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Abstract— Trajectory planning at low speed applications
can involve a large variety of different scenarios, including
structured and unstructured environments, pedestrians, cy-
clists, etc. In this context, real-time planning is crucial to
the dexterity of autonomous vehicles. In this paper, a real-
time trajectory planner based on model predictive control
(MPC) is proposed. Moreover, a dynamic obstacle avoidance
and narrow passages control are designed in a scalable way
through continuous updates of the optimization constraints. The
performance of the proposed methodology are evaluated with a
V-cycle model-based approach, through both model-in-the-loop
(MIL) simulations, and real prototype in-vehicle experiments.

I. INTRODUCTION

Nowadays the research and industry communities on au-
tonomous driving at low speeds are advancing at a steady
and fast pace. The applications cover different sectors and
domains, such as military and defense [1], industrial lo-
gistics, e.g., autonomous trucks and delivery vehicles [2],
working vehicles, e.g., fire truck, agricultural, and engineer-
ing machinery [3], [4], public transport, e.g., airport and
minibus shuttle [5], and private and/or shared ones. All
these heterogeneous applications share the common task of
following a path to reach the desired endpoint by moving at
low speed (maximum 20 km/h), and reacting in real-time
to unexpected situations.

Generally speaking, the trajectory planning (TP) problem
in control and automation engineering aims to find a motion
law along a given geometric path, while taking into account
some requirements, e.g., kinematic and dynamic constraints.
Particularly to the field on autonomous vehicles, TP and
trajectory tracking represent two important functions, and
a variety of strategies have been proposed in the literature
for both functionalities. A comprehensive review of vehicle
control techniques can be found in [6]. In general, vehicle
controllers are classified into three categories: path stabi-
lization, trajectory tracking control, and predictive control
approaches. Path stabilization methods aim to control the
vehicle to follow a path by using geometric approaches, as
it is reported in [7], where a pure pursuit control generates a
desired turning radius of the vehicle based on its current state
(position and orientation), and the state of a point ahead on
the planned path. These types of controls are quite popular
due to their low computational cost, ease of implementa-
tion, and acceptable performance at low speeds. Trajectory
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tracking controllers aim at tracking a time-variant reference
trajectory while guaranteeing asymptotic zero error. Most of
these methods relies on static and dynamic linearization of
state feedback laws [8], PID controllers [9], and optimal LQR
controllers [10]. However, these methods generally do not
consider the physical constraints of the vehicle, and suffer
from high level of uncertainty. Predictive control approaches
use the state-space model of the vehicle to describe its
kinematics. One of the most powerful and effective TP
controllers is the model predictive control (MPC), which is
formulated as an optimization problem which can handle
multiple variables and constraints. Besides, it has inherent
robustness against uncertainties. These advantages, combined
with the optimality guarantees, made the MPC very popular
in the control community, and several approaches have been
proposed to design MPCs for TP, including the absence
(or presence) of one or more constraints (actuator’s limits,
obstacles, etc.) [11], [12], the number of controllers [13],
[14], [15], and the type of vehicle model used, linear or
nonlinear [16], [17], [18].

This paper solves the TP problem for low speed applica-
tions, such as parking valets and home-zones, using an MPC-
based approach. This problem covers different challenging
scenarios. For example, consider a driver that leaves or picks
up the vehicle in the drop-off areas, such as an airport or
a train station, and the vehicle autonomously navigates in
the parking area and performs the parking, or exits from
it. Another example includes the private contexts, in which
the driver records a complex maneuver and the vehicle
re-executes it while optimizing the maneuver according to
specific criteria. This work takes the foundations from a
recently published paper [19] that proposes an MPC-based
TP in unstructured environments. Although the formulation
of the TP problem in terms of the methodology that we use
does not change, we improve the existing paper in three main
aspects. Particularly, the proposed TP: i) is independent on
the choice of the higher-level motion planning module; ii)
automatically optimizes the length of the prediction horizon
used in the MPC, through the definition of a proper roto-
translation of the environments; iii) takes into account the
real size of the vehicle and the presence of dynamic obstacles
through the dynamic constraints. Hence, we strongly believe
that this paper would be helpful for the autonomous vehicle
research community.

