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Abstract— This paper focuses on the distributed online con-
vex optimization problem with time-varying inequality con-
straints over a network of agents, where the agents collabo-
rate to minimize the cumulative network-wide loss over time
through local information exchange. To reduce communication
overhead between the agents, we propose a distributed event-
triggered online primal–dual algorithm over a time-varying
directed graph. With several classes of appropriately chosen
decreasing parameter sequences and non-increasing event-
triggered threshold sequences, we establish dynamic network
regret and network cumulative constraint violation bounds.
Finally, a numerical simulation example is provided to verify
the theoretical results.

I. INTRODUCTION

Distributed online convex optimization is a promising
framework due to its powerful modeling capability for var-
ious problems in dynamic, uncertain and even adversarial
environments. In distributed online convex optimization, the
agents collaboratively make decisions without knowing their
local loss functions at the current iteration, and then the time-
varying local loss functions are privately revealed. The goal
is to minimize the cumulative network-wide loss over time.
In general, static regret is the standard performance metric
to evaluate online algorithms, which measures the difference
of the cumulative loss between the decision sequence and
the optimal static decision in hindsight. Various distributed
online algorithms with sublinear static regret have been
developed, see, e.g., [1]–[10], recent survey paper [11] and
references herein. For example, the authors of [1] develop
a projection-based distributed online subgradient descent
algorithm. By using Bregman divergence in lieu of Euclidean
distance for projection, the authors of [2] propose a decen-
tralized online mirror descent algorithm.

Note that the aforementioned distributed online algorithms
require local information exchange between the agents via
the underlying communication topology at each iteration,
which may cause large amount of communication overhead.
To overcome this limitation, by equipping event-triggered
communication scheme to the algorithm proposed in [1],
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the authors of [12] propose two distributed event-triggered
algorithms with full-information feedback and bandit feed-
back over a fixed undirected graph, respectively. Moreover,
sublinear static regret is achieved for both algorithms when
their event-triggering threshold sequences are non-increasing
and converge to zero. By using one-point and two-point
subgradient estimators respectively, two distributed event-
triggered algorithms with bandit feedback are developed in
[13] for the fix delayed bandit feedback case and sublinear
static regret is established for the algorithms. The authors of
[14] develop a distributed event-triggered algorithm based
on the algorithm proposed [2] and sublinear static regret is
achieved.

It is worth mentioning that the above algorithms which
achieve performance close to the best static regret may
perform poorly in terms of dynamic regret [15]. Dynamic
regret is a more stringent performance metric, which mea-
sures the difference of the cumulative loss between the
decision sequence and the best decision sequence selected
by a clairvoyant that knows the sequence of loss functions
in advance. By using the first and second moments of the
gradient of the local loss functions, the authors of [16]
develop the event-triggered algorithm with full-information
feedback in [12] by imposing adaptive updating step-sizes,
and analyze dynamic regret.

Most existing studies for online constrained convex opti-
mization focus on the case where the feasible set is a simple
closed convex set (a box or a ball). To cope with more
complex scenarios, the authors of [17], [18] characterize the
feasible set by inequality constraints and a simple closed
convex set for centralized online constrained convex opti-
mization. Note that projection operation is needed at each
iteration in order to satisfy always inequality constraints,
which results in heavy computation burden. Therefore, the
authors treat these inequality constraints as long-term con-
straints, i.e., the inequality constraints are allowed to be
violated but are satisfied in the long run. Inspired by [17],
[18], a distributed online primal–dual algorithm with full-
information feedback is proposed in [19], where agents
need to share their local decisions with their neighboring
agents via the underlying communication topology at each
iteration. To reduce communication overhead, in this paper,
we propose a distributed event-triggered online primal–
dual algorithm over an uniformly jointly strongly connected
time-varying directed graph by integrating event-triggered
communication into the algorithm in [19], where each agent
broadcasts its current local decision to its neighboring agents
only if norm of the difference between the decision and the
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last broadcasted decision is not less than the current event-
triggering threshold. In addition, base on several classes of
appropriately chosen event-triggered threshold sequences, we
analyzes the impact of event-triggering threshold on dynamic
network regret and network cumulative constraint violation.

