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Abstract— Environmental factors such as rain, snow, or ice
significantly impact road friction, which correlates strongly with
traffic safety. This work uses a sensitivity-based moving horizon
estimator to gauge the maximum road friction coefficient
online. The adopted friction estimation strategy combines the
estimated rack force based on a linear steering system model
with a nonlinear two-degree-of-freedom (DoF) single-track
vehicle model. The parametric output sensitivity is monitored
and integrated within the moving horizon estimation (MHE)
framework to prevent an arbitrary estimate in the absence of
sufficient excitation. The method is evaluated by simulations
and experiments under various road conditions. The results
validate the proposed strategy and demonstrate its capability
to reliably estimate the maximum road friction coefficient.

I. INTRODUCTION

Empirical data shows a strong correlation between road
friction and traffic safety [1]. Environmental factors such as
rain, snow, or ice significantly impact road friction. Despite
drivers adjusting their behavior depending on environmental
factors, road appearance is only sometimes a reliable indica-
tor of friction, and conditions such as ice on the road may
not be clearly visible.

The so-called maximum road friction coefficient is es-
sential for any onboard control device relying on a car
model, e.g., stability control, and trajectory or path planning
for autonomous vehicles, necessitating its precise real-time
estimation. The maximum road friction quantifies the grip
limit between the tires and the road. Because this study
only considers vehicle lateral dynamics, the maximum road
friction is defined as µ = max |Ff,y/Ff,z| , where Ff,y and Ff,z
are the lateral and normal forces on the front axle, respec-
tively. Maximum road friction coefficient assessment can be
categorized into cause-based and effect-based methods [2].
The former determines road friction by its physical cause, for
instance, material, tire depth, temperature, etc. Effect-based
methods, however, deduce road friction from tire response.
One such response is the slip angle, which is the focus of
this paper.

Slip-angle-based methods of estimating the maximum road
friction coefficient have been the core subject of many
studies. In [3] and [2], the longitudinal slip has been used
to estimate road friction during longitudinal acceleration or
braking. On the other hand, [4], [5], [6] rely on lateral
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slip to estimate road friction when the vehicle steers. These
papers employ the self-aligning torque (SAT) to estimate
the friction coefficient at lower excitation levels than when
using lateral acceleration. The SAT, however, is difficult to
measure and, therefore, to validate. A combination of lateral
and longitudinal vehicle models can be found in [7], where
the road friction is estimated using an unscented Kalman
filter (UKF) with a 13-degree-of-freedom (DoF) vehicle
model in combination with local sensitivity analysis to avoid
estimation drift.

Many approaches in the literature rely on extensive knowl-
edge of the tires and vehicle dynamics to estimate the maxi-
mum road friction coefficient µ. However, large models with
many parameters are computationally costly and vulnerable
to parameter changes. In this paper, a novel sensitivity-based
moving horizon estimation (MHE) of the road friction is
developed based on a two-DoF nonlinear single-track model.
A benefit of MHE over Kalman filtering is the ability to
encompass constraints and to tailor the cost function to be
minimized to the specific application. The general operating
principle is depicted in Fig. 1. Measurements of the vehicle
are used by a rack force estimator that provides the rack force
as an additional measurement to the subsequent state and
friction estimator block. Similar to SAT, the rack force allows
estimating the maximum road friction at lower excitation
levels than solely relying on lateral acceleration and yaw
rate. In contrast to SAT, however, the rack force can be
quite easily measured using strain gauge sensors, allowing
for more straightforward validation. The subsequent state
and friction estimator block in Fig. 1 basically consists of
two moving-horizon-based state and friction estimators. To
avoid an arbitrary road friction estimation without sufficient
excitation, i.e., in instances of low identifiability, the sen-
sitivities of the outputs to road friction are monitored. In
light of this, the µ-update is slowed down or even stopped
when the sensitivity is too low. The sensitivity is assessed
within the whole optimization horizon of the MHE instead
of at a single time instant, which would be the case for a
Kalman-filter-based parameter estimation, providing higher
robustness against noise.

The remainder of the paper is structured as follows: the
rack force estimation with a linear steering system model
and moving-horizon-based vehicle state estimation with a
nonlinear single-track model are introduced in Section II.
The maximum road friction estimation algorithm and the
sensitivity analysis are described in Section III. Finally, the
maximum road friction estimator is validated in Section IV
using simulations as well as experimental data from a test
rig and a vehicle driving on dry and wet asphalt.
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Fig. 1: Block diagram of sensitivity-based moving horizon estimation of road friction.

