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Abstract— The open circuit voltage (OCV) is a chemistry-
dependent curve that characterizes the steady-state behaviour
of a lithium-ion battery cell (LIB), namely the link between
the voltage accross the cell and its state of charge (SOC),
when no load is connected. It is a fundamental ingredient
to estimate the SOC of LIBs with any technique, ranging
from a simple look-up table to a Kalman filter based on an
equivalent circuit model or an electrochemical model. However,
an accurate determination of such a steady-state curve for
a commercial LIB requires extensive standalone experimental
campaigns that are time-consuming. This work, compares two
different methods, Karhunen-Loève transform (or principal
component analysis) and Gaussian process regressions, to model
the zero-current behaviour of 18650 LIBs (Sony VTC6 and
Samsung 30Q, 3000mAh) considering OCV-SOC charge and
discharge experimental curves at C-rates between C/50 and
C/5. The zero-current extrapolation given by these methods
can reduce the experimental time up to 85% when compared
to an average OCV characterized at C/100.

I. INTRODUCTION

Lithium-ion batteries have become ubiquitous energy
storage solutions, powering an array of applications from
portable electronic devices to electric vehicles and renewable
energy systems. Their versatility and high energy density
have made them the preferred choice for many modern
technologies. To fully harness the potential of lithium-ion
batteries and optimize their performance, accurate State of
Charge (SOC) monitoring has emerged as a central concern.
The SOC of a battery indicates the amount of energy stored
in the battery with respect to its nominal capacity. Monitoring
SOC in real-time is essential for a multitude of reasons,
including ensuring the safety, extending the lifespan, and
optimizing the energy utilization of lithium-ion batteries. The
relationship between the open circuit voltage (OCV) and the
SOC, namely the OCV − SOC curve, is a key ingredient for
battery SOC estimation. This curve allows for the estimation
of the current SOC based on measured terminal voltage by
inverting the relationship. This process is often augmented
with the use of state observers to mitigate errors arising
from transient effects, measurement noise and curve plateaus.
Extended Kalman filters (EKF) as well as other observers,
such as Luenberger observers, adaptive observers, etc. are
built on the basis of the OCV − SOC relationship and an
electrochemical or an equivalent circuit model (ECM) to
estimate the SOC. Sometimes the state of health (SOH) of the
battery is also estimated [1]. For example, in [2], an extended
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Kalman filter (EKF) is used to provide an estimation of
the SOC from the voltage and current measurements, and
an electrochemical model involving the OCV − SOC curve
of each electrode. In [3], the authors used the OCV-SOC
relationship in a non-linear observer whose design relies on
linear matrix inequalities (LMI) in order to estimate the state
of individual cells in a battery pack. In [4], the SOC and the
SOH are jointly estimated, using two EKF with different time
scales. These filters rely on ECMs involving an OCV-SOC
function.

However, the acquisition of the OCV curve is a time-
consuming task. Given that the OCV, by definition, char-
acterizes the steady-state voltage when no current passes
through the battery, experiments for obtaining this curve
necessitate either to conduct tests at very low currents [5]
or to employ extensive relaxation period, spanning the entire
SOC range from 0% to 100% [6] [7]. A frequently employed
method [6] [7] for obtaining the OCV curve is the voltage
relaxation approach. In this method, a brief current pulse
is applied, typically causing a minor SOC change, after
which the battery is allowed to rest for a period of 5-
6 hours, for relaxation. Afterward, voltage measurements
are taken, and this process is iteratively repeated until the
entire SOC range is explored. Another common approach
[5][8][9][10][11] consists in recording the voltage versus
SOC curves for charge/discharge experiments at very low
current. Indeed, low current allows reducing the impact
of overpotential and ohmic effects on the terminal voltage
[5]. However, a persistent challenge lies in the hystere-
sis observed between the curves acquired during charging
and discharging [12][13][14]. Even though neglecting this
phenomenon induces an error, typical application-oriented
estimators adopt a unified model for all battery operations.
In this scenario, the average of the voltage values measured
at the same SOC during charging and discharging at low
C-rate is performed. The resulting averaged curve is then
considered as the OCV curve [5] [6].