The contributions are as follows.

• To the best of our knowledge, this paper is among
the first to consider time-varying inequality constraints
for distributed online convex optimization with event-
triggered communication. Compared to distributed
event-triggered online algorithms [12]–[14], [16], which
only consider a simple closed convex constrained set
and an undirected fixed communication graph, we con-
sider time-varying inequality constraints and a directed
time-varying graph.

• In Theorem 1, we show that the proposed algorithm
achieves sublinear dynamic network regret and network
cumulative constraint violation if the path–length of the
benchmark, the accumulated dynamic variation of the
optimal decision sequence, grows sublinearly and the
non-increasing event-triggering threshold sequence con-
verges to zero. With two classes of natural decreasing
event-triggering threshold sequences, in Corollaries 1
and 2, we respectively establish in sublinear dynamic
network regret and network cumulative constraint viola-
tion bounds. These bounds recover the results achieved
by the centralized online algorithm in [20], and the
distributed event-triggered online algorithm in [16].

• In Theorem 2, by appropriately designing the param-
eter sequences, which avoid the impact of the event-
triggering threshold on the updating step-sizes of the
local primal variables, we establish sublinear dynamic
network regret and network cumulative constraint viola-
tion bounds. These bounds recover the results achieved
by the centralized online algorithms in [20], the dis-
tributed online algorithms in [19], and the distributed
event-triggered online algorithm in [16].

The remainder of this paper is as follows. Section II
presents the problem formulation and motivation. Section III
proposes the distributed event-triggered online primal–dual
algorithm and the performance metrics. Section IV ana-
lyzes the performance of the proposed algorithm. Section V
demonstrates numerical simulations. Finally, Section VI con-
cludes the paper. Due to the space limitations, we omit
detailed proofs, which can be found in [21].

Notations: N+, R, Rp and Rp+ denote the set of all positive
integers, real numbers, p-dimensional vectors and nonneg-
ative vectors, respectively. [n] denotes the set {1, · · ·, n}
for any n ∈ N+. Given vectors x and y, xT denotes the
transpose of the vector x, and 〈x, y〉 and x ⊗ y denote the
standard inner and Kronecker product of the vectors x and y,
respectively. 0m denotes the m-dimensional column vector
whose components are all 0. col(q1, · · ·, qn) denotes the
concatenated column vector of qi ∈ Rmi for i ∈ [n]. For
a set K ∈ Rp, PK(·) denotes a projection operator, i.e.,
PK(x) = arg miny∈K‖x− y‖2, ∀x ∈ Rp, and [·]+ denotes

PRp+(·). For a scalar function f(x) : Rp → R, ∂f(x) denotes
the subgradient of f(x).

II. PROBLEM FORMULATION AND MOTIVATION

Consider a repeated game with T iterations over a network
of n agents. At iteration t, the agents indexed by i ∈ [n]
exchange information with their neighboring agents via an
underlying communication topology, and then select deci-
sions xi,t ∈ X without knowing the local loss functions
fi,t : X → R and constraint functions gi,t : X → Rmi ,
where X ⊆ Rp is known convex set to the agents. After
that, the local loss functions fi,t and constraint functions gi,t
are privately revealed. Accordingly, the agents suffer losses
fi,t(xi,t). The goal of the network is to minimize the average
of the network-wide loss accumulated over T iterations, i.e.,
1
n

∑n
i=1

∑T
t=1 ft (xi,t). Note that at iteration t,

ft(x) =
1

n

n∑
j=1

fj,t(x), (1)

gt(x) = col
(
g1,t(x), · · ·, gn,t(x)

)
, (2)

are the global loss and constraint functions of the network,
respectively.

