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Hybrid Optimal Control for an Active Mechanical Motion Rectifier for
Wave Energy Converters via Separation Principle
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Abstract—The wave energy field is characterised by its
continuous growth and development in research and technology.
Over recent decades, different application issues have hindered
the worldwide implementation of wave energy devices, and only
a few have reached the commercialisation stage. Some of these
inherent challenges have driven the creation of innovative wave
energy system designs. In particular, active mechanical motion
rectification (AMMR) is a novel proposal to rectify the energy
flux in wave energy devices. The objective of active rectification
is twofold. On the one hand, it increases the overall system
efficiency by achieving a higher average output velocity in the
generator. On the other hand, the AMMR introduces a new
variable in the control design: A switching law to connect
and disconnect the generator from the wave capture structure.
Thus, the control design possesses two degrees of freedom,
significantly increasing the complexity of the energy-maximising
power take-off control problem.

In this paper, the problem of designing an optimal control
philosophy for an AMMR-based wave capture system is ad-
dressed. The problem is solved by proving that, a separation
principle applies, and that the optimal control solution over a
fixed interval, is independent of the optimal switching sequence
selection. To illustrate the utility of the analytical results,
a numerical example for a flap-type wave energy converter,
utilising an AMMR-based power take-off, is presented.

I. INTRODUCTION

In an international context, in which sustainability is
relentlessly pursued to achieve the goal of net zero C'O,
emissions, wave energy will play a crucial role [1] [2]. The
rationale behind this is simple. In essence, wave energy is
capable of increasing the reliability of the currently available
mix of renewable energy sources, by increasing the diversity
and predictability of generated energy, while also reducing
the need for energy storage systems [3].

While theoretically promising, with potential for high
conversion efficiencies and substantial power output, the
field performance of wave energy converters (WEC) is far
less impressive. Achieving efficient wave-to-wire energy
conversion necessitates extensive research developments in
a variety of areas. This encompasses developments of wave
capture body (WCB) structures, to convert the oscillating
irregular wave energy into mechanical energy, power take-
off (PTO) mechanisms, to convert mechanical energy into
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electricity, and advanced control strategies, to adapt the
device to irregular wave excitations and maximise power
extraction [4]. In these areas, interdisciplinary research plays
a key role in improving the efficiency of current systems
and innovating new devices, capable of achieving worldwide
commercialization.

Regarding the typically employed PTOs, because wave
energy is concentrated at low frequencies with time-varying
velocities, efficient conversion becomes extremely difficult
and limits the options for cost-effective PTO systems. Aim-
ing to increase the efficiency of linear rotary generators,
an active mechanical motion rectifier (AMMR) has recently
been proposed [5] [6] [7]. In this system, two one-way
electromagnetic clutches are used to mechanically rectify
the oscillatory motion, resulting in unidirectional motion
at the AMMR output shaft (see illustrative Figure 1). In
combination with a rotary generator and a flywheel, in [6] [7]
preliminary experimental tests were conducted, showing that
this novel PTO structure is capable of achieving significant
improvements in wave-to-wire efficiency.

When compared with directly coupled PTO mechanisms,
the AMMR-based WEC also possesses distinctive advan-
tages. First, the selection of the commutation intervals al-
lows a discrete-time active control law (to synchronise the
excitation torque with the WCB velocity) to be designed, in-
dependently of the employed continuous-time control law for
the generator. Second, and ideally, improving the generator
efficiency by increasing its average rotational speed is also
possible. These concepts were preliminarily evaluated in [5],
employing only passive damping control for the generator.
Howeyver, the control law at the discrete-time level, to obtain
maximum power extraction based only on the connection
(clutching) and disconnection (declutching) of the AMMR,
remains to be designed.

In this work, the design of a hybrid optimal control
algorithm, capable of maximising the power output for
this system, is addressed. To that end, first, following the
previous developments from [8] [9], the hybrid machine
model is employed. Using the framework from [10] [11],
it is proven that the algorithms to decide the continuous-
time controller for the generator and discrete-time decision-
making for the clutching and declutching of the AMMR,
can be separately designed. Then, the hybrid optimal control
maximises (mechanical) power extraction from the WCB,
provided that £ (defined in (1)) is also maximised.