The paper is structured as follows: Section 2 presents
the vehicle model used to design the controllers; Section
3 provides the control problem formulation and the solution
design; Section 4 reports the simulations and the experimen-
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Fig. 1: 4 D.o.F. kinematic bicycle model.

tal results, validated in different real-world scenarios. Some
conclusions are drawn in Section 5.

II. PRELIMINARIES: VEHICLE MODEL

In this section we present the model of the vehicle,
assumed to be a car, and we limit the speed limit to the
range 0÷ 20 km/h, i.e., at low speed.

As shown in [16] and [20], at low speed the 4 D.o.F.
kinematic bicycle model is one of the simplest and well-
conditioned models used to approximate the motion of the
vehicle in the context of autonomous vehicles. In this model,
the left and right wheels are approximated with two single
wheels at points A and B, respectively for the front and
the rear axle (Fig. 1). Front and rear steering angles are
represented by δf P R and δr P R, respectively. Moreover, i)
the side-slip angle of the front and rear wheels are assumed to
be negligible, and ii) δr = 0, hence δ := δf P [δmin, δmax],
with δmin and δmax minimum and maximum steering angles.

The resulting kinematic bicycle model (Fig. 1) is described
with the following state-space equations in the inertial frame:

ẋ = v cos(ψ) (1)
ẏ = v sin(ψ) (2)

ψ̇ =
v

L
tan(δ) (3)

v̇ = a. (4)

In particular, x P R, y P R are the Cartesian coordinates of
the vehicle’s rear wheel, and ψ := [−π, π] ⊆ R is the yaw
angle. v := [vmin, vmax] ⊆ R and a := [amin, amax] ⊆
R denote the velocity and the longitudinal acceleration,
respectively, within acceptable ranges. Thus, the state and
input vectors of this model can be defined as X = [x, y, ψ, v]
and U = [δ, a], respectively.

The non linear model described above can be divided into
longitudinal and lateral dynamics, to obtain two independent
yet simpler sub-models. Moreover, a nonlinear state and
input transformation can be applied to the lateral model,
namely the time-state control form (T-SCF), [21], [22],
which allows to represent equations (2) and (3) as linear
differential equations w.r.t. the space, namely:[

∂z2
∂z1
∂z3
∂z1

]
=

[
0 1
0 0

] [
z2
z3

]
+

[
0
1

]
µ2, (5)
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Fig. 2: General automated driving control scheme.

where z1 = x, z2 = y, z3 = tan(ψ), and µ2 = tan(δ)
L cos3(ψ) .

Furthermore, the longitudinal dynamics of the vehicle can
be accurately approximated with a double integrator system,
in which the states are the travelled distance ξ P R and v,
and the control input is a:[

∂ξ
∂t
∂v
∂t

]
=

[
0 1
0 0

] [
ξ
v

]
+

[
0
1

]
a. (6)

III. TRAJECTORY PLANNING DESIGN

In this section we provide an introduction of the TP
module, and we propose our MPC-based TP methodology.

The general scheme of the proposed control architecture
is shown in Fig. 2. It is designed as a hierarchical structure
comprising three main modules. The higher-level module
is the motion planning, which outputs a static path P :=
[p1, p2, . . . , pN ], that guarantees a collision-free and drivable
path from the starting point p1 to the ending state pN ,
where the i-th generic waypoint is pi := (xi, yi, ψi, ri),
and ri P [0, 1] represents the vehicle’s motion direction,
backward and forward, respectively. Note that the motion
planning considers a constant velocity and does not provide
any information on how this path should be followed. The
time can be included in the lower level TP module in terms
of velocity profile to be followed. Given the static path P ,
the TP post-processes it to (i) enhance comfort, (ii) combine
the static generated path with the time, and (iii) manage
dynamic objects, e.g., pedestrians, bicyclists, other vehicles,
etc. To this end, TP requires additional inputs coming from
the perception module, revealing the actual states of such
objects, in terms of their positions and orientations, as well
as their dimensions in the space. The output of the TP module
is to provide, at each discrete time-step k P N, the high-level
vehicle commands, i.e., δ and a. The connection of such
control requests to the actuators of the vehicle is demanded to
the lowest-level control block, called motion control, which
computes the torque requests of the electronic power steering
system, the engine torque, and the deceleration requests of
the brake system module, respectively.