Let the set of the feasible decision sequences

XT = {(x1, · · ·, xT ) : gt(xt) ≤ 0m, xt ∈ X,∀t ∈ [T ]}, (3)

and the set of the feasible static decision sequences

X̂T = {(x, · · ·, x) : gt(x) ≤ 0m, x ∈ X,∀t ∈ [T ]}, (4)

are non-empty, where m =
∑n
j=1mj .

The communication topology among agents is described
by a time-varying directed graph Gt = (V, Et), where V =
[n] is the set of agents and Et ⊆ V ×V is the set of edges at
iteration t. A directed edge (j, i) ∈ Et implies that agent i can
receive information from agent j at iteration t. The sets of
in- and out-neighbors of agent i at iteration t are N in

i (Gt) =
{j ∈ [n]|(j, i) ∈ Et} and N out

i (Gt) = {j ∈ [n]|(i, j) ∈ Et},
respectively. The associated weight mixing matrix Wt ∈
Rn×n satisfies that [Wt]ij > 0 if (j, i) ∈ Et or i = j, and
[Wt]ij = 0 otherwise.

In this paper, the following assumptions are made, which
are commonly adopted in distributed online convex optimiza-
tion, see, e.g., recent survey paper [11] and references herein.

Assumption 1. (i) The set X is convex and closed. Moreover,
it is bounded by a positive constant R(X), i.e., for any x ∈ X

‖x‖ ≤ R(X). (5)

(ii) For all i ∈ [n], t ∈ N+, the local loss functions fi,t
and constraint functions gi,t are convex, and there exists a
positive constant F1 such that

|fi,t(x)− fi,t(y)| ≤ F1, (6a)
‖gi,t(x)‖ ≤ F1, x, y ∈ X. (6b)

(iii) For all i ∈ [n], t ∈ N+, the subgradients ∂fi,t(x) and
∂gi,t(x) exist, and there exists a positive constant F2 such
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that

‖∂fi,t(x)‖ ≤ F2, (7a)
‖∂gi,t(x)‖ ≤ F2, x ∈ X. (7b)

Assumption 2. For t ∈ N+, the time-varying directed graph
Gt satisfies that
(i) There exists a constant w ∈ (0, 1), such that [Wt]ij ≥ w
if [Wt]ij > 0.
(ii) The mixing matrix Wt is doubly stochastic, i.e.,∑n
i=1 [Wt]ij =

∑n
j=1 [Wt]ij = 1, ∀i, j ∈ [n].

(iii) There exists an integer B > 0 such that the time-varying
directed graph (V,∪B−1l=0 Et+l) is strongly connected.

The authors of [19] consider the distributed online con-
vex optimization problem with time-varying inequality con-
straints, and propose a distributed online primal–dual al-
gorithm with full-information feedback, where the agents
at each iteration need to share their decisions through a
communication network. However, network resources are
often limited. To reduce communication overhead, this paper
integrates event-triggered communication into the algorithm.

III. DISTRIBUTED EVENT-TRIGGERED ONLINE
PRIMAL–DUAL ALGORITHM

In this section, we propose a distributed event-triggered
online primal–dual algorithm. Moreover, we present the
performance metrics to evaluate the algorithm.

A. Algorithm Description

By integrating event-triggered communication into the
algorithm with full-information feedback in [19], the dis-
tributed event-triggered online primal–dual algorithm is pro-
posed from the perspective of each agent, which is presented
in pseudo-code as Algorithm 1.

In Algorithm 1, for t ∈ [T ] with t ≥ 2 and i ∈ [n], by the
distributed consensus protocol (8), agent i computes zi,t ∈
X via the time-varying directed graph Gt. In addition, by
the primal–dual protocol (9)–(11), agent i updates its local
primal variable xi,t ∈ X and dual variable qi,t ∈ Rmi+ , where
ωi,t is the updating direction of the local primal variable, αt
and βt are the updating step-sizes of the local primal and dual
variables, respectively, and γt is the regularization parameter.
The current decision of agent i is broadcasted only if norm of
the difference between the decision and the last broadcasted
decision is not less than the current event-triggering threshold
τt.