II. RACK FORCE AND STATE ESTIMATION

Determining the rack force can be done in two ways:
either by modeling the car’s lateral dynamics as previously
done in [8] or by modeling the steering system when there
is access to the road wheel actuator current or torque. The
following section provides a brief overview of rack force
estimation with a linear steering model. Additionally, the
moving horizon-based state estimator in Fig. 1 is described
using a nonlinear vehicle model. In the context of MHE, the
estimated rack force is used as an additional measurement,
which should increase the accuracy of the state estimation
and allow for friction estimation at lower excitation than
when solely relying on the lateral acceleration and yaw rate.
This is because the rack force reaches its maximum at lower
slip angles than the lateral force, as shown later in Section II-
B.

A. Rack force estimation

A common way of estimating the rack force involves
utilizing the steering system. To this end, the steering system
is modeled as a single mass system given by

mrackv̇rack =
iMmotor

r
− Frack, (1)

where Frack, vrack , and mrack represent the rack force, rack
velocity, and combined mass of the rack, respectively. The
friction force is assumed to be negligible. The motor torque
exerted on the steering rack is Mmotor, i is the transmission
ratio and r is the length of the lever arm. Similar models
can be found, e.g, in [9] and [10]. Note that a steer-by-wire
(SbW) system is considered in this paper, ergo the force
applied by the driver on the steering wheel does not transfer
directly to the rack. With the road wheel actuator torque as
the input, the measured rack speed as the output, and the
rack force as disturbance, the state-space formulation of the
steering system results in[

v̇rack

Ḟrack

]
=

[
0 − 1

mrack

0 0

] [
vrack
Frack

]
+

[
i

mrackr

0

]
Mmotor (2a)

y =
[
1 0

] [vrack
Frack

]
. (2b)

The state-space formulation (2) is used for a linear
Kalman-Bucy filter. An example of the estimation result is
illustrated in Fig. 2, corresponding to a normalized root-
mean-square error (NRMSE)* of 3.7%. The small error
shows the capability of this method in spite of its simplicity.
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Fig. 2: Rack force measurement and estimation.

B. Moving-horizon-based vehicle state estimation

The lateral dynamics of the vehicle can be described by
a two-DoF single-track model with the lateral forces Ff,y
and Fr,y acting on the front and rear axle, see Fig. 3. The
parameters lf and lr indicate the distance from the center
of gravity (CoG) to the front and rear axles. The absolute
velocity of the vehicle is denoted by v, the steer angle by δ,
the side-slip angle by β, and the yaw rate by ψ̇. Based on
[11], [12], and by neglecting the longitudinal forces acting
on the tires, the equations of motion for the nonlinear single-
track model result in[
β̇

ψ̈

]
=

[
−ψ̇ + 1

mv (Ff,y cos (δ − β) + Fr,y cos (β))
1

Izz
(Ff,y cos (δ)lf − Fr,ylr)

]
, (3)

where Izz is the moment of inertia about the zv-axis.
The lateral forces Fi,y with i ∈ {f, r} depend on the

front and rear slip angles αi, i.e., the angle between the
longitudinal axis of the respective tire and its direction of
motion, cf. Fig. 3. Using geometric considerations, αf and

*NRMSE =

√
1
n

∑n
k=1

(yk−ŷk)
2

ymax−ymin
, where n is the number of observa-

tions.
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αr can be expressed as

αf = δ − arctan

(
v sinβ + lfψ̇

v cosβ

)
(4a)

αr = − arctan

(
v sinβ − lrψ̇
v cosβ

)
. (4b)

A tire model is necessary to characterize the lateral forces
Fi,y . This work employs an exponential tire model [13]

Fi,y = µFi,z

(
1− e−K|αi|

)
sign (αi) , i ∈ {f, r}, (5)

where µ is the maximum lateral coefficient of friction
between the tire and the road and Fi,z denotes the normal
forces acting on the front and rear tires. Additionally, K
is related to the cornering stiffness Cα of the tires, which
determines the slope of the curve for small slip angles αi.
The normal forces Fi,z are modeled using quasi-static load
distribution, taking into account the longitudinal acceleration
ax and the height h of the CoG above the ground, i.e.,

Ff,z = m
−axh+ glr
lf + lr

, Fr,z = m
axh+ glf
lf + lr

. (6)

Using the lateral force on the front tire Ff,y , the rack force
can be expressed as

Frack = Ff,y(tm + tp(αf))ip =Malignip, (7)

where tm and tp(αf) denote the mechanical and pneumatic
trails, and ip is the ratio between the self-aligning torque
Malign and the corresponding rack force for the given vehicle.
The pneumatic trail tp(αf) is modeled according to [6] as a
linearly decreasing function of tan(αf), while tm is assumed
to be constant. In Fig. 4, a comparison between (5) and (7)
is depicted. The comparison illustrates that Frack reaches its
maximum at lower slip angles αf, indicating lower excitation
levels compared to Ff,y .