In the following, we formulate the problem of TP as the
combination of two independent MPC problems, for lateral
and longitudinal dynamics.

A. Lateral MPC

Given the vehicle dynamic model (5), the lateral controller
aims to provide the steering angle to follow the optimal path
according to the vehicle’s constraints on δmin and δmax,
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and the environmental constraints on the free space corridor.
Applying the Tustin discretization to (5), we obtain:

[
z2(k + 1)
z3(k + 1)

]
=

[
1 ∆s

0 1

] [
z2(k)
z3(k)

]
+

[
∆2
s/2
∆s

]
µ2(k), (7)

where ∆s is the discretization step w.r.t. the time-state
z1 = x, and it is positive when the vehicle moves forward,
and negative otherwise. The lateral control problem can be
formulated as an MPC problem as follows:

J(z2, z3)

=

[
yrefHlat

− z2(Hlat)

−z3(Hlat)

]T
Qf

[
yrefHlat

− z2(Hlat)

−z3(Hlat)

]
+

Hlat−1∑
k=0

[
yrefk − z2(k)

−z3(k)

]T
Q

[
yrefk − z2(k)

−z3(k)

]
+Rµ2

2(k),

(8)

subject to:

Ymink
≤ z2(k) ≤ Ymaxk

∀k P (0, HLat]

tan(δmin) ≤ Γ̂(z3, µ2) ≤ tan(δmax)

system (7),

where Q,Qr are the semi-positive definite weighting
matrix of the states, R is the positive definite weighting
matrix of the inputs, Hlat P N is the prediction horizon, and
yrefk P RHlat+1 is the centerline of the left and right free-
spaces Ymaxk

P RHlat+1 and Ymink
P RHlat+1. They are

obtained by discretizing (by ∆s) the segments that connect
the path planning waypoints. The combination of these two
vectors is generally referred to as the free corridor of the TP.
Moreover, Γ̂(·, ·) is the linear approximation of Γ(z3, µ2) =
lcos3(tan−1(z3))µ2, obtained through a first-order Taylor
expansion of Γ(·, ·), defined to include the constraint on the
steering angle (δmin ≤ δ ≤ δmax) in the transformed system.

The choice of using a linear MPC with linear constraints
guarantees that the solver computes optimal solutions in
real time application. However, it does not allow to handle
explicitly nonlinear constraints in (8), e.g., take into account
the vehicle size, or avoid collisions with dynamic obstacles.
In the next subsections we provide a solution to indirectly
include such constraints by modifying the free corridor
(Ymink

, Ymaxk
).

Remark 1: It is worth mentioning that in Problem (8)
and throughout the rest of the paper, with a slight abuse
of the notation we use the variables x, y to represent the
position of the car in a convenient roto-translated frame.
Generally speaking, the MPC problem could be solved in the
vehicle coordinate system. However, the T-SCF introduces
singularities, and strongly limits the prediction horizon. To
obtain better performance, one can apply an ad-hoc roto-
translation of the references and the lateral constraints, by
translating w.r.t. the vehicle position, and rotating of an angle
θRot. The choice of this angle has significant effects on the
performance of the MPC.

B. Longitudinal MPC

On the same stream of (7), the longitudinal dynamics (6)
can be discretized leveraging the Tustin rule, obtaining the
following discrete-time longitudinal model:[

ξ(k + 1)
v(k + 1)

]
=

[
1 ∆t

0 1

] [
ξ(k)
v(k)

]
+

[
∆2
t/2
∆t

]
a(k), (9)

where ∆t P R is the discretization step w.r.t. time.
The MPC-based TP problem for the longitudinal control can
be then formulated as:

J(ξ, v)

=

[
ξrefHlong

− ξ(Hlong)

vrefHlong
− v(Hlong)

]T
Qf

[
ξrefHlong

− ξ(Hlong)

vrefHlong
− v(Hlong)

]

+

Hlong−1∑
k=0

[
ξrefk − ξ(k)
vrefk − v(k)

]T
Q

[
ξrefk − ξ(k)
vrefk − v(k)