The following assumption is made for the event-triggering
threshold, which is also adopted in [12]–[14], [16].

Assumption 3. The event-triggering threshold sequence
{τt ≥ 0} satisfies τt+1 ≤ τt for all t ≥ 2.

B. Performance Metrics

We adopt network regret and cumulative constraint viola-
tion as performance metrics to evaluate Algorithm 1 as in

Algorithm 1 Distributed Event-Triggered Online Primal–
Dual Algorithm

Input: Decreasing and positive sequences {αt}, {βt}, {γt},
and non-increasing and positive sequence {τt}.

Initialize: For i ∈ [n], initialize xi,1 ∈ X, x̂i,1 = xi,1 and
qi,1 = 0mi , and broadcast x̂i,1 to N out

i (G1) and receive
x̂j,1 from j ∈ N in

i (G1).
for t = 1, · · ·, T − 1 do

for i = 1, · · ·, n in parallel do
Observe ∂fi,t(xi,t), ∂[gi,t(xi,t)]+, and [gi,t(xi,t)]+;
Distributed consensus protocol:

zi,t+1 =

n∑
j=1

[Wt]ij x̂j,t, (8)

Primal–dual protocol:

ωi,t+1 = ∂fi,t(xi,t) + ∂[gi,t(xi,t)]+qi,t, (9)
xi,t+1 = PX(zi,t+1 − αt+1ωi,t+1), (10)

qi,t+1 =
[
(1− βt+1γt+1)qi,t + γt+1

(
[gi,t(xi,t)]+

+
(
∂[gi,t(xi,t)]+

)T
(xi,t+1 − xi,t)

)]
+
. (11)

Event-triggering check:
if ‖xi,t+1 − x̂i,t‖ ≥ τt+1 then

Set x̂i,t+1 = xi,t+1, and broadcast x̂i,t+1 to
N out
i (Gt+1).

else
Set x̂i,t+1 = x̂i,t, and do not broadcast.

end if
end for

end for
Output: {xi,t}.

[19], which are respectively defined as

Net-Reg({xi,t}, y[T ]) :=
1

n

n∑
i=1

T∑
t=1

ft(xi,t)−
T∑
t=1

ft(yt),

(12)

Net-CCV({xi,t}) :=
1

n

n∑
i=1

T∑
t=1

‖[gt(xi,t)]+‖, (13)

where y[T ] = (y1, · · ·, yT ) is a benchmark.
Note that the network cumulative constraint violation (13)

is appropriate to some applications where constraints have
no cumulative nature, such as safety-critical applications.
Moreover, because network cumulative constraint violation
(13) avoids constraint violations at some iterations to be
canceled out by strictly feasible decisions at other iterations,
it is stricter than the network constraint violation adopted
in [8], [9], [22] which takes the summation across rounds
before the projection operation [·]+.

Moreover, we consider dynamic and static network regret,
i.e., Net-Reg({xi,t}, x̌∗[T ]) and Net-Reg({xi,t}, x̂∗[T ]). For
dynamic network regret, the benchmark x̌∗[T ] = (x̌∗1, · · · , x̌∗T )
is the optimal decision sequence, where x̌∗t ∈ X is the
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minimizer of ft(x) subject to ct(x) ≤ 0m. For static network
regret, the benchmark x̂∗[T ] = (x̂∗, · · · , x̂∗) is the optimal
static decision sequence, where x̂∗ ∈ X is the minimizer of∑T
t=1 ft(x) subject to gt(x) ≤ 0m for t ∈ [T ].

IV. PERFORMANCE ANALYSIS

In this section, we establish dynamic network regret and
network cumulative constraint violation bounds for Algo-
rithm 1.

Firstly, inspired by [12], [13], [19], we specially design
the updating step-size sequences of the local primal and
dual variables, and the regularization parameter sequence of
Algorithm 1 in the following theorem.

