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Abstract— This work presents a new approach to solve the
sparse linear regression problem, i.e., to determine a k-sparse
vector w ∈ Rd that minimizes the cost ∥y−Aw∥22. In contrast to
the existing methods, our proposed approach splits this k-sparse
vector into two parts — (a) a column stochastic binary matrix
V , and (b) a vector x ∈ Rk. Here, the binary matrix V encodes
the location of the k non-zero entries in w. Equivalently, it
encodes the subset of k columns in the matrix A that map
w to y. We demonstrate that this enables modeling several
non-trivial application specific structural constraints on w as
constraints on V . The vector x comprises of the actual non-
zero values in w. We use Maximum Entropy Principle (MEP)
to solve the resulting optimization problem. In particular, we
ascribe a probability distribution to the set of all feasible
binary matrices V , and iteratively determine this distribution
and the vector x such that the associated Shannon entropy
gets minimized, and the regression cost attains a pre-specified
value. The resulting algorithm employs homotopy from the
convex entropy function to the non-convex cost function to
avoid poor local minimum. We demonstrate the efficacy and
flexibility of our proposed approach in incorporating a variety
of practical constraints, that are otherwise difficult to model
using the existing benchmark methods.

I. INTRODUCTION

Sparse solutions to the linear regression problems have
been of interest to multiple fields such as signal and image
processing, genomics, economics and finance, flight load
prediction, machine learning, and remote sensing [1]. One
of the fundamental ways to formulate this problem is the
best subset selection problem, where given a matrix A =
[a1 a2 . . . ad] ∈ Rn×d, a measurement vector y ∈ Rn, and
a sparsity level k(≪ d), we solve

min
w∈Rd

∥y −Aw∥22, subject to ∥w∥0 ≤ k, (1)

where ∥w∥0 is the number of non-zero entries in w. In
other words, the optimization problem (1) determines (a) the
best subset of k-columns (features) out of the d columns
{a1, . . . , ad} in A, and (b) their corresponding coefficients
such that the vector w linearly maps to the measurement
vector y with minimum squared euclidean loss in (1).

Note that the ∥ · ∥0 norm is non-convex and the optimiza-
tion problem (1) is NP-hard [2]. A large number of work
done in this area design approximate solutions to (1), where
they iteratively add or remove the non-zero coefficients in
w to minimze (1); for instance matching pursuit [3] and
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forward-backward approaches [4]. See [5] for a detailed
survey. Other relevant approaches involve replacing the non-
convex constraint in (1) with a sparsity promoting term T (w)
in the objective function, and solving the problem

min
w∈Rd

∥y −Aw∥22 + λT (w), (2)

where λ is a regularization parameter. A popular choice for
T (w) is the l1 norm ∥w∥1, which results into a convex
optimization problem (2). Algorithms such as gradient pro-
jection [6], iterative shrinkage-thresholding [7], and (linear)
alternating direction method [8] guarantee globally optimal
solutions, and several heuristics such as orthogonal matching
pursuit [9] and least angle regression [10] efficiently address
this convex program. Another class of choice for T (w)
that has received much attention lately are the non-convex
regularizers, which have been shown to result into better
solutions than their convex counterpart [11]. Some of these
choices are ∥w∥p with 0 < p < 1 [12], minimax concave
penalty (MCP) [13], smoothly clipped absolute deviation
(SCAD) [14], and trimmed lasso [11], [15]. The latter has
the additional property that it exactly results into a sparsity
level k as indicated in the optimization problem (1).

As is evident from above, the work done in this area is
extensive, with several different proposed frameworks that
address various aspects of the problem such as scalability,
computational costs, bias and exactness of sparsity. See [5]
for a survey on these methods. Various scenarios such as
(overlapping) grouped variables [16], [17], shape constraints
[18] and restricted non-zero values [19] impose additional
constraints on the design of the sparse vector w in (1).
Though there are methods to address such specific structural
constraints, there is, to the best of our understanding, limited
work on a generalized framework that effectively models and
incorporates such constraints in (1).

