(Rk Uk)
T1︸ ︷︷ ︸

b

, (16)

where Rk is the reachability matrix at step k. For sake of
simplicity, let us analyze the terms a and b of (16) separately.
For the term a, the following holds

ΠT
0 ((Q

T )k)T1 = ΠT
0 (Q

T (QT )k−1)T1 =

ΠT
0 ((Q

T )k−1)T Q1︸︷︷︸
=1

= · · · = ΠT
0 1 = 1. (17)

In the term b, (Rk Uk)
T1 = UT

k RT
k 1. RT

k 1 can be written
as

RT
k 1=



I

Q

Q2

. . .

Qk−1


1=



I1

Q1

Q(Q1)

. . .

Qk−2(Q1)


=



1

1

1

. . .

1


. (18)
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Thus, by combining (17) and (18), the following holds

1 = 1︸︷︷︸
a

+UT
k 1︸︷︷︸
b

(19)

and finally UT
k 1 = 0.

Hence, the DTMC is reachable with a feasible input se-
quence, under the assumption of full reachability of the
environment. However, it is important to note that this
assumption may not be feasible in all scenarios, and this
could impact the overall reachability of the system.
In the next section, we will show how to derive the control
policy u for (7), with the specific goal of controlling the
evolution of the DTMC component.

IV. MODEL PREDICTIVE CONTROLLER

In this section, we formulate a MPC problem of reference
tracking for model (7), assuming the state is fully observable.
As in standard MPC control theory [13], we consider a
quadratic cost to be minimized

J = xa(N)TSxa(N) +

N−1∑
i=0

(
x̃a(k + i)TQerrx̃a(k + i)+

u(k + i)TRu(k + i)
)

(20)

where
• x̃a(k+ i) = xa(k+ i)−xref

a (k+ i) is the tracking error
and Qerr is the corresponding weighting matrix;

• u(k+ i) is the control input and R is the corresponding
weighting matrix;

• xa(N) is the last state and S is the corresponding
weighting matrix;

• N corresponds to the value of the finite control horizon.
It is worth noting that within the state vector, denoted
as xa = [Π, x]T , Π represents a probability vector, and as
such, it must preserve a well-defined structure. Consequently,
when formulating the minimization problem for the MPC, it
is essential to integrate constraints on the environment’s state

Feqx(k) = feq, (21a)
Fineqx(k) ≤ fineq. (21b)

In the following subsections, we first derive the constraints
matrices Feq, feq, Fineq, fineq , and we specify the matrices
for the cost function (20). Then, we make the structure of
the condensed matrices for the MPC explicit.

A. Equality constraint

First, we address the derivation of the equality constraint
matrices according to (21a). As already anticipated, given
that the first submodel is a DTMC, we need to account for
the following properties:

1)
∑

i πi(k) = 1 ∀k (in matrix form Π(k)T1 = 1).
This ensures that the vector of probabilities remains
normalized, and

2) Q1 = 1 because of the definition of a row-stochastic
matrix.

By exploiting these two conditions together and applying
them on the top submodel of (7), we obtain

(Π(k + 1))T = (QTΠ(k))T + (Hx(k))T

(Π(k + 1))T1 = (QTΠ(k))T1+ (Hx(k))T1

1 = Π(k)TQ1+ (Hx(k))T1

1 = Π(k)T1+ (Hx(k))T1

1 = 1 + (Hx(k))T1,

(22)

and thus we derive the following equality constraint for the
environment’s state

(Hx(k))T1 = 0 ∀k, (23)

which can be rewritten as 1THx(k) = 0, so that Feq = 1TH
and feq = 0.

B. Inequality constraint
For the inequality constraint, we reflect on the mathemati-

cal meaning of Hx(k). It aims at modifying the state proba-
bilities, and then it corresponds to a variation of probability.
Thus, it is reasonable to assume that [Hx(k)]i ∈ [−1, 1] ∀i,
which is the maximum allowable variation in probability for
any DTMC state. These boundaries can be integrated into the
control problem as inequalities constraints, as in (21b). We
include the two following set of inequalities in the problem.{

Hx(k) ≥ −1 → −Hx(k) ≤ 1,

Hx(k) ≤ 1.
(24)

In matrix form, we obtain Fineq = [−H;H] and fineq = 1.