Theorem 1. Suppose Assumptions 1–3 hold. Let {xi,t} be
the sequences generated by Algorithm 1 with

αt =

√
Ψt

t
, βt =

1

tκ
, γt =

1

t1−κ
,∀t ∈ N+, (14)

where Ψt =
∑t
s=1 τs, κ ∈ (0, 1) are constants. Then, for

any T ∈ N+ and any comparator sequence y[T ] ∈ XT ,

Net-Reg({xi,t}, y[T ]) = O(Tκ +
√

ΨTT +

√
ΨT
−1TPT ),

(15)

Net-CCV({xi,t}) = O(T 1−κ/2 + 4
√

ΨTT 3), (16)

where PT =
∑T−1
t=1 ‖yt+1 − yt‖ is the path–length of the

benchmark y[T ].

Remark 1. Theorem 1 establishes dynamic network regret
bound (15) and network cumulative constraint violation
bound (16) for Algorithm 1. If the path–length of the
benchmark grows sublinearly, and τt converges to zero, i.e.,∑t
k=1 τk grows sublinearly, then these bounds are sublinear.

Moreover, note that
√

ΨTT and
√

Ψ−1T T are derived for αt
given by (14). Due to the event-triggering threshold τt, the
bound (15) is different from the well-known best regret bound
O(
√
T ) achieved by the centralized online algorithm in [23].

Remark 2. When κ = 1/2, we have
√

ΨTT > Tκ and
4
√

ΨTT 3 > T 1−κ/2. Therefore the bounds (15) and (16)
become O(

√
ΨTT +

√
Ψ−1T TPT ) and O( 4

√
ΨTT 3), respec-

tively. Note that it follows from the bounds (15) and (16)
that there exists a trade-off between dynamic network regret
and network cumulative constraint violation, that is, as κ
increases, dynamic network regret increases, while network
cumulative constraint violation decreases.

Remark 3. The proof of Theorem 1 has substantial differ-
ences compared to the proof of Theorem 1 in [19]. More
specifically, in our Algorithm 1, the agents broadcast the
current local decisions only if the event-triggering condition
is satisfied. Therefore, the resulting decision sequence is
different with Algorithm 1 without event-triggered commu-
nication in [19] although the updating rules are same.
This critical difference leads to challenges in theoretical
proof because we need to reanalyse all results related to
the local decisions, e.g., the disagreement among agents,
the global loss and constraint, dynamic network regret and

network cumulative constraint violation bounds. To tackle
this challenge, we derive the upper bounds for the difference
between the last broadcasted local decisions and the current
local decisions using the current event-triggering threshold.
Consequently, the established dynamic network regret bound
(15) and network cumulative constraint violation bound (16)
are subject to event-triggering threshold.

Next, we select the event-triggering threshold sequence
produced by τt = 1/tθ in the following corollary, which is
also adopted by the distributed online algorithms in [12]–
[14], [16] since 1/tθ naturally satisfies two conditions: 1) it
is non-increasing; 2) it converges to zero.

Corollary 1. Under the same conditions as in Theorem 1
with τt = 1/tθ and θ > 0, for any T ∈ N+, it holds that

Net-Reg({xi,t}, y[T ])

=


O(Tmax{κ,1−θ/2} + T θ/2PT ), if 0 < θ < 1,

O
(
Tκ +

√
T log(T ) +

√
T

log(T )PT
)
, if θ = 1,

O(Tmax{κ,1/2} + T 1/2PT ), if θ > 1,
(17)

Net-CCV({xi,t})

=


O(Tmax{1−κ/2,1−θ/4}), if 0 < θ < 1,

O(T 1−κ/2 + 4
√
T 3 log(T )), if θ = 1,

O(Tmax{1−κ/2,3/4}), if θ > 1.
(18)

Remark 4. The bounds (17) and (18) are sublinear if the
path–length PT grows sublinearly. If θ > 1, the bound
(17) recover the results achieved by the centralized online
algorithm in [20] and the distributed event-triggered online
algorithm in [16]. In addition, our Algorithm 1 is able
to handle (time-varying) inequality constraints, whereas the
algorithms in [16], [20] are limited to a ball set and a box
set, respectively.

