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Abstract— We study the dispatching of multi-modal energy
systems (MMES) from a sequential market perspective based on
hierarchical Model Predictive Control (MPC). In a sequential
setting, an upper level determines the purchased electrical
power from the day-ahead market, followed by a lower-level
MPC responsible for the dispatching of the multi-energy system
according to the continuous trading. Our case study consists
in an MMES in Hanover, Germany, with electrical and heat
demands as well as photovoltaic and wind energy generation,
storage and coupling elements. We show that the hierarchical
MPC solution can be embedded within the European market
and German market area to provide a judicious dispatching
of the MMES, also under imperfect uncertainty forecast. In
particular, we discuss a reasonable choice for the prediction
horizons and the effect of the forecast on the total incurring
cost.

I. INTRODUCTION

Multi-modal energy systems (MMES) play an essential
role in decarbonizing the energy system. Thereby, varying
energy carriers can supply the demands in different energy
forms (electricity, heat, cold) [1], [2]. However, with an
increasing number of technical components, the operation of
these systems becomes more and more complex. Addition-
ally, the generation side fluctuates due to the integration of
renewables, and the future demands are generally unknown.
A market-based perspective allows for judicious management
of MMES while considering economic and operational in-
centives, e.g., deciding when and how much power needs to
be purchased from or supplied to the electrical power grid.

In sequential markets, electricity is traded at different
times for a specific fulfillment date. For example, one day
before delivery, an estimate of the electrical grid power over
a day is purchased in the day-ahead (DA) market and a
scheduling plan is determined, based on a forecast of the
generation, demand and (possibly) market prices. Any devi-
ations from the estimated grid demand can be compensated
by the continuous trading (CT), within the intra-day market,
while considering the physical and operational constraints.
Here again, based on a more accurate forecast of demand,
generation and market prices, the real-time dispatching of
the MMES is resolved.

Model predictive control (MPC) is a numeric-based con-
troller, that relies on repeated open-loop online optimization
in a receding horizon fashion [3]. In fact, only the first input
of the optimal solution is applied to the control system and
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the optimization problem is repeatedly solved, each time a
new measurement is available, blending between open and
closed-loop control. MPC is an engineering solution suited
for multi-modal energy management because it systemat-
ically accommodates physical and operational constraints.
Moreover, MPC is a computationally tractable approach
thanks to the increased computational power and various ef-
ficient solvers developed in recent decades. Finally, forecasts
about future uncertainties such as generation and demand can
be effectively incorporated into the control design.

In hierarchical MPC, two optimization problems are
solved sequentially on different time scales. In particular,
an upper-level MPC operating at a slow time scale for the
long-term decision making of storage planning provides a
reference to track by a lower-level MPC operating at a faster
time scale solving for the short-term. Both optimization
problems account for the operational and physical constraints
of the system under consideration. Due to the existing time-
scale separation between DA and CT, hierarchical MPC is a
well-suited approach for energy management problems.

Hierarchical MPC-based schemes prove to be an effec-
tive approach to tackle optimal operation also within se-
quential markets. In [7], an economic MPC is applied to
Combined-Heat-Power (CHP) units based on hierarchical
MPC. Therein, the upper-level MPC is a two-stage op-
timal control problem determining the DA schedule. The
electrical grid power is forwarded to the lower-level MPC
that penalizes deviations from the predicted grid power and
directly controls the CHP unit in smart buildings. The authors
combine heat and electricity systems together with heat
market considerations and the robustness of the algorithm is
tested via worst-case scenarios. In [8], the DA and intra-day
markets are considered separately with focus on stochastic
optimization. The authors in [9] consider a sequential market,
while combining robust and stochastic optimization for the
DA and intra-day optimization with energy and reserve
scheduling under wind uncertainty and generation outages.
The two-staged problem formulation consist in one deter-
ministic, i.e., robust and one stochastic optimization layer.
Robust optimization uses additive uncertainty to account
for the unknown load demand and generation. A multi-
energy microgrid with co-generation is considered in [2]
together with sequential markets for both electricity and gas.
In [10], a hierarchical MPC has been proposed for the energy
management of multiple microgrids applied to the Iberian
electricity market.