The objective of this study is to develop a faster approach
for determining the OCV curve than the aforementioned
methods, while maintaining the prediction error within the
same order of magnitude as the one arising from the above-
mentioned averaging process.

II. PROPOSED METHODS

The two methods presented hereunder consist in perform-
ing charge/discharge experiments at different constant C-
rates1 The corresponding voltage (V) versus SOC curves are

1A C-rate of 1C corresponds to the current needed to fully
charge/discharge a battery in one hour.
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then modeled and extrapolated to a zero current condition.
The first approach involves expanding the signals as a
weighted sum of basis vectors and extrapolating the weights.
It extrapolates the voltage versus SOC curve for charge
and discharge separately and then take the average of the
resulting two curves. The second approach treats the signals
at different C-rates, taking into consideration charge and
discharge conjointly, as a function of two variables (current
and SOC) and extrapolates this function to zero current.

A. Karhunen-Loève transform or principal component anal-
ysis

The methodology presented in this section replicates the
work conducted by [7]. The reproduction of this work serves
two purposes : firstly, to compare the outcomes of this
promising approach with the other method and secondly, to
evaluate its performance in the more nonlinear sections of the
OCV curve (0%-30% and 70%-100%), where the original
study [7] lacks experimental data.

Consider an m × n matrix V of voltage measurements.
Each row corresponds to a different charging or discharging
currents, Ij , j = 1, . . . ,m in the range [0.02,0.2] expressed
in terms of C-rate (Ij=0.1 corresponds to a C-rate of C/10).
Each row is made of n measurements associated to equidis-
tant SOC values in the range [0,1]. Typically n > m in
the considered situation. The Karhunen-Loève transform is
equivalent to principal component analysis (PCA). It is a
data reduction method that is optimal in the mean square
sense and aims at eliminating the effect of noise in the data
set. More precisely, a p-dimensional subspace, W ⊂ Rn is
sought such that

m∑
ℓ=1

∥V(ℓ, ·)− PW(V(ℓ, ·))∥2 (1)

is minimum. Here PW(V(ℓ, ·)) stands for the projection of
the ℓth row of matrix V, denoted V(ℓ, ·), in the subspace W .
It turns out that a basis for subspace W can be determined
by computing the eigenvalues of the so-called scatter matrix
defined as

S =

m∑
ℓ=1

(V(ℓ, ·)− µ)T (V(ℓ, ·)− µ)

where µ = 1
m

∑m
ℓ=1 V(ℓ, ·) is the empirical mean over

the rows of matrix V. Equivalently, such a basis can also be
determined by a singular value decomposition of

Ṽ = V − [1 1 . . . 1]T ⊗ µ

where ⊗ stands for the Kronecker product. Indeed, letting
the singular value decomposition of Ṽ be

Ṽ = UΣWT (2)

where U and W are orthogonal matrices with dimension m×
m and n× n respectively and Σ is an m× n matrix of the
form [diag{σ1 . . . σm} 0] where σ1 > σ2 > . . . σm > 0 are
the singular values of Ṽ and 0 stands for the m×(n−m) zero
matrix. A basis for the p-dimensional subspace W is made

of the first p columns of W and the reduced data matrix is
given as

Ṽp = UpΣpWT
p (3)

where Up is made of the first p columns of U and Σp =
diag{σ1 . . . σp}. Equivalently, equation (3) can be rewritten

Ṽp =

p∑
j=1

A(·, j)Wp(·, j)T (4)

where A = UpΣp. It has been observed in [7] that the
elements ai,j of A(·, j) can be approximately described by an
affine function of the current of the form ai,j ≈ αj+βjIi for
sufficiently low currents. The corresponding coefficients αj

and βj , j = 1, . . . , p can be found by least squares parameter
estimation. An approximate OCV curve can then be obtained
by extrapolating these functions for I = 0. The resulting
OCV estimate, denoted ÔCV , can be deduced as:

ÔCV =

p∑
j=1

αjWp(·, j)T

Each element of this row vector corresponds to one of the
equidistant SOC values at which the voltage measurements
were taken.