We then choose the event-triggering threshold sequence
produced by τt = 1/ct in the following corollary, which is
also adopted in distributed optimization with event-triggered
communication, see, e.g., [24]–[28].

Corollary 2. Under the same conditions as in Theorem 1
with τt = 1/ct and c > 1, for any T ∈ N+, it holds that

Net-Reg({xi,t}, y[T ]) = O(Tmax{κ,1/2} + T 1/2PT ), (19)

Net-CCV({xi,t}) = O(Tmax{1−κ/2,3/4}). (20)

Remark 5. The bounds (19) and (20) recover the results
achieved in Corollary 1 with θ > 1. Moreover, the bound (19)
recover the results achieved by the centralized online al-
gorithm in [20] and the distributed event-triggered online
algorithm in [16].

Note that in (14), the event-triggering threshold also
affects the updating step-size αt of the local primal variable
in addition to communication between the agents. To avoid
that, we appropriately design new parameter sequences for
Algorithm 1 in the following theorem.
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Theorem 2. Suppose Assumptions 1–3 hold. Let {xi,t} be
the sequences generated by Algorithm 1 with

αt =
α0

tθ1
, βt =

1

tθ2
, γt =

1

t1−θ2
, τt =

τ0
tθ3
,∀t ∈ N+, (21)

where α0, θ1 ∈ (0, 1), θ2 ∈ (0, 1), τ0 and θ3 are constants.
Then, for any T ∈ N+ and any comparator sequence y[T ] ∈
XT ,

Net-Reg({xi,t}, y[T ])

=



O
(
α0T

1−θ1 + T θ2 + τ0
α0
T 1+θ1−θ3

+T θ1 (1+PT )
α0

)
, if θ1 < θ3 < 1 + θ1,

O
(
α0T

1−θ1 + T θ2 + τ0
α0

log(T )

+T θ1 (1+PT )
α0

)
, if θ3 = 1 + θ1,

O
(
α0T

1−θ1 + T θ2 + τ0
α0

+T θ1 (1+PT )
α0

)
, if θ3 > 1 + θ1,

(22)
Net-CCV({xi,t})

=



O(
√
α0T

1−θ1/2 + T 1−θ2/2

+
√
τ0T

1−θ3/2), if θ1 < θ3 < 1,
O
(√
α0T

1−θ1/2 + T 1−θ2/2

+
√
τ0T log(T )

)
, if θ3 = 1,

O(
√
α0T

1−θ1/2 + T 1−θ2/2

+
√
τ0T

1/2), if θ3 > 1.
(23)

Remark 6. Theorem 2 establishes dynamic network regret
bound (22) and network cumulative constraint violation
bound (23) for Algorithm 1. If the path–length of the bench-
mark grows sublinearly, then these bounds are sublinear.
Moreover, the bounds (22) and (23) show the impact of
event-triggering threshold on dynamic network regret and
network cumulative constraint violation, that is, the larger
τ0 is, the larger the bounds are. When τ0 = 0, i.e., without
event-triggered communication, the bounds are the same as
the results achieved by distributed online algorithms in [19]
when choosing θ1 = θ2.

Remark 7. Note that to achieve dynamic network regret
and network cumulative constraint violation, τt cannot be
selected as a fixed positive constant in Theorems 1 and 2 due
to the conditions that event-triggering threshold τt converges
to zero in Theorem 1 and θ3 > θ1 in Theorem 2, respectively.

Remark 8. It should be pointed out that the smallest network
cumulative constraint violation bounds in Corollaries 1 and 2
are O(T 3/4), which are reduced to O(T 1/2) in Theorem 2.
Moreover, the smallest dynamic network regret bounds in
Corollaries 1 and 2 are O(T 1/2), which are recovered in
Theorem 2. In addition, the bounds (22) and (23) recover the
results achieved by the centralized online algorithms in [20],
the distributed online algorithms in [19], and the distributed
event-triggered online algorithm in [16].