The sparsity and structural constraints on w can alter-
natively be viewed as constraints on the selection of the
feature vectors {aj}dj=1 from the matrix A. Thus, a direct
control over the selection of these feature vectors will provide
flexibility in modeling a variety of structural constraints
discussed above, and also in enforcing the sparsity level k of
the vector w (which, generally speaking, is also a structural
constraint). To this end, we develop a framework that (a)
provides a direct control over the desired level of sparsity
in the vector w, (b) is flexible to incorporate a wide-range
of application specific structural constraints on w, and (c)
results into an algorithm that is designed to avoid poor local
minima of the underlying non-convex optimization problem.
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The above contribution (a) result from our viewpoint of
the optimization problem (1), where we dissociate the k-
sparse vector w ∈ Rd into two parts — a binary column
stochastic matrix V ∈ {0, 1}d×k and a vector x ∈ Rk. The
matrix V is designed to encode the location of the k non-
zero values in w. Equivalently, it directly controls subset of k
columns (features) in the design matrix A, that map the non-
zero entries in w to the measurement y. The vector x ∈ Rk

comprises of these non-zero values in w ∈ Rd. As elaborated
in the Section II, the column stochasticity and the size of the
binary matrix V , and the size of the vector x guarantee that
the level k of sparsity in w is exactly achieved.

The contribution (b) also results from the decision matrix
V . Since the matrix V governs the choice of the k features in
the design matrix A, it explicitly enables modeling several
structural constraints that restrict the permissible choice of
subsets of k features in A. For example, (as demonstrated
later) constraints such as selecting only 2 out of the 4
given features, not allowing all features in a given subset
{al1 , al2 , al3} to be selected, or modeling existing constraints
such as selecting pre-defined groups of features (popularly
addressed using group lasso [20]) can be conveniently mod-
elled as structural constraints on V . As far as we are aware,
our proposed framework is the most flexible in incorporating
such variety of constraints on the permitted choice of the
features; primarily owing to the matrix parameter V in our
model that determines the choice of the features in A.

The contribution (c) results from the use of Maximum
Entropy Principle (MEP) in determining the matrix V and
the vector x. Note that the matrix V is a discrete deci-
sion variable that lies in a combinatorially large set V of
all possible binary column stochastic matrices. Thus, the
sparse linear regression (SLR) problem, with V and x as
the decision variable, can be viewed as a combinatorial
optimization problem. In the past, MEP-based frameworks
have successfully addressed a variety of such problems; for
instance the facility location problem [21], data aggregation
[22] and network design [23]. The abstract idea behind all
these frameworks is to consider a distribution over the set of
all possible values of the discrete variable. Then, determine
the distribution that maximizes the Shannon entropy [21] at a
pre-specified value of the expected cost function. This results
into an iterative process, wherein the pre-specified value is
successively lowered to as small value as possible and the
solution from the previous iteration forms an initialization for
the next. These iterations mimic a homotopy from the convex
entropy to the non-convex cost function, which prevents the
algorithm from getting stuck in a poor local minima [23].
As described later in Section III, instead of considering
the distribution over the combinatorially large set V , we
introduce auxiliary distributions over the individual entries
vij in V (at the cost of an additional constraint); thus, making
the resulting optimization problem computationally tractable.

We observe that the proposed MEP-based framework
performs as good as the recent trimmed lasso method on the
unconstrained optimization problems [11], and outperforms
the convex regularization based methods such as lasso, ridge

regression, LARS, and adaptive lasso. We demonstrate the
frameworks flexibility in handling various practical con-
straints (as discussed above). We also illustrate and analyze
the characteristic features of the MEP-based framework such
as annealing and the phase transitions, and their utility
towards increasing computational efficiency and determining
the choice of sparsity level k in the SLR (1).