Blty) = j T y()rale)de, (1)

0
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where y(t) is the WCB velocity (assumed angular for this
study), 7, (t) is the control torque, and E(¢) is a cost function
to be evaluated and maximised in specific intervals by a
suitable selection of the control variables.

The remainder of the paper is structured as follows: In
Section II, the employed AMMR-based WEC hybrid model
is developed. Section III presents the hybrid optimal control
problem, along with the formulation of alternative proposals.
In Section IV, some numerical examples based on a flap-
type WEC are presented. Lastly, Section V provides the
concluding remarks.
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Fig. 1. Illustrative AMMR-based PTO scheme, conformed with the
AMMR, a rotary generator and an interconnected flywheel.

II. HYBRID SYSTEMS APPROACH TO AMMR-BASED
WEC MODELLING

In this section, the hybrid model employed to represent
the system dynamics is presented. To that end, the working
principle of the AMMR is described, and, its connection with
the hybrid framework, is established.

A. AMMR operating principle

The AMMR possesses a variety of functions, but the
rectification of mechanical motion is its primary objective.
Employing this mechanism, the output shaft of the gen-
erator rotates unidirectionally. If the AMMR clutches are
disengaged before the velocity reaches zero, and re-engaged
after the WCB velocity surpasses a predefined limit, then
the generator efficiency can also be increased. Furthermore,
with the inclusion of a flywheel in the system, is possible to
increase the average rotational speed of the generator during
the disengagement stages.

As illustrated in Figure 1, the AMMR possesses three
distinctive operation modes. In the first operation mode,
with the positive clutch engaged, the WCB is connected to
the generator and flywheel through a mechanical drivetrain,
and both input and output of the AMMR rotate in the
same direction. In the second operation mode, the negative
clutch is engaged and input and output of the AMMR
rotate in opposite directions. In the third operation mode,
both clutches are disengaged, with the generator and WCB
decoupled.

In each one of the operation modes, the system dynamics
vary. On the one hand, when the AMMR clutches are disen-
gaged, the WCB is uncontrolled. On the other hand, when
the AMMR clutches are engaged, the flywheel increases the
system inertia, but also, a continuous-time control law may
be applied, changing the system dynamics.

To visually represent the described system behaviour,
a graph diagram is constructed (See Figure 2). In it, ¢
represents the different discrete states (operation modes) of
the system. With ¢ = 1, the positive clutch is engaged; with
g = —1 the negative clutch is engaged and, with ¢ = 0,
the clutches are disengaged. Also, the notation f(q,x,7y,)
represents how the system dynamics are also dependent on
the discrete state ¢, and the events that drive the system from
one discrete state to another state are ¢*, ¢, ¢V, representing
positive clutch engagement, negative clutch engagement, and
disengagement, respectively.

B. Hybrid model of the AMMR-based WEC

Hybrid system models exhibit both continuous and
discrete-time behaviour, and although there exist different
modelling frameworks used to describe several classes of
hybrid systems, in this work, the hybrid machine (HM)
description is used. In this representation, the model is
composed of an automaton to model discrete-time events,
and a state space model to represent the evolution of the
continuous-time variables.

Employing the HM description, the state space representa-
tion is parametrised as a function of the automaton discrete
states ¢, which normally take values only within a known
finite and non-empty set (). As previously presented, for the
current case, @ : {1, 0, —1}. Formally, in this paper, the HM
is defined as:

HM = (Qa 27 57 qi, Va D)a 2)

where Y : {c*, e, c*} is the set of possible events, ¢ :
@ x ¥ — @ determines the dynamics of the events at the
discrete-time level, ¢; is the initial discrete state, V' is the set
of continuous variables comprising control actions 7,(t) €
R™ and states x € R™, and D: {f(q,%,7,), ¢ € Q} is the
continuous time mapping from @ x R™ x R"™ — R". It is
also worth noting that, although the system dynamics might
change for different states g € @, the states x are continuous,
while the control action 7,, may be discontinuous.

To complete the model, in the remainder of this section,
f(g,x,7,) is obtained. To that end, the following assump-
tions (essential to develop a preliminary AMMR hybrid con-
trol strategy) regarding the AMMR and generator are made.
First, the AMMR is considered ideal. This implies that the
system is capable of instantly, and free of losses, connecting
or disconnecting the generator from the WCB. Second, the

Fig. 2. Illustrative hybrid machine graph, considering the three AMMR
discrete states and a strongly connected graph.
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generator dynamics are neglected. Also, although, in general,
f(gq,x,7,) may be nonlinear, for simplicity sake, particularly
for Section IV, the analysis is focused on the commonly
employed second-order linear model.