Remark 9. By replacing the any benchmark y[T ] with the
optimal static decision sequence x̂∗[T ], we have PT ≡ 0, and
then the static network regret and cumulative constraint vio-
lation bounds for Algorithm 1 with corresponding parameter

sequences can be easily established based on the results in
Theorems 1 and 2, and Corollaries 1 and 2, respectively,
which are the same as (15)–(20), (22), and (23) with PT ≡ 0,
respectively. The bounds recover the results achieved by the
centralized online algorithm in [23], the distributed online
algorithms in [7], [19], and the distributed event-triggered
online algorithms in [12]–[14].

V. NUMERICAL EXAMPLE
Consider a distributed online linear regression problem

with time-varying linear inequality constraints over a net-
work of n agents in [19]. At each iteration t, agent i for
i ∈ [n] accesses to the local loss and constraint functions,
i.e., fi,t(x) = 1

2‖Ai,tx− ϑi,t‖
2 and gi,t(x) = Bi,tx − bi,t,

where each entry of Ai,t ∈ Rqi×p is randomly generated
from the uniform distribution in the interval [−1, 1], ϑi,t =
Ai,t1p+ ζi,t, where ζi,t is a standard normal random vector,
and each entry of Bi,t ∈ Rmi×p and bi,t ∈ Rmi is
randomly generated from the uniform distribution in the
interval [0, 2] and [0, 1], respectively. We set n = 100, qi = 4,
p = 10, mi = 2, X = [−5, 5]p. At each iteration t, we
use an undirected random graph to model the underlying
communication topology. Specifically, connections between
the agents are random and the probability of two agents being
connected is 0.1. To make sure that Assumption 2 is satisfied,
we add edges (i, i+ 1) for i ∈ [n− 1], and let [Wt]ij = 1

n
if (j, i) ∈ Et and [Wt]ii = 1−

∑n
j=1 [Wt]ij .
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Fig. 1: Evolutions of 1
n

∑n
i=1

∑T
t=1 ft(xi,t)/T .
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Fig. 2: Evolutions of 1
n

∑n
i=1

∑T
t=1 ‖[gt(xi,t)]+‖/T .

Set αt = 1/t1/2, βt = 1/t1/2, γt = 1/t1/2 and τt =
τ0/t for Algorithm 1. To explore the impact of different
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Fig. 3: Evolutions of total number of triggers.

event-triggering threshold sequences on network regret and
cumulative constraint violation, we select τ0 = 0, τ0 = 200,
τ0 = 400, and τ0 = 600, respectively. With different values
of τ0, Figs. 1–3 illustrate the evolutions of the average
cumulative loss 1

n

∑n
i=1

∑T
t=1 ft(xi,t)/T , the average cu-

mulative constraint violation 1
n

∑n
i=1

∑T
t=1 ‖[gt(xi,t)]+‖/T ,

and total number of triggers, respectively. The results show
that as τ0 increases, the average cumulative loss and the
average cumulative constraint violation increase, while the
total number of triggers decreases, which are consistent with
the theoretical results in Theorem 2.

VI. CONCLUSIONS

This paper considered the distributed online convex op-
timization problem with time-varying inequality constraints.
We proposed the distributed event-triggered online primal–
dual algorithm to reduce communication overhead for a time-
varying directed graph. We analyzed the network regret and
cumulative constraint violation for the proposed algorithm.
Our theoretical results are comparable to the results achieved
by the related centralized and distributed online algorithms
and distributed event-triggered online algorithms when the
event-triggering threshold is properly chosen. In the future,
we will investigate the distributed event-triggered online
primal–dual algorithm with bandit feedback as gradient
information is unavailable in many real-world applications.
Moreover, we will also consider to eliminate the need of
doubly stochastic.
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