II. PROBLEM FORMULATION

As briefly stated in the Section I, we begin by re-writing
the sparse vector w as a product of a matrix V and a vector
x, i.e. w = V x, where the matrix V lies in the set

V := {V = (vij) ∈ {0, 1}d×k :
∑
i

vij = 1 ∀ j} (3)

and x ∈ Rk. Note that the number of columns in the
matrix V , the size of the vector x, binary entries in V , and
column-stochasticity of V (i.e.,

∑
i vij = 1 ∀ j) ensure that

maximum number of non-zero elements in w = V x are
exactly k. For instance, let V ∈ V be such that vrs = 1,
then the r-th position in w is non-zero and is taken up by
the s-th entry of x. Further, the column stochasticity of V
ensures that the s-th entry of x ∈ Rk does not appear at
any other location in w — thereby, guaranteeing k non-zero
values in w. The fact that the vector x lies in Rk, and that
the matrix V lies in the set V in (3) together are equivalent
to the sparsity constraint ∥w∥0 ≤ k. Thus, we re-write the
sparse linear regression (SLR) problem in (1) as

min
x∈Rk,V ∈V

∥y −AV x∥22. (4)

III. MEP-BASED FRAMEWORK FOR PROBLEM SOLUTION

To make the optimization problem in (4) amenable to an
MEP-based framework, we reformulate it as

min
x∈Rk,

{η(V |x)}

∑
V ∈V

η(V |x)∥y −AV x∥22 (5a)

subject to η(V |x) ∈ {0, 1}, and
∑
V ∈V

η(V |x) = 1, (5b)

where η(V |x) is an auxiliary binary decision variable that
determines the matrix V . We then replace η(V |x) ∈ {0, 1}
by the soft decision variable p(V |x) ∈ [0, 1], resulting into
a relaxed regression cost

D :=
∑
V ∈V

p(V |x)∥y −AV x∥22. (6)

Note that p(·|x) can also be interpreted as the discrete
distribution over the space of all the matrices V ∈ V given
x. We use MEP to design this distribution {p(V |x)} as well
as to determine the vector x. In particular, their design is
based on the principle of maximizing the Shannon entropy H
subject to the constraint that the expected cost function D in
(6) attains a pre-determined value c0. Maximizing H results
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into most unbiased estimate of {p(V |x)}. The corresponding
optimization problem is

max
{p(V |x)}
x∈Rk

H := −
∑
V

p(V |x) log(p(V |x)) (7a)

subject to D :=
∑
V

p(V |x)∥y −AV x∥22 = c0, (7b)∑
V

p(V |x) = 1, V ∈ V. (7c)

Since |V| = dk, the resulting decision variable space
{p(V |x)} is exponentially large; thus, making the optimiza-
tion problem (7) intractable in its current form. We trim
down the decision variable space to polynomial order by
dissociating the decision variable p(V |x) as

p(V |x) =
d,k∏

i,j=1

pij(vij |x), (8)

where pij(·|x) is distribution over all possible values vij ∈
{0, 1}, the ij-th entry in V , takes. The new decision variable
space {{pij(vij |x)}, x} is now of the polynomial order
O(dk), which takes us closer to posing the optimization
problem (7) in a computationally tractable way. A possible
downside of the dissociation is increase in non-linearity,
which we explore more in the ongoing research. Substituting
(8) in the objective (7a) we obtain

H := 1⊤
d [Q ◦ logQ+ Q̄ ◦ log Q̄]1k, (9)

where ◦ denotes element wise operation, log is also element
wise, Q ∈ [0, 1]d×k and Q̄ ∈ [0, 1]d×k are defined as

Q := (qij), qij := pij(vij = 1|x), Q̄ = 1d×k −Q. (10)

Please see Appendix of [24] for details on the above (as well
as the following) algebraic simplifications. The constraint
(7b), in terms of Q and Q̄, transforms into D :=

∥y −AQx∥22 + [a⊤1 a1 . . . a
⊤
d ad][Q ◦ Q̄](x ◦ x) = c0, (11)

and the constraint (7c), which ensures that only one V in
selected from the set V and that V is a column stochastic
matrix, is taken care by the fact that we define Q̄ := (q̄ij)
(i.e., pij(vij = 0|x)) as 1−Q (where qij = pij(vij = 1|x)),
and that Q⊤1d = 1k, i.e., Q is also column stochastic
matrix. More precisely, the reformulation of the optimization
problem (7) in terms of the tractable decision variables is

max
x∈Rk,Q∈[0,1]d×k

H subject to D = c0, Q⊤1d = 1k. (12)