Compared to the majority of existing literature (includ-
ing [10]) that focuses on electricity and/or heat only, we
study an energy system of three forms: electricity, heat and
natural gas. Each of these systems has coupling elements
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Fig. 1. Overview of the multi-energy system under study with the
corresponding electrical and heat power flows

to another system, eventually consisting of a generation,
demand and storage. We consider the sequential electricity
market to decide on how and when to dispatch the MMES
following the regulations of the European electricity market
and German market area. For this, we leverage a hierarchical
MPC scheme to solve for DA market and CT sequentially.
Compared to [2], we consider a more realistic cost in the
DA market that, in addition to the electricity market costs,
takes also into account the operational costs of running the
multi-energy system, in particular the monetary costs for
using storage devices and coupling components. This trade-
off allows a favorable operation of the electrical, heat and
gas systems. Additionally, we propose an electricity market
cost in the CT that penalizes the deviation with respect to the
purchased grid power in the DA market to allow for monetary
gain if the real-time electrical grid power is over-estimated
or a penalty to pay if under-estimated in the DA market. We
showcase the usefulness of the hierarchical MPC approach
in dispatching the multi-energy systems in a numerical case
study in Hanover, Germany, where we discuss reasonable
choices of the prediction horizons and study the effect of
imperfect data forecast on the total incurring cost.

II. PROBLEM FORMULATION

We consider a multi-energy system from [2] with an inter-
play between three forms of energy, namely electricity, heat,
and natural gas. Figure 1 depicts the multi-energy system
under consideration together with the associated power and
heat flows. The electrical and heat system are represented
each by a generation, load, storage unit, and coupled to the
gas system. The coupling elements consist in the CHP plant,
Electric (EB) and Gas boiler (GB).

A. Physical constraints

a) Electrical system: The electrical power is generated
from renewable energy resources, namely photovoltaic and
wind turbines. The electrical system is connected to the
power grid through the point of common coupling. Any
excess of electrical power is stored into a battery representing
the Electricity Storage System (ESS). The State of Charge
(SoC) denoted by xSoC(t) ∈ [0,1], t ∈ Z follows the discrete-

time system dynamics and constraints given by

xSoC(t +1) = xSoC(t)+
Pc(t)ηc −Pd(t)/ηd

Q
δ , (1a)

x ≤ xSoC(t)≤ x, (1b)
0 ≤ Pc(t)≤ PESS α(t), (1c)
0 ≤ Pd(t)≤ PESS(1−α(t)), (1d)

α(t) ∈ {0,1}, (1e)
where Q > 0 is the capacity of the ESS and ηc,ηd > 0
are charging and discharging efficiencies, PESS > 0 is the
maximal allowed charging and discharging power, δ denotes
the sampling period, x and x are the maximal and minimal
allowed SoC ranges. Note that Pc(t),Pd(t) are charging and
discharging powers. They constitute the inputs to the ESS
and will be determined in the sequel. In the inequalities (1c)
and (1d), α(t) is a binary variable that does not allow for
simultaneous charging and discharging and keeps the power
within an allowed range.

b) Coupling elements: The CHP couples natural gas to
heat and electrical systems. The generated electrical power
PCHP(t) needs to satisfy the constraints

PCHP ≤ PCHP(t)≤ PCHP, (2a)
hCHP(t) = bPCHP(t), (2b)

where b > 0 is a given constant characteristic of the heat-to-
electricity ratio. Here PCHP > 0 and PCHP > 0 represent the
minimal and maximal electrical power of the CHP system.
Moreover, the EB and GB transform the electrical power and
natural gas into heat, respectively. The generated heat powers
hEB and hGB satisfy the following constraints

hEB ≤ hEB(t)≤ hEB, (3a)

PEB(t) =
hEB(t)
ηEB

, (3b)

hGB ≤hGB(t)≤ hGB. (3c)
In (3), the electrical power of the EB is denoted by PEB(t)

and 1 > ηEB > 0 is the electricity-to-heat efficiency. The
upper and lower limits on heat power of the EB and GB
are given by hEB, hEB and hGB, hGB.

c) Heat storage system: Heat is generated through the
CHP, EB and GB to satisfy heat demand. The heat is stored
in a sensible Heat Storage System (HSS) and monitored at
a given time t via the stored heat energy H(t) > 0. The
discrete-time HSS dynamics and constraints are represented
by

H(t +1) = H(t)+

(
hc(t)ηh

c −
hd(t)
ηh

d

)
δ , (4a)