C. Cost function matrices
We defined the matrices Qerr, R and S of the cost

function (20) as

Qerr = β, R = I , and S = Qerr (25)

where β is a diagonal matrix that can be tuned to improve
the tracking and we set as β = diag([1, 1, 1, 0, 0, 0]). This
implies that our concern is to exclusively minimize the
reference tracking error of the DTMC state.

D. Condensed Matrices
The optimization described above can be written more

compactly in matrix form by exploiting the so-called con-
densed matrices. We set the finite control horizon N = 10
and derive the condensed matrices for the control problem
as

Xc(k) =
[
xT
a (k + 1) . . . xT

a (k +N)
]T

,

Uc(k) =
[
uT (k) . . . uT (k +N − 1)

]T
,

Ac =
[
Ã Ã2 Ã3 . . . ÃN

]T
,

Bc =


B̃ 0 . . . 0

ÃB̃ B̃
. . . 0

...
. . . . . . 0

ÃN−1B̃ . . . ÃB̃ B̃

 ,

(26)
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so that the system becomes

Xc(k) = Acx(k) + BcUc(k). (27)

Moreover, (21a) and (21b) must be rewritten in condensed
form as Fc,eq = IN×N ⊗Feq , fc,eq = IN×1⊗feq , Fc,ineq =
IN×N ⊗ Fineq , fc,ineq = IN×1 ⊗ fineq , as well as the
cost function matrices as Qerr = diag([Qerr, . . . , Qerr, S])
and R = diag([R, . . . , R]). For more details, please refer
to [14].

V. RESULTS

In this section, we simulate the model (7) and assess the
performances of our controller.
For our tests, we employ the scenario introduced in Example
1 in Section II. Hence, we consider having 2 target agents
(groups G1 and G2), which are placed within the environ-
ment. This environment is representative of the price of the
t-shirts, which the company has the possibility to increase or
reduce.
The (members of) target agents are called to decide between
red, yellow, or blue t-shirts. Therefore, the DTMC of each
target agent has m = 3 states, which represent the different
colors. The aim of the t-shirt company is to steer the
decisions of the target agents toward the red t-shirts. We
define the entries of the state probability vector Π(k) as
the probability of purchasing a red, yellow, and blue t-shirt
respectively, and the entries of the environment’s states x(k)
as percentage price variation (from the initial cost) of the red,
yellow and blue t-shirts respectively. By construction, the
percentage price variation is limited in the interval [−1, 1].
As an illustrative example, we define the matrices for the
linear system defined in (7) as follows. In order to perform
a correct comparison between G1 and G2, we assume that
they have the same transition matrix Q(1) = Q(2) = Q. The
matrices Q and H are set as

Q =


0.3 0.5 0.2

0.1 0.2 0.7

0.4 0.5 0.1

 , H = −


0.7 0.2 0.1

0.4 0.6 0

0.1 0.1 0.8

 , (28)

where the matrix H characterizes the influence of t-shirt
prices on the probability of selecting a particular color. Thus,
in this case, it assigns a higher weight to the variation price
of a specific color in relation to the probability of purchasing
that color, relative to the other color choices.
Notably, in real-world settings, the entries of these matrices
will typically be unknown, and thus they should be estimated
from data. The matrix Q could be trivially estimated through
a frequentist approach [15], as well as H , also with the aid
of surveys that may help to identify the possible influence
that prices have on purchases.
The matrices A and B are set as

A = I, B = I. (29)

0 2 4 6 8 10
0

0.5

1

0 2 4 6 8 10
0

0.5

1

0 2 4 6 8 10
0

0.5

1

Fig. 1: Evolution of the decision-making process of the target
agents G1 (red line) and G2 (blue line). G1 is assumed to
be strongly influenced by the environment, according to the
model (7), while G2 is supposed to be unaffected by it.
The reference probability to which the controller agent is
directing G1 is denoted by the black dashed line.