To derive f(q,x,7,), it is firstly assumed that the clutches
are engaged. Also, regardless of the employed WCB, the
input to the AMMR is a one-degree-of-freedom bi-directional
rotational motion, which is typically a pinion driven by a rack
from a heaving buoy (straight rack) or oscillating wave surge
converter (curved rack). Therefore, without loss of generality,
0(t) is defined as the AMMR angular position. Employing
the mentioned assumptions, the second-order state space
model, with the clutches engaged, is [12]:

Jrl(t) = —B,0(t) — KO(t) + Tex(t) + qru(t),
y(t) = 0(t),

where each term is referred to the AMMR input shaft: Jr
is the sum of the WCB, generator and flywheel inertia, B,
is the WCB damping, 7,(t) is the control action and 7, ()
is the excitation torque provided by the reciprocating motion
of waves. Observe that, due to ¢, the sign premultiplying
7. () is positive (negative) with the positive (negative) clutch
engaged.

On the other hand, when the clutches are both disengaged,
the generator torque and flywheel effects must not be con-
sidered. Therefore, the dynamics of the disengaged system
are given by:

JpO(t) = —B,0(t) — KO(t) + Tex (1)
y(t) = 6(t),

where the inertia Jp considers only the WCB inertia. Assum-
ing that 0(¢) is the angular displacement at the input shaft
of the AMMR, and omitting the time argument, the unified
dynamics of the system are given by:

(3a)
(3b)

(4a)
(4b)

x=Ax+ By, = (52)
] [0 1 [y 0 0
_ _ 1
y=Cyx=[0 1] [xz] , (5b)

where [z; 22]T = [0 ], and J, is the system inertia
represented as a function of the discrete states. For further
details about the model please refer to [9] [12].

III. HYBRID OPTIMAL CONTROL

In this section, the hybrid control problem is formulated,
and optimal and sub-optimal solutions are presented and
discussed. First, it is important to recapitulate some concepts
about HMs. Historically, HMs have been used to represent
the dynamics of nested systems, in which the main goal
is regulation and system stabilisation [13]. In the AMMR
case, however, the system is driven through different discrete
states. In general, a constant adaptation of the control law is
required, since, the excitation torque needs to be tracked to
achieve maximum power extraction (via synchronisation of
the WCB velocity and applied excitation force) [14].

In this context, designing a hybrid control law requires ob-
taining the continuous-time control action 7, and a discrete-
time sequence of events capable of maximising (1). To
explicitly visualise how (1) is a function of both continuous
and discrete control actions, is rewritten as:

By) = | wlermene -

Q)

N-1 N—-1 nt;q

S Bt = % [ e, (0
i=0 i=0 Yti

where NV is the number of switches in [0;%], the subindex
q is used to explicitly denote the dependence with the
discrete state ¢, and E;(t;11) is defined as the i-th term
of the summation. Note that infinite frequency switching is
not considered in this work. Instead, only a finite number
of switches within a period of the excitation torque is
considered.

Maximising E;(t;+1), in (6), is equivalent to solving the
classical finite-horizon optimal control problem. If ¢=+1,
then, Tu, Can be designed. However, when ¢ = 0, the
clutches are disengaged and there is no control torque to
be applied. Thus, the problem is reformulated as follows.
Instead of considering maximising the PTO power output,
the mechanical power dissipated by the WCB is considered.
Then, by definition, E;(¢;41) is equivalent to:

Ei(tiy1) = J

t;

tiv1

Tea(€)Yq(€) — Llyg(e))de, (7

where L(y,(t)) represents the mechanical losses of the
WCB. Observe that since (7) is a function of y,(¢), the veloc-
ity that maximises F;(¢;41) is the theoretical system output
when the optimal control action is used. Thus, this variation
of the optimal control problem arrives at an optimal solution
employing y,(t). Then, the continuous control action that
guarantees ¥, := T2 is extracted from (5a).