H ≤ H(t)≤ H, (4b)

0 ≤ hc(t)≤ hHSS β (t), (4c)

0 ≤ hd(t)≤ hHSS(1−β (t)), (4d)
β (t) ∈ {0,1}. (4e)

In (4a), ηh
c ,ηh

d > 0 are charging and discharging efficiencies
of the HSS and the upper and lower values of the stored
heat energy are given by H,H in (4b). Moreover, hHSS > 0 is
the maximal heat power. Analogous to ESS, hc(t) and hd(t)
represent the charging and discharging heat power and are the
main input to the HSS. Here again, the binary variable β (t)
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defined in (4e) does not allow simultaneous charging and
discharging and keeps the heat power within known limits.

d) Power balance: Let Pg(t) > 0 denote the electrical
power fed out from (purchased) and Pg(t) < 0 flowing into
(sold) the power grid. The electrical grid power should stay
within specified lower and upper limits Pg,Pg

Pg ≤ Pg(t)≤ Pg . (5)
Let the electrical power generated by photovoltaic and wind
turbine be given by PPV and PWT , and Pload and hload
represent the electrical load and heat power demand modeled
by an input time series. In summary, the electrical and
heat powers must satisfy the generation-demand balance,
namely that, at each time instance, the aggregated supply of
power matches the demand of electrical and heat systems,
respectively

Pg +PPV +PWT +Pd +PCHP = Pc +PEB +Pload , (6a)
hCHP +hGB +hEB +hd = hload +hc . (6b)

At any given time t, the exact electrical generation PPV ,PWT
and power demands Pload and hload are assumed to be
unknown and given by their forecast.

B. Modeling the electricity market

In this work, we study the sequential electricity market
for the European market and German market area, where
the electrical grid power is first purchased in the DA market
based on an estimate of the electrical/heat generation, de-
mand and DA market prices. In a second step, CT performs
corrections with respect to the purchased DA electrical power
based on more accurate estimates of the unknown data. A
summary of the electricity market under study is depicted in
Figure 2.

Day-Ahead
Auction 

 
Continuous 

Trading

Multi-energy 
system

Data forecast

Operator of the multi-energy system

Fig. 2. Overview of the electricity markets for the European market and
German market area. Here t0 is the time of fulfillment.

1) Day Ahead Market: On the day before fulfillment at
midday, i.e., 12:00, the MMES operator submits an electric-
ity scheduling plan and signs a contract with the DA market.
The scheduling plan is established upon available forecasts of
the power generation from the renewable resources, namely
photovoltaic and wind turbines, electrical/heat power demand
and the apriori unknown DA prices. To formulate the DA
optimization problem, the following ingredients are required.

a) Objective function: We minimize the cost for par-
ticipating in the DA market and operating ESS, HSS as well
as EB, GB and CHP units as follows

JDA :=
NDA−1

∑
t=0

(
CDA

e (t)+CDA
ESS(t)+CDA

HSS(t)+CDA
GAS(t)

)
, (7a)

CDA
e (t) =

(
v̂DA(t)− ûDA(t)

2
|PDA

g (t)|

+
v̂DA(t)+ ûDA(t)

2
PDA

g (t)
)

δ DA, (7b)

CDA
ESS(t) = ρESS (PDA

c (t)+PDA
d (t))δ DA, (7c)

CDA
HSS(t) = ρHSS (hDA

c (t)+hDA
d (t))δ DA, (7d)

CDA
GAS(t) = vGAS

(
PDA

CHP(t)
ηCHP

+
hDA

GB(t)
ηGB

)
δ DA. (7e)

Note that the purchasing vDA(t) ∈R and selling uDA(t) ∈R
electricity prices at DA are assumed to be unknown and
given by the forecasts v̂DA(t) ∈ R and ûDA(t) ∈ R, NDA

is the discrete-time prediction horizon and δ DA = 1h the
sampling period of the DA market. Furthermore, we denote
by ρESS, ρHSS > 0 the depreciation coefficients of the ESS
and HSS, respectively and set them to be 0.01e/ kWh. The
gas price vGAS is assumed to be known and given by 0.055e/
kWh as in [2]. The parameters ηGB,ηCHP > 0 denote the gas-
to-heat efficiency of the gas boiler and the gas-to-electricity
efficiency of the CHP, respectively.