We consider the following augmented Lagrangian corre-
sponding to the optimization problem (12) is FT =

H− 1

T
(D − c0)− µ⊤(Q⊤1d − 1k)−

1

2
ρ∥Q⊤1d − 1k∥22,

(13)
where T and µ denote the Lagrange multipliers correspond-
ing to the constraints in (12), ∥Q⊤1d − 1k∥22 denotes the
penalty term, and ρ denotes the penalty parameter. Due to
its close analogy to the MEP-based framework illustrated in

Algorithm 1 Maximum Entropy Sparsity-enforcing Regular-
ization for Linear Regression

1: Input: Tmin, Tmax, β < 1;
2: Output: Q and x.
3: Initialize: T0 = Tmax, Q0 = [q1, . . . , qk], qj = 1

d1d,
t = 1, ρ0 = 1

T0
, µ0 = 0, x0 in 15a.

4: while Tt ≥ Tmin do
5: Obtain Qt, xt: Minimize FT in (13) using a descent

method and initial value Qt−1, xt−1.
6: Tt ← βTt, t← t+ 1, update µt in (14), ρt = 1

Tt
.

7: end while

[25], we refer to T as the temperature, and FT as the free-
energy term. It is known from sensitivity analysis [23] that
a large value of the Lagrange parameter T corresponds to a
large value of c0. Similarly, a small value of T corresponds
to a small value of c0. In our framework, we repeatedly solve
(12) at decreasing values of c0 by maximizing the Lagrangian
FT at iteratively decreasing values of T .

More precisely, let Tk be the temperature value at the k-th
iteration of the algorithm, the penalty parameter ρk be equal
to Tk, and the multiplier µk be given by the iteration

µk = µk−1 + ρk(Q
⊤1d − 1k), (14)

where µ0 = 0. We vary Tk from a large value (→ ∞) to
a small value (≈ 0). At large values of Tk, the Lagrangian
FTk

is dominated by the convex entropy function H and
the penalty parameter. As Tk becomes small, the other terms
including the non-convex D gets more weightage. As in other
MEP-based frameworks, it is this homotopy from a convex
function to the non-convex cost function D that helps the
algorithm avoid getting stuck in a poor local minima. It
is also known that given Tk+1 ≥ Tk, the above iterations
converge to a local minima of the optimization problem (12)
(see [26] for details). Please see Algorithm 1 for details on
implementation.

Convergence of Q to a binary matrix : As our objective
is to solve the optimization problem (5), we want that as
T → 0, the matrix Q converges to a binary matrix, i.e.,
Q→ {0, 1}d×k. This in turn enables p(V |x)→ {0, 1}, i.e.,
the soft decision variables converge to the binary solution
required in (5). The structure of the optimal Q is amenable
to this desired aspect of the Algorithm 1. More precisely, by
setting ∂FT

∂x = 0 and ∂FT

∂Q = 0, we obtain

x =
[
Q⊤ A⊤A Q+ diag

[
λ⊤(Q ◦ Q̄)

]]−1

Q⊤A⊤y, (15a)

Q =
exp( 2

T Hm)◦
exp( 2

T Hm) + exp(− 2
T Hp)

, (15b)

where ◦ is elementwise operation, exp is elementwise

Hm = min
{
Ξ,0

}
, Hp = max

{
Ξ,0

}
, (16a)

Ξ = A⊤(y −AQx)x⊤ − 1

2
λa(x ◦ x)⊤ ◦ (1− 2Q) (16b)

− 1

2
1dµ

⊤ − 1

2T
1d1

⊤
d Q+

1

2T
1d1

⊤
k , (16c)
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Fig. 1: Phase Transition. Plot of kd versus T , where kd
are the distinct number of non-zero values in x ∈ Rk (or,
equivalently the distinct columns in Q ∈ [0, 1]d×k).

and λa = [a⊤1 a1 · · · a⊤d ad]. Note that Q in (15b) resembles
a Gibb’s distribution, whose entries are identical at large
values of T (→∞), and converge to either 0 or 1 as T → 0
(with Ξ bounded); thus, achieving the above objective.