B. Gaussian process regression method

Our aim is to estimate a function, f(SOC, I) that mod-
els the recorded voltage curves for each current values,
Ij , j = 1, . . . ,m. We choose function f to be described
by a Gaussian process (GP) for the flexibility of this tool to
approximate functions and for the limited number of design
parameters involved in Gaussian process regression.

Letting x = [SOC, I]T , by definition of a Gaussian
process, for any set of input points {xi, i = 1, . . . , s} (which
can be concatenated into a 2 × s matrix, X) the vector f
defined as

f = [f(x1) . . . f(xs)]T

follows a multivariate Gaussian distribution, namely
N (mf(X),Kf(X,X)). The mean and covariance of f respec-
tively take the form

mf(X) =

 m(x1)
...

m(xs)

 .

Kf(X,X) =

 k(x1, x1) . . . k(x1, xs)
...

...
k(xs, x1) . . . k(xs, xs)


Here

m(x) = E(f(x))

and

k(x, x’) = E((f(x)−m(x))(f(x’)−m(x’))).

The Gaussian process will be denoted

f(x) ∼ GP(m(x), k(x, x’))
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This means that the GP associates to each value of the input
vector, namely any pair (SOC, I), a Gaussian probability
distribution characterizing the voltage distribution at that
point.

Usually, for notational simplicity, the mean function is
set to zero [15]. The covariance function or kernel can be
chosen from a wide set of possibilities. Given the smoothness
of the recorded voltage versus SOC curves, the squared
exponential kernel defined as

kSE = σ2e
−
(x− x′)2

2l2 , (5)

appears to be an adequate choice, because it captures well
smooth functions. The selection of the hyper-parameter vec-
tor θ = {σ,l} will be addressed below.

Considering the measurement noise on the voltage mea-
surement, the regression model exploiting the GP can be
written:

V = f(x) + ξ

where ξ is assumed to be an independent identically dis-
tributed Gaussian noise with zero mean and variance σ2

ξ . A
Bayesian framework is used to predict the OCV associate to
I = 0 by exploiting a set of s noisy output measurements
gathered in vector V and associated to the input points X
(training set). Let X0 and f0 denote respectively the matrix
of input points at which the prediction is sought (test set) and
the associated predictive distribution. The joint probability
distribution associated to the training points and the test
points can be written:[

V
f0

]
∼ N

(
0,
[

Kf(X,X) + σ2
ξ I Kf(X,X0)

Kf(X0,X) Kf(X0,X0)

])
(6)

The prediction is obtained by computing the conditional
distribution of f0 given X,V and X0 which is given as [15]

f0|X,V,X0 ∼ N (̄f0, cov(f0)) (7)

where

f̄0 ≡ E(f0|X,V,X0) = Kf(X0,X)
[

Kf(X,X) + σξI
]−1

V

cov(f0) = Kf(X0,X0)− Kf(X0,X)
[

Kf(X,X) + σξI
]−1

Kf(X,X0)

The predicted OCV curve is now characterized by a dis-
tribution of functions, which can be described for the ith

prediction input point as:

ÔCV i = f̄0,i ±
√

cov(f0)i,ih (8)

where f̄0,i is the ith element of f̄0, cov(f0)i,i is the ith

diagonal element of the covariance matrix and constant h
has to be adjusted according to the considered level for the
confidence interval.

The hyper-parameters θ = {σ,l} from the kernel k(x,x’)
and the process noise variance σ2

ξ must be estimated before
exploiting the above expression (7), (8). It was done using
a gradient descent method on the log marginal likelihood
log p(V|X, θ, σ2

ξ ) [16].

III. EXPERIMENTAL SETUP

The experiments to gather the required data for
comparing the performance, in terms of experimen-
tal time needed and prediction error, of the meth-
ods described in Section II, were carried out using
3 US18650VTC6 (3000mAh NCA/Graphite+Si) and 3
INR18650-30Q (3000mAh NCA/Graphite+Si) battery cells
in an Arbin LBT21084 battery tester of 0 - 20V±2mV and
10A ±0.2mA (4 current ranges 10A/500mA/20mA/1mA) per
channel. To ensure reproducible conditions, the cells were
tested at a constant ambient temperature, 25± 0.5oC, within
a PHCbi MIR-154-PE cooled incubator.