It is noteworthy that the formulation of the DA market
cost Ce(t) ∈ R, found also in [2] and [10], takes posi-
tive or negative values depending on the purchasing/selling
prices v̂DA(t), ûDA(t) and the purchased grid power PDA

g .
The rationale behind this formulation is that, for positive
prices, a positive grid power implies that a given purchased
power PDA

g (t) costs Ce(t) = v̂DA(t)PDA
g (t)δ DA. On the other

hand, a negative grid power indicates a monetary gain by
Ce(t) = ûDA(t)PDA

g (t)δ DA resulting from selling the excess
of electrical power and injecting |PDA

g (t)| back into the grid.
The power balances (6) determine if we purchase from or
sell electrical power to the DA market. We remark that the
dispatched power values for the DA scheduling are not actu-
ally realized and only PDA

g is forwarded to the optimization
problem solving for the CT. Furthermore, we include the
operation costs of electricity, heat and gas systems in (7) to
find an optimal PDA

g that also keeps the costs of operating
the multi-energy system minimal. Minimizing the market
cost Ce(t) solely as done in [2] does not achieve this
compromise. Finally, observe that in the objective function
JDA, there are no tracking but only economic, i.e., system
and market objectives, where the purchased grid power PDA

g
is determined to satisfy the power balance (6).

b) Optimization problem: To formulate the optimiza-
tion problem of the DA market, we collect the decision
variables in the following vectors

xDA =
[
(xDA

SoC)
⊤, (HDA)⊤

]⊤
,

uDA =
[
(PDA

c )⊤,(PDA
d )⊤,(αDA)⊤,(hDA

c )⊤,

(hDA
d )⊤,(β DA)⊤,(hDA

EB)
⊤,(hDA

GB)
⊤,(PDA

g )⊤,(PDA
CHP)

⊤]⊤,
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as well as the DA forecasts of the unknown generation,
demand and DA market prices,
wDA =

[
(P̂DA

load)
⊤,(P̂DA

PV )⊤, (P̂DA
WT )

⊤,(ĥDA
load)

⊤,(v̂DA)⊤,(ûDA)⊤
]⊤

.

The vectors xDA
SoC and HDA are of length NDA + 1 and the

vectors in uDA and wDA are of length NDA. In summary,
we arrive at the following optimization problem for the DA
scheduling

min
uDA

JDA (8a)

s.t. xDA ∈ X (uDA), uDA ∈ U(wDA), (8b)[
xDA

SoC(0), HDA(0)
]⊤

=
[
xm

SoC, Hm]⊤ . (8c)
Here, we denote by X (uDA) the set of state constraints given
in (1) and (4) with δ = δ DA and U(wDA) the sets of input con-
straints satisfying (1)-(6). Observe that the state constraints
(which include the dynamics (1a) and (4a)) depend on the
predicted inputs uDA and the input constraints depend on the
available DA forecasts wDA via (6). The constraint (8c) fixes
the initial condition for the predicted trajectory xDA to the
currently measured system states

[
xm

SoC, Hm
]⊤.

2) Continuous trading: The CT opens at 16:00 on the day
before the delivery and closes 5 min prior to the fulfillment
time t0. Throughout this period, the CT remains available to
the MMES operator for possible corrections of the scheduled
electrical grid power PDA

g . In the sequel, we assume that
the CT takes place 15 min before the delivery and therefore
the improved CT forecasts of the generation, demand and
market prices lie sufficiently close to their real-time values.
Without loss of generality, the fulfillment t0 is assumed to
start at midnight, i.e., 24:00. Based on an estimate of the
electrical grid power from the DA, the MPC for CT solves
for the real-time dispatching and operation of the MMES by
correcting the error resulting from over- or under-estimating
the electrical grid power. To formulate the optimization
problem for the CT, we define the objective function below.

a) Objective function: Here, we minimize the costs
associated with the CT and the real-time dispatching of the
multi-energy system given by

JCT :=
NCT−1

∑
t=0

CCT
e (t)+CCT

ESS(t)+CCT
HSS(t)+CCT

GAS(t), (9a)

CCT
e (t) =

(
v̂CT (t)− ûCT (t)

2
|PCT

g (t)−PDA
g,int(t)|

+
v̂CT (t)+ ûCT (t)

2
(PCT

g (t)−PDA
g,int(t))

)
δCT ,

(9b)