Another implication of this formulation is that the effect
of switching to maximise mechanical power in the WCB
can be visualised. Specifically, even when it is not possible
to extract mechanical power because ¢ = 0 (and 7,, = 0),
the switching affects the mechanical power absorbed by the
WCB. To visualise this, rewrite E(ts) as:

ty
By) = | wlerme)e -
N1 s i @®)
[ reemnle) - (e
i=0 Yti

Thus, although 7,, = 0 during the disengagement stage,
the main goal of maximising mechanical output power is
affected by both the selection of the switching intervals and
the control law Tug- If ¢ = 0, then no continuous control
action is applied, but mechanical power variation in the WCB
is considered. Also, if ¢ # 0, then the finite horizon optimal
continuous-time control problem must be solved in each ¢ €
(ti,t;+1). Employing the presented problem formulation, in
the following section, the separation principle to solve the
hybrid optimal control problem is introduced.
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A. Separation principle

Maximising (8) requires obtaining the optimal discrete-
time control action, i.e., the optimal switching sequence
for the AMMR, including the commutation intervals, and
the optimal continuous-time control action applied by the
generator. To that end, the following lemma is presented.

Lemma 1: Considering that the dynamics of the WEC are
described by (5), for the design of the hybrid optimal control
for the AMMR-based WEC, the continuous-time control
(generator torque) solution is independent of the discrete-
time control (switching sequence).

Proof: The proof is made by obtaining the optimal
continuous-time control action for a specific time interval
[t;s ti+1]. To that end, customise (8) for the system in (5),
and solve the optimal continuous-time control algorithm as
follows. First, the cost function to maximise in the i-th
interval is:

Ei(tiv1) = f

t;

tit1

Tex (5>yq(5) - Bryg (5>d€' 9
Thus, trivially, the quadratic argument in (9) is maximum
when y, = 7.,,/2B (A standard result in wave energy control
[1]). Then, replace y, in (5a) (recall that x5 := y,), and the
optimal control action:

(10)

u

TP = Teq + Koy + By + 5p-dreg /dt,

is obtained. Therefore, 7P is causal and, over a finite
time interval, guarantees synchronisation of 7., with the
WCB velocity and maximum mechanical energy extraction
independently of the switching instances ¢;, and ¢, 1. [ ]

It can be also stated that, if a control (continuous for
the generator or discrete for the switching law) is designed,
then the other can be subsequently adjusted to achieve local
maximum power extraction. For instance, with a predefined
generator control law, the problem of maximising (8) reduces
to finding the optimal switching intervals.

It is worth mentioning that including constraints in the
definition of (8) is, for the time being, beyond the scope
of this paper. Thus, Lemma 1 becomes useful to focus on
preliminary theoretical developments for the design of a
hybrid optimal control law for the AMMR. Furthermore,
Lemma 1 has several implications from the point of view
of control design:

« First, because selecting a continuous control action is
independent of the employed switching law, the energy-
maximising problem could be iteratively solved, assum-
ing that one of the control structures (continuous or
discrete time) is predefined.

« Second, assuming a fixed hybrid control structure, the
effects of varying the flywheel inertia could be eval-
vated, which is essential to address the co-design of
AMMR-based WECs.

o Third, this problem formulation permits establishing a
simple methodology to analyse the results of varying
the switching law, and its effects (benefits, differences,
inconveniences) when compared with classical control
structures for wave energy devices.

In the following subsections, three proposals to solve
the AMMR-based WEC control problem are presented and
analysed. To ease the presentation of the results, in the
following subsections a second-order linear model, as in (5),
is employed.

B. Continuous-time control: Sub-optimal proposal

A sub-optimal proposal may be formulated, predefining
the switching law, and maximising (8) within every switching
interval with ¢ = 1. With this proposal, because the switch-
ing law is fixed, the theoretical maximum power output may
not be obtained. Then, the problem is reduced to obtaining
a sub-optimal continuous-time control action. One reason
to predefine the AMMR behaviour is to guarantee positive
average velocity in the generator. Therefore, it is expected
that fixing the switching law, may produce a high power
output while increasing generator efficiency, and simplifying
the controller design. The control structure for this system
can be appreciated in Figure 3.a. In this case, assuming a
second-order linear model, the solution of the optimal control
TP, is the same as (10).

17 Ter
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Fig. 3. Illustrative scheme of the control diagram. a) AMMR is controlled
via a predefined switching law dependent on the WCB velocity. b) AMMR
controlled via control from Subsection III-C. ¢) Global optimal hybrid
control from Subsection III-D.