By reason of ensuring fairly equal initial conditions to
gather the required data, the cells were subject to 5 cycles
of charge and discharge with a low current (C/3) between
2.5 and 4.2V, before carrying out the experimental cam-
paign. After this “activation” to ensure equal conditions,
the cells were subject to a testing regime consisting of
charges and discharges between 2.5 and 4.2V with increasing
(dis)charging currents: C/100, C/50, C/20, C/10 and C/5.
Such minimum and maximum voltage limits were taken from
datasheet of the manufacturers [17] [18]. The experimental
current and voltage profiles following such a testing regime
are reported in Fig. 1 and Fig. 2, respectively.

At this point, to avoid comparing voltage curves with
different time scales, Coulomb-counting method is used to
estimate the relative electric State of Charge (SOC) of the
battery at each i-th sampling point, for a constant current
with magnitude Ij

SOCi=
i∆TIj
Q

(9)

where ∆T is the sampling time, equal to 1s in this work, and
Q is the nominal capacity of US18650VTC6 and INR18650-
30Q cells in Ah, i.e., 3Ah. Next, to obtain equidistant points
with respect to SOC, cubic spline interpolation is used.

The resulting Voltage-SOC curves for one US18650VTC6
cell are depicted in Fig. 3. Note that, for the sake of a fair
comparison between the charge and discharge voltage curves,
SOC = 0 is assumed at the minimum voltage, i.e., Vmin =
2.5V .

Fig. 1. Current profile of data acquisition (Sony VTC6 #1)
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Fig. 2. Voltage profile of data acquisition (Sony VTC6 #1)

Fig. 3. Voltage-SOC curves for different applied currents (Sony VTC6
#1)

IV. EXPERIMENTAL COMPARISON OF
OCV-DETERMINATION APPROACHES

The Karhunen-Loève expansion (KLE) and Gaussian pro-
cess regression (GPR) methods have been applied consider-
ing different combinations of charge/discharge curves. Every
possible combination of the C-rates ±{C/50, C/20, C/10,
C/5} has been considered. The same set of C-rate amplitudes
is used for charge and discharge within each experiment.
Although voltage curves for C-rate C/100 were available,
they were only used for comparison in order to reduce
the experimental time needed. The Root-Mean-Square Error
(RMSE) metric has been selected to assess the performance
of the algorithms. The error is computed between the result-
ing extrapolated OCV and the average of C/100 charge and
discharge curves, that is used as a benchmark in this work.

From each signal, 300 samples have been considered for
both methods. The samples are evenly distributed along the
SOC span for the KLE method. The GPR method showed
better results taking 40% of the sample in the 0-0.2 SOC
range, 20% between 0.2 and 0.8 SOC and 40% from 0.8 to
the maximal SOC. The maximal value of SOC considered
is the biggest SOC value obtained during acquisition of
the voltage curve with the highest C-rate in the set of
curves used. The computation were done using the MATLAB
software with a computer with 40GB of ddr4 RAM and a
processor AMD Ryzen 7 5700U.

The RMSE resulting from both methods are shown in Fig.

4 and Fig.5. The dashed line represents the RMSE induced
by using the averaged curve between charge and discharge at
a C-rate of C/100 as the OCV instead of polarization-specific
curves. The error presented is the average RMSE for the 3
batteries of the same kind (US18650VTC6 or INR18650-
30Q) while using the same method and set of voltage curves.