CCT
ESS(t) = ρESS

(
PCT

c (t)+PCT
d (t)

)
δCT , (9c)

CCT
HSS(t) = ρHSS

(
hCT

c (t)+hCT
d (t)

)
δCT , (9d)

CCT
GAS(t) = vGAS

(
PCT

CHP(t)
ηCHP

+
hCT

GB(t)
ηGB

)
δCT . (9e)

In (9), PCT
g (t) denotes the actual value of the electrical grid

power and PDA
g,int the interpolated sequence of the purchased

electrical power PDA
g since the sampling periods of DA and

CT are different (compare also Section IV-C). Moreover,
v̂CT (t), ûCT (t) ∈ R are the forecasts of the CT purchasing
and selling prices, where the real prices are assumed to
be unknown. Let the sampling interval δCT = 15min and

NCT > 0 be the discrete-time prediction horizon of the
CT. The rationale behind the electricity market cost CCT

e (t)
can be explained as follows. If PCT

g (t) was underestimated
in the day-ahead scheduling, namely PCT

g (t)−PDA
g,int(t) > 0,

then CCT
e (t)= v̂CT (t)(PCT

g (t)−PDA
g,int(t))δCT implying that the

remaining amount of power is purchased from the grid in the
CT scheduling and delivered in real-time accordingly. In case
of excess of electrical grid power purchased in the day-ahead
market, i.e., PCT

g (t)−PDA
g,int(t)< 0, the electricity market cost

amounts to CCT
e (t)= ûCT (t)(PCT

g (t)−PDA
g,int(t))δCT indicating

monetary profit and the electrical grid power returns to the
grid.

b) Optimization problem: We define the decision vari-
ables of the CT optimization problem as

xCT =
[
(xCT

SoC)
⊤,(HCT )⊤

]⊤
uCT =

[
(PCT

CHP)
⊤,(PCT

c )⊤,(PCT
d )⊤,(αCT )⊤,

(hCT
c )⊤,(hCT

d )⊤,(βCT )⊤,(hCT
EB)

⊤,(hCT
GB)

⊤,(PCT
g )⊤

]⊤
,

and the forecast of the generation, demand and CT prices
wCT=

[
(P̂CT

load)
⊤,(P̂CT

PV )⊤, (P̂CT
WT )

⊤,(ĥCT
load)

⊤,(v̂CT )⊤,(ûCT )⊤
]⊤

.

Here xCT
SoC and HCT are column vectors of length NCT + 1

and the vectors in uCT and wCT are of length NCT . To find
the real-time dispatched values to the multi-energy system,
we solve the following optimization problem

min
uCT

JCT (10a)

s.t. xCT ∈ X (uCT ), uCT ∈ U(wCT ) (10b)[
xCT

SoC(0), HCT (0)
]⊤

=
[
xm

SoC, Hm]⊤ . (10c)
Here again, X (uCT ) denotes the explicit dependence of the
SoC and the stored heat energy dynamical constraints (1a)
and (4a) on the predicted inputs uCT , where δ = δCT . More-
over, U(wCT ) denotes the dependence of the input constraints
on the forecast wCT by means of (6). The constraint (10c)
fixes the initial condition for the predicted trajectory xCT

to the currently measured system states [xm
SoC, Hm]⊤. The

resulting optimization problems (8) and (10) are mixed-
integer linear programs with non-differentiable cost that can
be exactly reformulated into a continuously differentiable
function [10].

III. HIERARCHICAL MPC
In the following, we propose a hierarchical MPC-based

scheme to solve the planning and real-time operation of the
MMES in the European market and German market area.

A. MPC for the day-ahead
Let T DA = δ DANDA be the continuous-time DA prediction

horizon. Given a forecast for the generation, demand and
DA prices, wDA over the DA prediction horizon, the current
state of charge xm

SoC and stored heat energy Hm, the DA
optimization problem (8) is solved once a day, i.e., every
24h at 12:00 in a receding horizon fashion. The prediction
horizon is set to be T DA = (12h + T DA

pred), where T DA
pred

represents the prediction horizon in hours starting from the
time of the delivery t0, i.e., at midnight. We forward only
the scheduled grid power

(
PDA

g (12), . . . ,PDA
g (12+T DA

pred −1)
)
,

i.e., starting from the next day, to the optimization layer
for CT after suitable interpolation. Optimizing over the first
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12 hours in the MPC for DA scheduling improves the state
and input predictions over T DA, because the already signed
DA market contract on the previous day is based on older
measurements and forecasts. After the closure of the DA
market, the incurring monetary costs from the DA planning
are determined as follows

IDA :=
35

∑
t=12

(
vDA(t)−uDA(t)

2
|PDA

g (t)|

+
vDA(t)+uDA(t)

2
PDA

g (t)
)

δ DA. (11)

Note that IDA as defined in (11) corresponds to the grid
power that is actually purchased on the DA market for 24h.