]
+Ra2(k),

(10)

subject to:

ξmink
≤ ξ(k) ≤ ξmaxk

∀k P (0, HLong]

vmin ≤ v(k) ≤ vmax

amin ≤ a(k) ≤ amax

jmin∆t ≤ a(k)− a(k − 1) ≤ jmax∆t

system (9),

where Hlong P N is the prediction horizon, jmin P R,
jmax P R are minimum and maximum allowed jerks, and
vrefk is the vehicle speed reference. The reference on the
travelled distance ξrefk acts as an integral action to handle
stationary errors due to exogenous disturbances and/or inac-
curacies in the motion control module. It is computed as

ξrefk = (Dref −Dmeas) + vrefk∆tk, (11)

where Dref =
∑tk
i=t0

vref (i)∆t, Dmeas is the measured
travelled distance (from sensors), and Dref is the expected
travelled distance computed from the longitudinal control
activation time (t0) to the current time step (tk). Moreover,
ξmax determines the maximum value of the travelled distance
(ξGoal), and, whenever reached, it constrains the vehicle to
stop.

C. Rotation angle optimization

Given the set of waypoints provided by the path planning,
P , the proposed TP firstly re-samples it in order to consider
only the necessary ones, based on a trade-off between
accuracy in the approximation of the path, and dimensions
of the vector that will then be used by the MPC. The
outputs of this stage are the vectors XSEG, YSEG,ΘSEG.
Afterwards, leveraging such vectors, the TP module realizes
the so-called free corridor, (blue and red lines in Fig. 4)
inside which the vehicle has to be during the maneuver.
Such limits (Ymin, Ymax) are designed based on a user-
defined distance from the corresponding waypoints, and are
then roto-translated in the MPC-frame (see remark 1), and
updated based on the current vehicle position and rotation
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angle. Although problem (8) can be solved efficiently and
guarantees a deviation from the reference path that shrinks
to zero over the time-steps, it has two well-known limitations,
namely: i) the T-SCF-based model shall work for −π/2 <
ψ < π/2, since it introduces singularities in ψ = ±π/2, and
ii) there is a linearization error, despite small, related to the
first-order approximation of Γ(z3, µ2).

A natural solution to this problem, that has been proposed
in [19], is to rotate the path in the vehicle frame in order
to manage cases in which the vehicle has to follow tight
turns, thus avoiding singularities. Particularly, assume that at
a certain time-step the vehicle is located at the ith segment,
as shown in Fig. 3a, where a segment is the straight line
linking two consecutive waypoints. Then, the problem of
the singularities can be easily addressed by dynamically
determining a rotation angle θRot, defined as a linear interpo-
lation of the actual segment orientation, θi, and the following
two, θi+1 and θi+2, eventually weighting it by a “corrective
factor” W P R. The main drawback of this approach is that
it considers only few consecutive waypoints, thus potentially
obtaining a myopic predictive controller.

Algorithm 1 proposes an alternative to the described
solution. It aims to improve and optimize the dynamic choice
of the three orientations used in the computation of θRot, and
thus optimizes and maximizes the path section used for the
prediction in the MPC and avoids unnecessary rotations.

Algorithm 1 Rotation angle optimization
Input: XSEG, YSEG,ΘSEG, iMAX , ik
Output: θRotk
ΘRot0 ← ΘSEG(0)
ΘOUT (0) ← ΘSEG(0)
IOUT (0) ← 0
θref ← ΘSEG(0)
n ← 1, i ← 1, j ← i+ 1
while j ≤ iMAX do

θnew ← ComputeAngle(Xi, Yi, Xj+1, Yj+1)
while |θref − θnew| ≤ θth do

θnew ← ComputeAngle(Xi, Yi, Xj+1, Yj+1)
j ← j + 1

end while
ΘOUT (n) = θnew

θref = θnew

IOUT (n) = j
n ← n+ 1, i ← j, j ← j + 1

end while
i0k , i1k ← PickIndex(ik, IOUT )
θ0k , θ1k , θ2k ← PickOrientation(ik,ΘOUT )
θRotk ← ComputeRotationAngle