C. Discrete-time (switching) control: Suboptimal proposal

In this subsection, an algorithm to determine the optimal
switching time for the AMMR, while the control law is
fixed, is presented. First, it is essential to mention that,
unlike the case in Subsection III-B, solving the optimal
switching sequence requires further information on some
system variables, including the excitation torque 7., the
continuous-time control algorithm, and the time interval T' =
ty —to. Then, the problem reduces to evaluating which time
instants ¢; maximise E(ty) in (6).

The procedure for the selection of the switching control
algorithm, presented in this paper (illustrated in Figure 3.b.),
is summarised as follows:

1) Define the control structure employed in the controlled
intervals. This sets the system dynamics (5).

2) Define the time horizon T' = t; — #,.

3) Define the number (V) of switching points in 7.

4) Compute the cost function E(tf) := E(t;4n) as a
function of the switching intervals ¢;.

5) Obtain the [t;,...,t;1n]| vector
E(tiyn)-

that maximises
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TABLE I
WCB PARAMETERS FOR THE EMPLOYED WAVE PERIOD.

Wave
period Jr Ip Br K
[s] [Kgm?] [Kgm?] [Nms/rad] | [Nm/rad]
T 24 [ ® [ 77 [ 75 [ 25 ]

It is worth noting that the procedure in 1-5 above, is
independent of the employed control structure. Thus, it is
possible to obtain switching sequences that maximise power
output with predefined controllers. Therefore, higher-order
WCB models could also be employed, without considerably
increasing the complexity of the control problem.

D. Global optimal control structure

The global hybrid optimal control structure, results from
applying an optimal control strategy (Subsection III-B) dur-
ing the engagement, and simultaneously, the procedure from
Subsection III-C to define the switching intervals. This
proposal is illustrated in Figure 3.c.

It is important to note that, in linear second-order systems,
assuming a monochromatic excitation torque, it is expected
that the optimal switching law converges to solutions with no
disconnection of the AMMR. This is because in second-order
systems, the theoretical solution is well-known [14], and this
behaviour, can be synthesised by the proposed hybrid control
strategy. This assertion will be illustrated in the results of
Section IV.

IV. WEC NUMERICAL EXAMPLE

This section analyses the three proposed controllers for the
AMMR-based PTO, via numerical simulation. To that end, a
second-order flap-based WEC model is used. Also, for clarity
of exposition, 7., (t) = sin(¢t), is assumed. Accordingly,
the parameters B, and Jr p, defined for a frequency ¢ =
2.6rad/s (period of 2.4s), are presented in Table I. Also, to
ease the comprehension of the results, the resulting WCB
velocity is normalised with 2B,..

A. Sub-optimal continuous-time control evaluation

To evaluate the performance of the different controllers,
comparisons with an ideal impedance-matching algorithm,
are made. In Figure 4, the results of applying the sub-optimal
controller from Section III-B can be appreciated. In Figure
4.a, the WCB velocity is shown, together with 7.,. It can
be noted, in Figures 4 a and b, that the extracted energy is
below the ‘ideal’ case, i.e., from the results obtained using
a PI impedance matching controller.

Employing this sub-optimal strategy is not straightforward.
The selection of the commutation intervals is not simple,
since depending on the clutching/declutching strategy, the
controllability of the hybrid system can be compromised
[9]. In the presented simulation, to resolve the appearance
of undesired behaviour (such as uncontrolled switching), the
commutation is forced to occur four times per period of the
excitation torque, also guaranteeing velocity rectification.

T T
“]—— WCB velocity [rad/s]
Excitation force [Nm|
----- Discrete state

—4
10 x10 : : :
= Tdeal cost function
[S5] Sub-optimal cost function
% g
S35
©% (b)
£
0 1
| | ‘ f | ‘
0 0.5 1 15 2 2.5 3 3.5 4 15
Time [s]
Fig. 4. Results of applying the sub-optimal continuous-time proposal.

a) excitation torque, normalised WCB velocity and discrete states (q). b)
Resulting cost function per interval, compared with the ideal.

B. Sub-optimal discrete-time (switching) control evaluation

Here, the sub-optimal control strategy, based on the proce-
dure described in Subsection III-C, is presented and analysed.
In this case, it is assumed that the generator controller is a
linear PI, as illustrated in Figure 3.b. The parameters are
adjusted as:

1) A sate-feedback controller with K = [0, 70] is used
(i.e., a proportional controller).