B. MPC for the continuous trading
Let TCT = δCT NCT denote the continuous-time predic-

tion horizon of CT. The CT optimization problem (10) is
solved every δCT = 15min and starts 15 min before the real
delivery, i.e., a quarter before midnight. Hence, it is given
by TCT = 15min+TCT

pred , where TCT
pred is the CT prediction

horizon in minutes starting from midnight. Given the cur-
rent measurements of the state of charge xm

SoC and stored
heat energy Hm and available forecasts of the generation,
demand and prices over the CT prediction horizon, the MPC
optimization problem predicts the input to be applied to (1a)
and (4a) at the next time instance, i.e., in 15min, in particular(
PCT

c (1),PCT
d (1),hCT

c (1),hCT
d (1)

)
. Hence at each iteration,

the first input to ESS and HSS in the sequence of decision
variables, in particular,

(
PCT

c (0),PCT
d (0),hCT

c (0),hCT
d (0)

)
is

fixed to the optimal one-step (15 min) ahead solution of
the optimization problem at the previous sampling instance.
To find the optimal inputs to the multi-energy system, the
CT compensates, whenever needed, for an over- or under-
estimation of the grid power with respect to the purchased
DA market PDA

g so that an additional power is purchased or
an excess power is sold. Once the MPC algorithm for CT
has been solved and dispatched to the MMES, we determine
the CT performance index by evaluating the CT cost at the
real purchasing vCT ∈ R and selling prices uCT ∈ R

ICT :=
(

vCT (1)−uCT (1)
2

(PCT
g (1)−PDA

g,int(1))

+
vCT (1)+uCT (1)

2

∣∣PCT
g (1)−PDA

g,int(1)
∣∣)δCT

+CCT
ESS(1)+CCT

HSS(1)+CCT
Gas(1). (12)

IV. CASE STUDY

We apply the proposed hierarchical MPC scheme in Sec-
tion III to the example of an MMES from 2019 in the city of
Hanover, Germany. Our numerical values are taken from [2]
after adaption to our setting and summarized in Table I.

A. Real-time measurements
The load and generation profiles are simulated in an hourly

grid with the tools from [11], [12] and rescaled to the nomi-
nal values in [2]. They are depicted in Figure 3. The nominal
values correspond to the rated capacities of electrical and
heat load, photovoltaic and wind turbines. These are given
by 1300 kW, 1500 kW, 400 kW and 600 kW, respectively.
The quarter-hourly powers are linearly interpolated between

TABLE I
PHYSICAL PARAMETERS OF THE CASE STUDY

Definition Value Unit
Capacity of ESS, Q 2000 kWh
Charging and discharging efficiency of ESS, ηc/ηd 0.95 p.u.
Min./max. SoC bounds, x/x 0.2/0.8 p.u.
Max. charging and discharging power, PESS 0/500 kW
Charging and discharging efficiency of HSS, ηh

c /ηh
d 0.9 p.u.

Min./max. HSS bounds, H/H 100/ 3000 kWh
Max. charging and discharging power, hHSS 750 kW
Heat-to-electricity ratio of CHP, b 1.2 p.u.
Min./max. output power of CHP, PCHP/PCHP 0/1200 kW
Electricity-to-heat efficiency of EB, ηEB 0.95 p.u.
Gas-to-heat efficiency of GB, ηGB 0.8 p.u.
Gas-to-electricity efficiency of CHP, ηCHP 0.4 p.u.
Min./max. heat power of EB, hEB/hEB 0/500 kW
Min./max. heat power of GB, hGB/hGB 0/500 kW
Min./max. grid power, Pg/Pg -2500/2500 kW

the hourly values. The hourly data of the market prices are
taken from [13]. The quarter-hourly CT prices are constantly
interpolated between the sampling times.