The overall single-track model (3) with the slip angles (4),
tire model (5), and normal forces (6) can be represented as a
nonlinear state-space model ẋ = f(x,u, µ, t) with the state
and control vectors

x =
[
β ψ̇

]T
, u =

[
v δ ax

]T
. (8)
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Fig. 4: Front lateral force Ff,y and rack force Frack plotted
over the slip angle αf.

The output measurements of the system consist of the lateral
acceleration, the yaw rate, and the rack force computed in
Section II-A, i.e.,

y = h(x,u, µ) =

 ay

ψ̇

F̂rack

 =


1
m (Ff,y cos δ + Fr,y)

ψ̇

Malignip

 . (9)

The state vector x is estimated using MHE, a nonlinear
optimization-based method. MHE aims to find the optimal
state trajectory x∗(tk−T, tk) that minimizes a cost functional
J over the recent past horizon T > 0 for each time step
tk = t0 + k∆t with the sampling time ∆t > 0. The MHE
problem is formulated as

min
x̂k

J(x̂k, µ̂k,Q) =

∫ tk

tk−T

∆y(t)TQ∆y(t) dt (10a)

s.t. ẋ = f(x(t), ū(t), µ̂k, t), x(tk) = x̂k (10b)
y = h(x(t), ū(t), µ̂k) (10c)
x ∈ X = [xmin,xmax], (10d)

where Q is a positive semi-definite diagonal weighting
matrix, ū(t) is the control vector, and ∆y(t) = y−ȳ(t) with
the measurements ȳ(t). Moreover, (10d) constitutes the box
constraints for the states x to avoid state estimation in un-
reasonable domains. The estimated road friction coefficient
µ̂k is determined in Section III. The toolbox GRAMPC [14]
for nonlinear continuous-time systems was implemented to
solve (10). More in-depth information on MHE can be found,
e.g., in [15].

III. ROAD FRICTION ESTIMATION

Estimating the maximum road friction coefficient µ is
more delicate than the state estimation described above.
In particular, the identifiability of µ strongly depends on
the excitation level of the rack force Frack. Therefore, the
estimation of µ is handled as a separate problem, which
would also provide the possibility of estimating µ and x
with different time scales, if necessary.

A. Proximal minimization problem

By examining Fig. 4, it becomes apparent that an estimator
can only determine the maximum road friction coefficient
in the vicinity of either peak. In more technical terms, the
parameter µ has low identifiability in regions away from the
peaks. Consequently, estimating µ in areas of low identifi-
ability would yield arbitrary results, meaning an estimator
might be badly conditioned or converge to an element of
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the set of local or global minima, depending on the initial
conditions [16]. The parametric output sensitivity, discussed
later in Section III-B, is taken as a measure of local at-point
identifiability.

The maximum road friction coefficient µ is estimated by
the proximal minimization problem

µ̂k+1 =arg min
µ̂∈M

(
J(x̂k, µ̂k,Qµ)

+

∫ tk

tk−Tµ

1

2γk(Sk)
||µ̂− µ̂k||2dt

)
, (11)

encompassing the sensitivity-dependent weight γk(Sk), in-
troduced in Section III-B, as a measure of identifiability.
The box constraint of the µ-estimate is M = [µmin, µmax].
A different weighting matrix Qµ than in (10) is chosen
because, as mentioned earlier, the identifiability of µ strongly
depends on the excitation level of the rack force. For the state
estimation (10), however, the outputs are weighted similarly.
The proximal minimization problem (11) is a compromise
between the minimization of J and penalizing the distance
to the previous iteration point with the sensitivity-dependent
weight γk(Sk). Under the assumption that the proximal
minimization problem (11) is strictly convex, which holds
if (10a) is strictly convex or if γk(Sk) is sufficiently small,
the solution is given by