(i0k , i1k , θ0k , θ1k , θ2k , θRotk−1
) , through (12)

Starting from the first segments and taking its orientation
as reference θref , Algorithm 1 computes and stores in ΘOUT
the highest orientation of the equivalent segment created
between the first point and the future ones that satisfies the
condition |θref − θnew| ≤ θth, where θth < π/2 is a user-
defined threshold. The obtained orientation is then used as
a new reference θref , and the process repeates until the last
waypoint is reached. Then, at each time-step k, the functions
PickIndex and PickOrientation, given the index ik of the
segment where the vehicle is located, extract the information
necessary to compute the rotation angle at that time, through
the formula:

θRotk =W
(θ2k − θ1k)dk

d1,0k
+

(θ1k − θRotk−1
)dk

d1,0k
+ θRotk−1

,

(12)
where dk is the euclidean distance (at time k) between the
vehicle rear center axle and the end point of the segment
ik, d1,0k is the distance between the end point of the
segment ik and the next end point, and θ1k , θ2k are the
first two orientations of ΘOUT w.r.t. ik. A one-step graphical
representation of Algorithm 1 is represented in Fig. 3b.

Note that in the algorithm, XSEG and YSEG are vectors
containing the waypoints (xi, yi) provided by the higher level
path planning module, that we rename to allow an eventual
resampling, if needed. Moreover, ΘSEG is the vector of
orientations of the segments derived from such waypoints,
and ik is the segment i in which the vehicle is located
at that time. Finally, iMAX represents a stopping iteration
condition, that can take into account the end of the trajectory
or a change in the direction of motion, for example.
The proposed algorithm solves the problems on the sin-
gularities without limiting the number of segments to take
into account, providing two main benefits, i.e., i) maximize
the prediction horizon, and ii) allow arbitrary dense path as
inputs (see Fig. 4b), i.e., improve the trajectory accuracy.

D. Obstacle avoidance

Another task that is demanded to the MPC-based TP is
to react to dynamic objects that could be present in the
environment. To handle these situations, the control needs
additional information about the objects, which are generally
provided by the perception module, namely their location and
orientation (xo, yo, θo), and their lengths and widths (lo, wo).
To simplify the description and without loss of generality, in
the sequel we assume that the free corridor width (|Ymin −
Ymax|) is equal to the vehicle’s width w.
The general flow-chart that manages the obstacle-avoidance
task is reported in Fig. 5. At each time instant, for each
surrounding obstacle inside the prediction horizon, the pro-
cedure first evaluates if the corners of the object are outside
the free corridor, i.e:∣∣yo − wo/2−Wsafeoffset

∣∣ ≥ w/2, (13)

where Wsafeoffset
P R is a safety margin considered

to include possible measurement errors coming from data
fusion. If (13) is satisfied, the obstacle is simply neglected
since no collision is expected (Fig. 6a). Otherwise the obsta-
cle is considered as “dangerous”, and an obstacle avoidance
maneuver is necessary. In the last case, it is evaluated
whether the obstacle is on the right or left side of the
reference trajectory, and since we have to guarantee that the
maneuver can be concluded correctly, it is also considered a
maximum acceptable lateral error MAXLaterr (that depends
on the environment 1) from the original planned path.

If this maximum lateral error is achieved (Fig. 6c) a “Safe
Stop” is requested to the longitudinal MPC through ξobstacle,

1For example, MAXLaterr can be decreased if the vehicle is close to
the end point of the maneuver or from a change of the motion direction,
and increased if the vehicle is travelling along a long straight segment.
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(a) (b)

Fig. 3: Proposed rotation angle optimization. Light green points represent the available wayponts; light green dashed lines
are the available segments; dark green dashed lines represent the segments exploitable in the MPC horizon; blue dashed
lines are the generated segments that establish θ0, θ1, θ2; yellow cone forms the angle θth.

(a) (b)

Fig. 4: (a) Traditional free corridor construction. (b) New
general free corridor. Path waypoints (in green), left and right
free corridor bounds (in blue and red).

which leads to stop the vehicle at a distance Xsafestop P

R (that depends on the environment 1). In this case both
conditions are satisfied:∣∣yo − wo/2−Wsafeoffset

∣∣ < w/2,∣∣yo − wo/2−Wsafeoffset
− w/2

∣∣ ≥MAXLaterr .