B. Electricity market prices

For the day-ahead, we adopt the setting from [2], where the
forecasted and real selling prices are given by ûDA = 0.9 v̂DA

and uDA = 0.9vDA. This choice encourages the MMES op-
erator to keep the purchased DA electrical power for future
times and not selling it right away. For the CT, the selling
prices are chosen to be ûCT = 0.8 ûDA and uCT = 0.8uDA,
whereas the purchasing prices follow v̂CT = 1.2 v̂DA and
vCT = 1.2vDA. Intuitively, it is more expensive to purchase
the electrical power and less profitable to sell it in the CT
than in the DA market. This motivates an improved power
scheduling in the DA market.

C. Inter- and extrapolation of PDA
g

Once the electrical grid power has been determined in the
DA scheduling with sampling period of 1h, it is forwarded
to CT with a sampling period of 15min. Therefore an inter-
polation of PDA

g is required. For this, we keep the hourly DA
value constant δ DA/δCT times. For T DA

pred = 48h, we utilize
the second day predictions, i.e., (PDA

g (36), ...,PDA
g (59)) to

find the interpolated CT sequence over the CT prediction
horizon that goes beyond the current day. For T DA

pred = 24h,
an extrapolation of PDA

g towards the end of the CT prediction
horizon is performed by repeating the last value of the PDA

g
sequence.

D. Initial conditions

For the DA optimization, the initial SoC and stored heat
energy are taken from [2] and given by [xDA

SoC,init ,H
DA
init ] =

[0.3,600]. To ensure feasibility at time t = 0, we set
[xCT

SoC,init ,H
CT
init ] as an interpolated value of the predicted states

from the DA, one hour before the delivery and the initial
states of the MMES to be the predicted trajectories from the
first CT iteration.

V. SIMULATION RESULTS

We consider different horizon lengths for the DA,
T DA

pred ∈ {24h, 48h}. For the CT, we choose TCT
pred ∈ {1h, 24h}.

The total simulation time is set to be 4 days. For the
evaluation indices in (11) and (12), the first day is discarded
to limit the effect of the chosen initial conditions. Table II
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Fig. 3. Real measurement data of the (a) purchasing and selling prices,
(b) electrical and heat power loads, (c) photovoltaic and (d) wind turbine
power generation [11], [12], [13].

summarizes the simulation results. Therein, the overall per-
formance indices IDA

TOT ,ICT
TOT are obtained by evaluating the

DA and CT costs (11), (12), respectively and building the
sum over the total simulation time.

A. Perfect forecast
We first illustrate the proposed hierarchical MPC scheme

for the particular choice of perfect forecast, i.e., where the
forecasted data corresponds to the real values for both DA
market and CT. The results are presented in Table II.

TABLE II
SIMULATION RESULTS OF THE MMES UNDER STUDY OVER 4 DAYS

Noiseless case

(T DA
pred , TCT

pred ) IDA
TOT ICT

TOT IDA
TOT +ICT

TOT

(24h, 1h) 1918 3856 5774
(24h, 24h) 1917 3844 5761
(48h, 24h) 1883 3828 5711

Noisy case 1

(T DA
pred , TCT

pred ) IDA
TOT ICT

TOT IDA
TOT +ICT

TOT

(24h, 24h) 1834 3943 5777
(48h, 24h) 1708 4012 5720

Noisy case 2

(T DA
pred , TCT

pred ) IDA
TOT ICT

TOT IDA
TOT +ICT

TOT

(24h, 24h) 1757 4045 5803
(48h, 24h) 1738 3993 5731

For the same prediction horizon of the DA, e.g., 24h, an
increase in the prediction horizon of the CT towards that of

the DA, e.g., from 1h to 24h leads to a decrease in DA and
CT evaluation indices and therefore their overall sum. This
can be explained as follows: a long CT prediction horizon (of
the same length as for the DA problem) results in CT predic-
tions that are more closely in line with the DA predictions.
On the other hand, using a too short CT prediction horizon
can result in a too short-sighted optimization in the CT layer,
resulting in dispatched grid powers that are suboptimal in the
long run and hence incur a higher overall cost. To illustrate
this, Fig. 4 compares the state of charge and stored heat of
(ii) the closed-loop values of the hierarchical MPC scheme

in Section III, blue in Fig. 4
(i) the interpolated trajectory resulting from solving for the