µ̂k+1 = ψ (µ̂k + γk(Sk)∇µJ(x̂k, µ̂k,Qµ)) (12)

with the projection function

ψ(µ̂k) =


µmin if µ̂k < µmin

µmax if µ̂k > µmax

µ̂k else
(13)

to account for the constraint set M = [µmin, µmax]. The
gradient of J(x̂k, µ̂k,Qµ) with respect to µ at the point µ̂k

is given by

∇µJ(x̂k, µ̂k,Qµ) =

∫ tk

tk−Tµ

∂

∂µ
H(x̂k,u, µ̂k,λ) dt (14)

with the Hamiltonian

H(x̂k,u, µ̂k,λ) = ∆yTQµ∆y + λTf(x̂k,u, µ̂k) (15)

and the adjoint state vector λ(t), t ∈ [tk − T, tk] satisfying
the adjoint dynamics

λ̇ = −∂H(x̂k,u, µ̂k,λ)

∂x
, λ(tk) = 0, (16)

which can be solved backward in time to obtain λ. The state
vector x̂k follows from (10b).

B. Sensitivity analysis

The local at-point identifiability within the optimization
horizon of each time step is assessed to avoid the risk of
an arbitrary µ-estimation. This is achieved with the help of
parametric output sensitivity, which describes how sensitive
the outputs are to parameter changes [17]. As the sensitivity

of the outputs to perturbations in a particular parameter
increases, the parameter becomes more critical to the system
behavior.

Consider the first-order sensitivities of the state xµ(t) =
∂x(t, µ)/∂µ and the output yµ(t) = ∂y(t, µ)/∂µ with respect to
µ. The corresponding dynamics follow from (10b) and (10c)

d
dt
xµ =

∂f

∂x
xµ +

∂f

∂µ
, xµ(tk − T ) = xµ0 , (17a)

yµ =
∂h

∂x
xµ +

∂h

∂µ
. (17b)

where xµ0 = xµ(tk−1 − Tµ + ∆t) if k > 0 and xµ0 = 0
if k = 0. Note that (17) is a linear time-varying system
of differential equations. The sensitivity matrix S is then
defined as

S = µ̂k

yµ(tk − T ) · /y(tk − T )
...

yµ(tk) · /y(tk)

 (18)

where ·/ denotes element-wise vector division. The division
and multiplication by y and µ̂k normalize the sensitivities
to allow for better comparison between driving scenarios
and road conditions. The recent past horizon T at each time
instant tk is discretized into N steps, therefore S ∈ R3N×1.
This matrix basically consists of snippets of the output
sensitivities at each time instant within the optimization
horizon. A scalar measure of the sensitivity can be computed
as

Sk = STS, (19)

i.e., a sum of the normalized squared sensitivities of each
output. Below a certain threshold Sthreshold, the parameter µ
is considered not locally identifiable since, within the given
horizon, the parameter would have a negligible effect on the
output.

The weight γk(Sk) in the proximal minimization problem
(11) is defined as

γk(Sk) =
γ0,k

1 + e−c(Sk−Sthreshold)
(20)

to encompass the sensitivity into the update law (12), which
is essentially a sigmoid function taking possible values
between 0 and γ0,k. The inflection point of the curve is given

Algorithm 1 Sensitivity-based MHE

1: Initialize:
x0, µ0

2: while t < Tsim do
3: compute x̂k from (10)
4: compute xµ and yµ in (17)
5: compute S and Sk using (18) and (19), respectively
6: compute (16) and (14) to get ∇µJ(x̂k, µ̂k,Qµ)
7: compute step size γk(Sk) from (20)
8: compute µk+1 using (12)
9: set k ← k + 1 and go to step 2

10: end while
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by Sthreshold, while c determines the gradient. Therefore, (20)
modifies the step size in (12) depending on the sensitivity.
Specifically, the step size is reduced in regions of low
sensitivity to avoid false or untrustworthy predictions. The
estimation method is summarized in Algorithm 1.

IV. VALIDATION

The maximum road friction estimation scheme is validated
with the help of simulations, a test rig, and finally, data from
a vehicle on a test track. The latter was conducted on road
surfaces with a variety of friction coefficients.

A. Simulation results

The estimation method is tested against a well-
parameterized model in the simulation environment
CarMaker*. The tests encompass different road friction
coefficients.

Fig. 5a shows an example of the µ-estimation results using
strong adaptation ( ) with c = 1 in (20), weak adaptation
( ) with c = 0.07, and no adaptation with c = 0 ( ).
The outputs are plotted in Fig. 5c and Fig. 5d. At around
t ≈ 13 s, all three estimators reach the correct value of µ
when the excitation is high enough, i.e., S > 40, cf. Fig. 5b.
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Fig. 5: Results using CarMaker simulation data:
actual ( ); strong adaptation c = 1 ( ); weak adap-
tation c = 0.07 ( ); no adaptation c = 0 ( ); without
rack force measurement ( ).