IV. FLEXIBILITY IN MODELING CONSTRAINTS

As briefly discussed in the Section I, our proposed frame-
work explicitly allows the control over the selection of the
features in the design matrix A. More precisely, the j-th
feature aj is selected if and only if the sum of j-th row in
the binary matrix V is non-zero. More precisely, if the j-th
feature is selected, then

∑k
t=1 vjt ≥ 1. This attribute of the

framework allows us to conveniently model several structural
constraints in the design of the sparse vector w, which
otherwise are difficult to model in the existing literature
when explicit control over the selection of the feature is not
possible. Below we elucidate some of these scenarios.

1- Correlated feature vectors: The columns of a given
design matrix A may be linearly dependent on each other,
where the extent of their linear dependence is measured by
the Pearson correlation coefficient [27]. For highly correlated
set of features, it is desirable to have only one of the features
to be selected, i.e., to have a non-zero entry in the sparse
vector w only for one of such features, and to have zero
values in w corresponding to all other features in this set.
One straightforward solution is to drop all the features in
this set, except the one that highly correlates with the output
y. However, such a methodology is sub-optimal. On the
other hand, our proposed framework explicitly models this
constraint in terms of the matrix V . In particular, let the r fea-
tures in the set {al1 , al2 , . . . , alr} be highly correlated. Then
the constraint

∑m
t=1 vl1t+vl2t+ . . .+vlrt ≤ 1, enforces that

at most one of the above r-features is picked. To incorporate
this in the optimization problem (12), we begin by re-writing
it as

∑
V ∈V η(V |x)

(∑k
t=1 vl1t + vl2t + . . .+ vlrt

)
≤ 1. As

done before, we replace the above η(V |x) ∈ {0, 1} with
soft weights p(V |x) ∈ [0, 1], and dissociate them as in (8).
Subsequently, the algebraic manipulations (similar to that in

Fig. 2: Plot of fractional change in x in between two
consecutive critical temperatures.

(9) and (11)) result into a constraint in Q = (qij) as
k∑

t=1

ql1t + ql2t + . . .+ qlrt ≤ 1. (17)

The above constraint can be incorporated easily in (12).
2- A priori knowledge: Expert insights play a substantial

role in shaping the sparse solution w, often suggesting the
inclusion of at least one feature from each group when
working with multiple groups of features. For instance, in the
context of medical diagnosis, it is recommended to utilize
data from distinct diagnostic groups, such as radiological
imaging, clinical laboratory tests, and patient medical history,
to ensure a comprehensive evaluation of a patient’s condition.
Our framework allows us to incorporate such a priori infor-
mation into the existing problem. To elaborate, suppose there
are r features in the set {al1 , al2 , . . . , alr} originating from
the same group of features. In this context, the constraint∑k

t=1 vl1t + vl2t + . . . + vlrt ≥ 1 serves to ensure that at
least one of the r features is selected. Similar to the previous
scenario, it can be expressed in terms of the Q as follows∑k

t=1 ql1t + ql2t + . . .+ qlrt ≥ 1.
3- Grouping constraints: Here a group of features needs

to be selected as a single unit. Algorithms such as group lasso
addresses such instances by introducing a regularization term
T (x) to the cost function in (1). In the proposed framework,
such group constraints can be easily modeled. For instance,
let {al1 , al2 , . . . , alr} be a group of features that occurs as
a single unit, i.e., if one of them is picked then all of them
should be picked. This constraint is modeled as vl1t = vl2t =
· · · = vlrt. As above, theis constraint in terms of the decision
variable Q is given by ql1t = ql2t = · · · = qlrt.

Note that the above constraints can be easily incorporated
into (12), and the resulting optimization problem can be
addressed using existing methods such as interior points
algorithm and various other penalty methods [26].