Fig. 4. mean RMS errors between extrapolated OCVs and the mean of
C/100 charge and discharge curves (Sony VTC6)

Fig. 5. mean RMS errors between extrapolated OCVs and the mean of
C/100 charge and discharge curves (Samsung 30Q)

Both the Karhunen-Loève expansion (KLE) and Gaussian
process regression (GPR) methods yield promising results,
demonstrating errors significantly lower than the error in-
duced by the averaging process of the C/100 curves. This
suggests that the utilization of techniques designed to reduce
the experimental time required for OCV acquisition does
not introduce a greater error than disregarding the hysteresis
phenomenon resulting from the battery polarization change.
It is worth to emphasize that the error arising from neglecting
the hysteresis phenomenon and the error presented in Fig.
4 do not aggregate. The former error is symmetric in both
modes of battery use, namely charge and discharge, while the
latter indicates a deviation from this symmetry. For instance,
in Fig. 6, the extrapolated OCV obtained using the GPR
approach consistently falls slightly below the mean OCV.
This implies that SOC estimation would be slightly more
accurate during discharge than charge, as the error between
the discharge curve and the extrapolated curve is lower
compared to the charge curve.
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Comparing the errors introduced by the two methods, the
KLE approach consistently outperforms the GPR approach.
While the difference between the two methods is low for
higher time of experiment, the GPR method seems unsuited
when considering higher C-rate experiments. For the dataset
used in this work, the selection of experimental voltage
curves for the GPR must contain the ± C/50 curves or
contain at least 6 curves (3 of charge and 3 of discharge)
in order to draw satisfying results. In contrast, the choice of
experimental curves is less critical for the KLE method.

The best trade-off between the error introduced and the
required experimental time is different for the KLE and for
the GPR approaches. Good results can be obtained from
the KLE method using the curves at C-rates ±{C/10, C/5},
which requires approximately 30h in total, i.e., two times
10h (C/10) and 5h (C/5). The error introduced is only
slightly worse than the lowest error achievable (at 170h of
experimental time) with this method, while greatly reducing
the experimental time. On its side, the best GPR results are
achieved when using curves at C-rates ±{C/20, C/10, C/5}.
The resulting OCV with its 68% confidence bound is shown
in Fig. 6. This reduces the required experimental time to
about 70h, i.e., two times 20h, 10h and 5h for C/20 C/10
and C/50, respectively.

Furthermore, the results obtained from the KLE approach
exhibit greater consistency between different battery types,
as can be seen on Fig. 4 and Fig. 5. The results are slightly
poorer for the Samsung 30Q cells, indicating that the quality
of the extrapolation might be impacted by the chemistry of
the battery cell.

The confidence bound estimated with the GPR method is
promising, the benchmark lying mostly within the bound, as
it can be seen for example in Fig. 6. A discrepancy only
occurs at very low SOC. Depending on the application, an
estimation of moderately poorer quality, as obtained by GP
instead of PCA, but providing a confidence bound of good
quality might be privileged.

Fig. 6. mean of C/100 charge and discharge curves and extrapolated OCV
using the GPR method with curves at C-rates C/20 and C/50 (Sony VTC6
battery #2)

V. CONCLUSION

The implementation of either of the two methods,
Karhunen-Loève expansion or Gaussian process regression,

represents a significant reduction of the experimental time
required to characterize the OCV curve, Whereas the bench-
mark method requires approximately 200h for obtaining the
constant-current charge and discharge curves at a C/100 C-
rate, the GPR and KLE methods reduce the required time by
65% and 85%, respectively. This means that in the case of the
KLE method, the standalone testing time of the battery can
be reduced from more than 1 week to just 2 days, thus saving
time and reducing the energy consumption of the testing
equipment. Furthermore, the required testing equipment need
not be extremely precise since the working current range
is higher than for the benchmark case. For instance, for a
3000mAh US18650VTC6 cell, instead of working in the
range of 30mAh (C/100), the implementation of the KLE
approach allows working in the range of 300-600mAh (C/10-
C/5), where the precision and the current control of the
equipment can be slightly worse without compromising the
quality of the curves obtained. The requirement of a testing
device with a lower precision helps to reduce the purchase,
procurement and calibration costs of the facilities where the
tests have to be carried out.

Future research will involve a deeper exploration of the
results variability, performing validation with battery cells
from other manufacturers (e.g. LG) in order to assess the
potential impact of the chemistry of the battery on the
determination method. The evolution of the error when using
higher C-rate curves will also be studied. In addition, the
comparison study will be enhanced by considering data from
the voltage relaxation method as well.
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