2) The time horizon T' = ty — tg is defined as half a
period of the excitation torque. In this case, 7' = 1.2s.

3) Within T, the possibility of including three states (N =
2), beginning with ¢ = 1, is evaluated.

4) The cost function E(t) is iteratively computed. See, for
instance, illustrative Figure 5. The 3D plot represents
E(t) as a function of the connection/disconnection
instants.

5) The [t;t;41] that maximise E(t) in each T are ob-
tained. In Figure 5, ¢; represents the disconnection in-
stance and to the reconnection instance of the AMMR.

Remark 1: The selection N = 2 permits evaluating three

discrete states in one half-period of the excitation force,
which is, in practice, a realistic operation condition.

Maximum at 5.2
[0.1;0.54]

Cost function E(t)

ty [s] 0 ty [s]

Fig. 5. Cost function evaluation in one half-period, as a function of the
commutation instants.

The steady-state results of applying this strategy with ¢ =
2.62rad/s can be appreciated in Figure 6. It can be noted
that sub-optimal switching does not force the synchronisation
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of the excitation torque and the system velocity. However,
these results might vary depending on the choice of the time
horizon, controller parameters, and the number of switching
instances.

1 ' —r—

———WOCB velocity [rad/s]
—— Excitation force [Nm]|

------- 1 (a)

T=1.2s

x10~4
10 ‘ ‘ T
N Ideal cost function
[Q_ Sub-optimal cost function
S
25
E (b)
=
-
20
o

0 0.5 1 L5 2 2.5 3 3.5 4

Time [s]

Fig. 6. Results of applying the sub-optimal discrete-time (switching)

proposal. a) excitation torque, normalised WCB velocity and discrete states
g. b) Resulting cost function per interval, compared with the ideal.

Also, it is important to mention that, the sub-optimal
control structure from Subsection III-C, may provide results
in which the generator is forced to cross zero velocity. This
is not only detrimental to the operation of the generator
but also forbids the AMMR from operating as a rectifier
mechanism. However, as previously studied in [6] [7], a
remarkable feature of the AMMR, is that it can be employed
to increase mechanical power output, even using a simple
proportional controller.

C. Global optimal control evaluation

In this subsection, the results of applying the global
hybrid optimal control are analysed. It is worth mentioning
that, with a monochromatic excitation torque, the optimal
control from (10) converges to the results obtained with an
adequately tuned PI, i.e., an impedance-matching controller.
Indeed, observe Figure 7, where the transient behaviour
of the system is plotted. Although, initially, switching is
required, the solution converges to the no-declutching case,
in which only the continuous-time optimal controller from
(10) is employed.

1

—— WCB velocity [rad/s|
Excitation force [Nm]
----- Discrete state

1 H)

x10~*

=
T

/ 0)

Ideal cost function
——— Global optimal cost function
I I I T T =

0 0.5 1 1.5 2 2.5 3 3.5 4
Time 3]

=)

Cost function E(t)

Fig. 7. Results of applying the global optimal proposal. a) excitation torque,
normalised WCB velocity and discrete states (g). b) Resulting cost function
per interval, compared with the maximum theoretical.

V. CONCLUSIONS

AMMR technology represents a compelling pathway to
address traditional rotary-generator-based PTO drawbacks.
However, it also poses interesting problems to the design of
a suitable control algorithm. In this PTO structure, not only
the generator torque, but also the clutching and declutching
events, may be employed as a control action in the system,
to maximise energy extraction.

To solve the optimal control problem, it was proven
that, assuming a second-order system, the selection of the
switching interval and the design of a control algorithm, can
be separately tackled. Consequently, three different control
proposals were formulated: Two sub-optimal proposals, in
which one control structure is fixed, and a global optimal
solution.

Finally, aiming to illustrate the results obtained with the
proposed methods, a numerical example was presented. Al-
though preliminary, the proposal presented in this work paves
the way for future control development for the AMMR-based
WEC. In this context, the analysis and results serve as the
foundation for designing an autonomous control algorithm
in more complex scenarios, considering system constraints,
non-frequency dependent models, and including the effects
of 7., estimation, among some of the challenges that remain
to be addressed.
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