Phase Transition: Algorithm 1 is characterized by a
unique trait wherein at large values of temperatures T all
non-zero values in x are identical; equivalently, the columns
in Q are identical (15a). As T decreases, there are specific
instances at which the number of distinct non-zero values
in x increase (equivalently, distinct columns in Q increase).
We refer to these instances as phase transitions, and the
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Fig. 3: (I)The figure illustrates the cost values associated with solutions obtained using the Alternating Minimization and Convex Envelopes
heuristics of Trimmed Lasso, alongside our proposed Maximum-Entropy methodology. (a)-(d) The figure exhibits the obtained V matrices
for different k values (3, 4, and 5), encompassing various scenarios: unconstrained (a.1, a.2, a.3), correlated features removal (b.1, b.2),
a priori knowledge imposition (c.1, c.2, c.3), and grouping constraints (d.1, d.2). In this representation, the color black denotes that the
element has a value of one, while gray is used to indicate a value of zero.

associated temperature values at which they occur as critical
temperatures Tcr. Figure 1 illustrates this phenomenon on
randomly generated data y ∈ R8, A ∈ R8×15, w ∈ R15,
and ∥w∥0 = 3. For the purpose of illustration we set k = 5
(though the true sparsity is 3, it is not known a priori in
general). The Algorithm 1 begins with kd = 1 distinct non-
zero value in x ∈ R5 at high temperatures (i.e., low values
of log(1/T )). As T decreases, the number of distinct values
remain unchanged for sometime before a critical temperature
is reached, where x ∈ R5 contains kd = 2 distinct values.
This process continues, till the Algorithm 1 determines kd =
5 distinct values in x ∈ R5. See [24] for computation of Tcr.

Annealing schedule: Phase transition plays a key role in
designing the annealing schedule for the temperature T in
the Algorithm 1. We observe that between two consecutive
critical temperatures the change in the vector of non-zero
values x as determined by the Algorithm 1 is small. Let
∆x(n) = ∥x(n) − xmean∥/∥xmean∥ denote the fractional
change in x(n) — the non-zero values determined by the
Algorithm 1 at temperature Tn — where xmean is the
average of all the non-zero value vectors determined by
the Algorithm 1 in between the two consecutive critical
temperatures Tcrn1

and Tcrn2
such that Tcrn1

< Tn < Tcrn2
.

Figure 2 illustrates the boxplot of this fractional change in
∆x(n) observed in between two consecutive T ′

crs for the
example considered earlier in this section. Note that ∆x(n)
is quite small and the medain roughly lies between 0% to
1%; whereas the change observed at the phase transition
is considerable, as it adds a distinct non-zero value in x
(see Figure 1). In particular, in Figure 2, we observe a
change of 84% at the first critical temperature Tcr1, 32%
at Tcr2, 8% at Tcr3 and 9% at Tcr4 in the non-zero values x
determined by the Algorithm 1. Thus, the solution given by
the algorithm undergoes a drastic change only at Tcr’s and
largely remains unchanged in between any two consecutive
Tcr’s. The above characteristic of our MEP-based algorithm
is significant to determining an appropriate schedule for
the annealing parameter T . In particular, it motivates a
geometrical annealing of temperature T as in other MEP-
based frameworks (see [21] for details).

V. SIMULATIONS AND RESULTS

In this section, we apply our methodology to a dataset
containing 205 data points related to automobile features,
as referenced in [28]. Notably, 195 of these records have
complete information, and we carefully select 13 continuous
features for sparse linear regression, with the automobile
price as the model’s output. These features encompass a wide
range of attributes, including car dimensions, weight, engine
specifications, and fuel efficiency. To enhance the quality of
results, we normalize the columns to have a 2-norm of 1.