Thus, the stop condition of the longitudinal MPC takes
into account both the goal position (ξGoal), and possible
dynamic object constraints (ξObstacle), as:

ξmaxk
= min(ξGoal, ξObstacle). (14)

As a last case (Fig. 6b), an obstacle constraint is gener-
ated around the obstacle. In order to maintain the obstacle
avoidance procedure as simple as possible, we design a
trapezoidal shape around the obstacle, starting from the two
vehicle corners that protrude more on the free corridor, and
considering safety offsets offxfront

P R and offxback
P R,

on the side offy P R of the obstacle (Fig. 7).
In order to realize the new lateral constraints used by

the lateral MPC controller, the trapezoidal shape, Yobs1 , is

Pick

Free 
Corridor

NO

Compute left
Obs Constraints

YES

Safe Stop

Side 
Selection

LEFT RIGHT

Possible
Avoidance

Possible
Avoidance

Compute right
Obs Constraints

NO 

YES YES

Merge Lat
Constraints

Fig. 5: Flow chart of obstacle avoidance procedure.

(a)

(b)

(c)
Fig. 6: (a) Obstacle not dangerous. (b) Obstacle dangerous
and avoidable. (c) Obstacle dangerous and not avoidable.
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(a)

(b)
Fig. 7: Obstacle constraints construction on right side (a) and
on left side (b).

(a) (b)

Fig. 8: Selected scenarios for low speed maneuvers, tests
have been performed at parking area of Centro Ricerche Fiat,
Orbassano, TO.

duplicated and translated (Yobs2 ) of the same width of the
free corridor, and then merged into the original one as:{

Ymaxnewk
= min

(
Ymaxk

, Yobs1k
)

Yminnewk
= min

(
Ymink

, Yobs2k
) ,

if the obstacle is on the left side (Fig. 7a), and{
Ymaxnewk

= max
(
Ymaxk

, Yobs2k
)

Yminnewk
= max

(
Ymink

, Yobs1k
) ,

if the obstacle is on the right side (Fig. 7b).
It is worth to highlight that the proposed obstacle avoidance
procedure takes into account the static information on the
environment (HD Map or Binary Gridmap) to check in
advance if the constraints generated to escape the obstacle
overlap with static objects. Moreover, it is clear that other
obstacle avoidance shapes are allowed.

IV. SIMULATION AND EXPERIMENTAL VALIDATION

A. Prototypal vehicle and test setup

The proposed TP module has been validated both in
simulation, and on a real Proof of Concept (Poc), namely a
Jeep Renegade. Besides the nominal measurement available
from the vehicle CAN, additional sensors have been used
to design a proper perception module, namely a PwrPak7
Novatel dual antenna Global Navigation Satellite System
(GNSS), 12 Valeo Ultra Sound Scan (USS) sensors, 6 Arbe
Imaging Radar sensors, and one RoboSense Lidar. As far

Fig. 9: Jeep Renegade prototypal vehicle.

Start

Goal

Fig. 10: MIL and in-vehicle lateral states in ex. 4.1.

Fig. 11: MIL and in-vehicle tracking error in ex. 4.1.

as the actuators are concerned, the vehicle is equipped
with a TRW/ZF column EPS, controlled using the Parking
Assistance Module (PAM) interface from the vehicle C-CAN
network. This system, which usually assists the driver in
steering through an electric motor torque, has been modified
in order to use it as a mechatronic unit able to autonomously
steer the vehicle. Furthermore, the vehicle uses a modified
Braking System Module (BSM), which provides a functional
channel on the vehicle C-CAN network able to be a gateway
of acceleration/deceleration to the powertrain ECU (ECM)
and the brakes.

The proposed TP algorithm has been first validated via
simulation using IPG CarMaker in a Matlab/Simulink envi-
ronment. Afterwards, the same scenarios have been tested on
the real vehicle equipped with a dSPACE MicroAutobox II.
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Fig. 12: MIL and in-vehicle control inputs in ex. 4.1.

Fig. 13: Rotation angle of MPC Reference Frame in ex. 4.1.