*https://ipg-automotive.com/en/
products-solutions/software/carmaker/

However, in the case of no adaptation (c = 0) and when the
sensitivity is low, the estimation presents a notable deviation
from the actual value of the maximum road friction coeffi-
cient of 1.0. Conversely, exploiting the sensitivity illustrated
in Fig. 5b by setting c > 0 slows down the update of µ as the
sensitivity declines. The amount by which µ is updated when
the sensitivity is close to Sthreshold depends on the tuning
parameter c in (20), as depicted in Fig. 5a. Note that the
impulse-like peaks in Fig. 5b correspond to zero-crossings
due to the normalization in (18). As seen in the figure, the
peaks do not notably affect the estimation, since (20) can
only take values between 0 and γ0,k.

In Section II, it was claimed that using the (estimated) rack
force as an additional measurement would enable estimating
road friction at lower slip angles αf, thus requiring lower
excitation levels compared to relying solely on lateral accel-
eration and yaw rate. To test this assertion, the road friction
estimation without the rack force measurement ( ) is
depicted in Fig. 5a with c = 0. The figure shows that the
estimated road friction does not reach the actual value of
µ, even with high lateral accelerations well beyond ay =
5ms−2, thus validating the previously mentioned claim.

Another test scenario is illustrated in Fig. 6. At around
t = 3 s, µ changes abruptly from 1.0 (section 1 ) to 0.5

(section 2 ), as seen in Fig. 6a. A change in the µ-estimate
is triggered when the sensitivity S increases, because at the
time the actual value of µ changes the outputs illustrated in
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Fig. 6: Results using CarMaker simulation data with chang-
ing road friction coefficients.
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Fig. 6c and Fig. 6d are equal to zero. At the transition from
2 to 3 , i.e., when the road friction coefficient changes

rapidly from 0.5 to 1.0, the µ-estimate is adjusted rapidly and
reaches the correct value in around one second. Thus, one
can discern that the method is equally suited for estimating
rapid changes in µ.

B. Experimental results

The experimental validation was first conducted on a test
rig and then on a vehicle operating on dry and wet tracks. The
test rig simulates the car in CarMaker, then applies the com-
puted lateral forces on an experimental configuration of the
steering system, yielding simulated car data in combination
with measured road wheel actuator torque. The results are
depicted in Fig. 7a, which show that the estimation reaches
the vicinity of the actual value of road friction, µ = 1.1,
when enough excitation is present, cf. Fig. 7b.

Additionally, a number of tests were carried out using data
from a vehicle driving on dry and wet tracks. One example
is shown in Fig. 8a, which exhibits a rapid change in µ
at t ≈ 15.6 s due to the transition from a wet track to
a dry one. According to [1], dry asphalt has a maximum
road friction coefficient of µ ≈ 0.8 − 1, whereas on wet
asphalt µ ≈ 0.7 − 0.8. On the wet track, starting with an
initial µ0 = 0.6, the µ-estimate reaches the theoretical region
between 0.7 − 0.8 in the presence of sufficient excitation
(see Fig. 8b). Analogously, the µ-estimate increases on
the dry track until reaching a value within the theoretical
range of 0.8 − 1.0. Consistently with the simulation results
in the previous section and owing to the sensitivity-based
MHE, even when the sensitivity is low due to the excitation
decreasing, as seen in Fig. 8b, the estimated µ is kept within
the theoretical range. It is worth noting that for this test the
direct measurement of the rack force was taken instead of the
estimation because, at the time of writing, the motor torque
Mmotor in (2) of the test vehicle was not available.

V. CONCLUSIONS

The paper introduces an MHE scheme for simultaneously
estimating the states of a two-DoF nonlinear single-track
vehicle model and the maximum road friction coefficient.
Firstly, a rack force estimator with a linear steering system
model is presented. In addition, a representation of the
lateral vehicle dynamics with an exponential tire model is
introduced. This combined approach allows for estimation
at lower excitation levels compared to the sole use of
lateral dynamics. The MHE approach consists of a separate
state and friction estimator in connection with a sensitivity
analysis to prevent an arbitrary road friction estimation in
the absence of sufficient excitation by adjusting the step size
of the friction update accordingly. The results confirm that
the developed method is well-suited for estimating maximum
road friction. Further tests, tuning, and code optimization are
necessary to ensure real-time feasibility on an onboard car
computer.
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Fig. 7: Results using test rig data.
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Fig. 8: Results using vehicle data during a transition from
wet to dry road.
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