Our primary aim is to develop a predictive model for au-
tomobile prices, with an emphasis on sparsity. This involves
the selection of a small-sized subset of these 13 features,
accompanied by their respective coefficients. In essence, our
goal is to determine the values of the matrix V and vector x
in (4) while maintaining a predefined sparsity level indicated
by k. Here, V represents the selected features, and x signifies
their corresponding coefficients. For the unconstrained sce-
nario, we consider three instances of sparsity k ∈ {3, 4, 5}.
The resultant V matrices are visually represented in Figure
3 (a.1, a.2, and a.3). As illustrated in Section II, a feature
aj is selected if the j-th row of V sums up to a value
≥ 1. Thus, as illustrated in the Figure, the selected features
correspond to columns {a6, a9, a12}, {a6, a9, a10, a12}, and
{a6, a8, a9, a10, a12}, respectively for the above three spar-
sity levels. The corresponding cost function values for these
degrees of sparsity are 0.2248, 0.2211, and 0.2165.

To assess our method’s accuracy and establish a bench-
mark, we conduct a comparative analysis, evaluating our
results against Trimmed Lasso, as presented in [15], using
both the alternating minimization and convex envelopes
heuristics. This analysis employs the same dataset and con-
sistent sparsity levels, ensuring a fair comparison. Trimmed
Lasso has consistently demonstrated superior performance
compared to various other Lasso variants, making it an ideal
point of comparison for our method.

The cost values associated with the solutions are graph-
ically illustrated in Figure 3(I). Notably, across this dataset
and for three distinct sparsity levels (k values of 3, 4,
and 5), our maximum entropy approach and both Trimmed
Lasso heuristics exhibit quite similar performance. It’s worth
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mentioning that our method holds a slight advantage in
terms of accuracy. The features selected by both heuristics
of Trimmed Lasso correspond to columns {a6, a10, a12},
{a6, a9, a10, a12}, and {a6, a8, a9, a10, a12} respectively, for
the three mentioned sparsity levels.

A distinctive advantage of our approach, setting it apart
from Trimmed Lasso, is its capacity to integrate diverse
constraints, as discussed in Section IV and simulated below.
1- Correlated feature vectors: We classify features as corre-
lated if their absolute correlation coefficient exceeds 0.8. This
criterion identifies the following sets of correlated features:
{a1, a2, a4}, {a1, a5}, {a2, a5}, {a4, a6}, {a10, a12, a13},
{a10, a6}, and {a13, a4}. As a result, it is advisable to
choose, at most, one feature from each correlated set. As
shown in Figure 3, for both k = 4 and k = 5 (a.2 and
a.3), the unconstrained solution includes correlated features
{a6, a10} and {a10, a12}. Upon imposing the constraint (17),
the solution changes to selecting {a4, a9, a10, a11} for k = 4
and {a6, a7, a8, a9, a12} for k = 5, as demonstrated in Figure
3 (b.1 and b.2). The corresponding cost values are 0.2538 and
0.2214, respectively, which are (naturally) a bit larger than
the unconstrained scenario illustrated above.

2- A priori knowledge: Suppose we possess prior knowl-
edge indicating that from various feature groups, we must
include at least one feature. For example, in our dataset,
it is essential to select at least one feature related to the
vehicle’s size, one related to its engine, and one associated
with its fuel efficiency. In practical terms, this constraint
implies that within each group of columns {a1, a2, a3, a4},
{a6, a7, a8, a9, a10, a11}, and {a12, a13}, a minimum of one
column must be selected. The features selected under this
constraint are depicted in Figure 3 (c.1, c.2, and c.3),
which correspond to {a4, a10, a13}, {a4, a9, a10, a13}, and
{a4, a8, a9, a10, a13} for sparsity of 3, 4, and 5, respectively.
The respective cost values are 0.2657, 0.2550, and 0.2223.

3- Grouping constraints: Solely for demonstrative pur-
poses, we have assumed that columns {a6, a7} and {a9, a10}
are treated as unified groups. In other words, it’s an all-or-
nothing selection within each group. Illustrated in Figure 3
(a.1 and a.2), the initial unconstrained solution contradicts
the imposed constraint. After incorporating the grouping
constraint, the newly selected features for k = 3 and k = 4
are {a9, a10, a13} and {a4, a6, a7, a12}, as depicted in Figure
3 (d.1 and d.2) with cost of 0.2655 and 0.2268, respectively.
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