and describe the evolution of the t-shirts prices2.
Lastly, we set

Πref = [0.3, 0.2, 0.5],

Π0 = [0.69, 0.12, 0.19],
(30)

which consists in shifting the overall preference for a future
purchase from red to blue t-shirts. Note that we do not define
any reference for x, since our goal is to exclusively control
the evolution of DTMC. Should there be a need to introduce
a reference, one could assign arbitrary values to xref and
set the weights for the tracking error associated with the
environment’s state in the cost function (20) to be zero.
In order to display different agent’s behaviors, we assume
that the members of G1 are strongly influenced by the
environment, whereas the members of G2 are not affected
by it.

A. Controller performances

All the simulations were conducted in Matlab R2023a for
a total of 30 steps, each of which corresponds to a day.
Nevertheless, the forthcoming figures will only display the
initial 10 steps. This choice is made because no substantial
changes were observed beyond this point in the simulations.
The evolution of the probability vector state of G1 and G2

are shown in Fig. 1, where G1 is the target agent which
is affected by the influence from the environment, while
the decision-making process of G2 remains unperturbed. In
simpler terms, the evolution of G2 represents the normal pro-
gression of the DTMC described by the transition matrix Q
in (28) and the initial conditions Π0 in (30), whereas the
decision-making process G1 (although characterized by Q
and Π0 as is the case for G2) is subject to the influences
exerted by the environment. However, before confirming that

2Given the matrices A and B that we have designed, we introduce the
realistic assumption that the prices of t-shirts remain constant over time
unless the company decides to modify them. Moreover, we assume that the
choice of altering the price of a specific t-shirt color category does not affect
the others.
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-0.5

0

0.5

Fig. 2: Percentage variation of the price of different t-shirt
colors (R = red, Y = yellow, B = blue).

0 2 4 6 8 10

20

30

40

50

Fig. 3: Price trends of the t-shirts. Starting from the initial
price (dashed black line), the evolution of the costs (in euros)
of the t-shirts (R = red, Y = yellow, B = blue) is displayed
based on Fig. 2.

the controller agent effectively steers the probabilities of G1

toward the provided reference, we check and confirm that
the controlled state Π(k) conforms to the definition of a
probability vector, meaning that

∑
i πi(k) = 1 ∀k.

Next, it is interesting to analyze the dynamics of the envi-
ronment in order to achieve the desired effect on the target
agent G1. Suppose the initial price of each t-shirt is 30 euros,
independently of the color. Fig. 2 illustrates the percentage
variation in the price of each t-shirt, with a zero variation
denoting that the new price remains unchanged. From this
plot, we can retrieve the prices (Fig. 3) that the company
should impose on the t-shirts. Finally, consider the initial
aim to support the purchase of blue t-shirt rather than red or
yellow ones and the matrix H (28) of influences, we obtain
the intuitive result that the company should decrease the price
of blue t-shirts.

VI. CONCLUSION

In this paper, we have proposed a control framework
for an opinion dynamics model, specifically for a Discrete-
Time Markov Chain. Different from the common approaches
in the literature, we have assumed that the control input
is external, and can manipulate the state of a controller
agent, which could be the environment. This, in turn, can
influence the behavior of the target agents, within a network.
We initially demonstrated that our system is controllable,
under suitable assumptions, and then we designed an MPC
controller to achieve the desired state of the target agent.
Next, we exploited a small-scale example from everyday
life, to show the outcomes of our controller and to suggest
possible applications of our framework. Despite being an
introductory work on controlling agents, we believe this

work can offer valuable insights into the potentialities of
this control scheme. In future works, we will mathematically
investigate the properties of our framework, also by relaxing
some of the simplifying assumptions and establishing novel
conditions for the controllability of the system. Moreover,
we will investigate new application scenarios, such as traffic
systems.
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