following day in the DA market (8), red in Fig. 4
for the cases (T DA

pred ,T
CT
pred) = (24h,1h) and (T DA

pred ,T
CT
pred) =

(24h,24h). Even with perfect forecast, the SoC and heat
energy trajectories resulting from the MPC solving the DA
scheduling are further away from those of the closed-loop for
T DA

pred ≫ TCT
pred . In general, the shortsightedness of CT does

not seem to incentivize the usage of the electrical storage sys-
tem. For T DA

pred = TCT
pred , the closed-loop trajectories remains

overall closer to those predicted by the DA scheduling. For
the same prediction horizon in DA and CT, the closed-loop
trajectories are not expected to follow exactly the predicted
DA trajectories, since we interpolate the real-time power
profiles linearly and extrapolate PDA

g towards the end of the
CT prediction horizon (see Section IV-C). Moreover, the
selling/purchasing price ratios are different from DA market
to CT. Finally, the input sequences uCT of the CT have
more degrees of freedom than being constantly interpolated
between sampling intervals of the uDA sequences. However,
in both settings of the prediction horizons, the purchased
grid power from DA remains close to that of the CT as
shown in Fig. 5. Therein, the visible differences between DA
and CT predictions can again be inferred from the reasons
named above. On the other hand, observe that from Table II,
an increase in the DA prediction horizon, e.g., from 24h to
48h, leads to a decrease in the DA and CT indices. For the
horizon lengths (48h,24h), the overall performance index
is the smallest, which thus is a reasonable choice for the
prediction horizons.

B. Imperfect forecast
We now turn to the more realistic case of imperfect data

forecast as specified below.
a) Forecast method: Since no forecast model for the

case study is available, the forecasted data is determined
by adding a relatively growing noise level to the real-time
power measurements and market prices. The generated noise
sequences are drawn from a uniform distribution. For load
and generation profiles of the electrical and heat systems, the
random noise is propagated from 0% at the beginning of the
prediction horizon and linearly increased with the following
relatively growing rates after 24h:

• Noisy case 1: 10%
• Noisy case 2: 20%
We select a noise level from 0% at the beginning of

the prediction horizon to 5% after 24h for the purchasing
and selling prices. The forecast data across generation and
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Fig. 5. Predicted values of the purchased grid power in the DA (green) and
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pred ,T
CT
pred) = (24h,1h) in (a) and (T DA

pred ,T
CT
pred) = (24h,24h)

in (b) over 4 days with a perfect forecast.

demand within the DA are uncorrelated but correlated to CT
forecast data. This choice is motivated by more unpredictable
fluctuations in the power generation/demand due to the
unknown photovoltaic and wind power and consumption
compared to less varying prices regulated by the European
market. To obtain the CT forecast, we add a relatively
growing noise sequence (according to the noise levels in case
1 and 2) to the CT real-time data over the CT prediction
horizon, after linearly interpolating the same random noise
sequences used in the DA forecast.

b) Discussion: Table II summarizes the simulation re-
sults of noisy case 1 and 2. Here again, a too short CT
compared to the DA prediction horizon, e.g., (T DA

pred ,T
CT
pred) =

(24h,1h) is not a suitable choice. In particular, this combi-
nation of DA/CT prediction horizons leads to infeasibility of

the MPC for CT problem for the noisy case 1 and 2 due to
the shortsightedness of the MPC solving for CT. In the noisy
case 1, at the time of delivery the power forecasts for DA
market worsen by 5% and for the CT by 0.1% relatively to
their real values. In the noisy case 2, they worsen by 10%
and of the CT by 0.21% relatively to their real (noiseless)
values. This results in a higher overall sum of the CT and
DA indices and sheds light into the effect of the uncertainty,
i.e., demand, generation and market prices forecast on the
overall incurring costs across DA and CT.

VI. CONCLUSION

We designed a hierarchical MPC scheme for the predictive
operation of multi-energy systems for the European market
and German market area. We suggest a suitable choice of
the prediction horizon and analyze the impact of imperfect
forecasts on the total incurring cost on an energy network
located in Hanover, Germany. Future work aims at relaxing
our modeling assumptions of nearly perfect knowledge of the
real-time data of the CT by adding a third layer for real-time
dispatching. Another future venue is to improve the forecast
method and take the uncertainty explicitly into account via
robust MPC schemes.
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