The solvers used for the MPC problems rely on CVXGEN
Code Generation for Convex Optimization [23] for real time
execution. Both simulations and in-vehicle tests have been
performed selecting a prediction horizon Hlat = 60 steps,
and step widths ∆s = 0.5m for the lateral MPC, and
Hlong = 40 steps, ∆t = 100ms for the longitudinal one.
The chosen prediction horizon is a reasonable choice to
represent a quasi-infinite horizon for the vehicle kinematics
optimization (minimum between 30m and 4sec). Particularly
to the selected scenarios, two different home-zone maneuvers
have been considered (Fig. 8).

Example 4.1: The first scenario (Fig. 8a) represents a
nominal search and park maneuver of an automated valet
parking function. It consists of two narrow U-turns and a
multi-maneuver. In particular, the two MPCs use variable
weights dependent on the distance to the goal position to
improve passenger comfort, at the cost of worsening the
tracking error when the vehicle is far from the end point
of the maneuver. Fig. 10 shows the comparison between
the MIL and the vehicle states, in terms of x − y position,
and heading angle. From the figure, one can appreciate
the reliability of the designed MIL system (in red) which
accurately replicates the real vehicle behaviour (in blue),
while following the reference path provided by the higher
level motion planning module, and reaching the desired
parking spot. This behaviour is also confirmed in Fig. 11,
reporting the tracking error w.r.t. the nominal path. Indeed,
the vehicle is able to solve the task with a maximum
lateral error of about 0.3 m, confirming the effectiveness
of the proposed MPC-based approach. Moreover, from the

Start

Goal

Fig. 14: MIL and in-vehicle lateral states in ex. 4.2.

Fig. 15: MIL and in-vehicle tracking error in ex. 4.2.

figure, one can appreciate that the error shrinks to zero
toward the end of the trajectory, meaning that the MPC
weights are designed to take into account passenger comfort
during the maneuver, but constrain the MPC to very low
lateral errors when approaching the goal position, since
the methodology is designed to work in narrow passages,
and in these applications the precision of the controller is
very important. Fig. 13 reports the rotation angle of the
MPC computed from Algorithm 1, and Fig. 12 displays the
control signals provided from the MPC, appreciating a clear
similarity between the MIL and the PoC behaviours.

Example 4.2: The second scenario (Fig. 8b) represents
an automated valet parking function with the presence of
obstacles along the path. In particular, during the maneuver,
the ego vehicle falls into two obstacle avoidance procedures,
the first one with an overtaking on the left, the second
generating a stop request until the obstacle in front moves
away (Fig. 14). This experiment highlights the repeatability
and reliability of the proposed TP algorithm. Indeed, very
similar MIL and real vehicle behaviours are confirmed,
as well as the tracking precision. From Fig. 15, one can
appreciate that the maximum lateral error is below 0.3 m,
although there is a time window (t P [20−30] sec) in which
the error is about 1.5 m. This case, however, is related to an
obstacle avoidance procedure. Indeed, since there is a stand
still vehicle on the right of the ego vehicle, it gets away from
the reference path to overtake it and continue its maneuver.
The same behaviour is repeated in the neighborhood of the
goal position (Fig. 14). In such a situation, however, the ego
vehicle raises a safe stop request to the actuators since the
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dynamic obstacle is near a change of the motion direction:
in this case an avoidance of the obstacle could lead the ego
vehicle too far from the reference path in the surrounding
of the goal position, which could compromise the proper
completion of the maneuver. Once the obstacle proceeds with
its own motion, the ego vehicle continues the maneuver, and
correctly stops the car in the available spot with a near-zero
position error.

V. CONCLUSION

This paper proposed a real-time trajectory planner based
on MPC for low speed maneuvers. The methodology is
designed for home-zone scenarios, narrow passages, drop-
off areas, where the tracking accuracy is crucial to assure
effective parking maneuvers. Moreover, a dynamic obstacle
avoidance and narrow passages control are designed in a
scalable way through continuous updates of the optimization
constraints in the MPC problem. The performance of the
proposed methodology are evaluated with a V-cycle model-
based approach, through both MIL simulations, and real
prototype in-vehicle experiments.
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