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Abstract— For individuals with diabetes, the intraperitoneal
drug-delivery route may enable fully automated artificial
pancreas technology. For such systems, the model predictive
control (MPC) algorithm is favorable. However, MPC requires
a reliable predictive model. In this work, we aim to design a
trial protocol to collect data for identification of a bi-hormonal
intraperitoneal prediction model. We apply model-based de-
sign of experiment (MBDoE) to determine the optimal input
of meals, subcutaneous insulin injections, and subcutaneous
glucagon injections. Based on parameters from two anesthetized
pigs, we design experiments to identify parameters in awake
animals. Our results demonstrate how MBDoE may be used as
a planning tool when designing trial protocols. The approach
may hold potential as a support tool for clinicians when
personalizing control algorithms for human AP users.

I. INTRODUCTION

Type 1 diabetes (T1D) is an autoimmune disease where
the body looses its ability to secrete insulin. In some cases
glucagon secretion is affected as well. Unfortunately, the
two hormones are essential to maintain a healthy blood
glucose level (BGL). Insulin enables cellular blood glucose
uptake from the bloodstream and successively, the deposit of
glucose, in the form of glycogen, inside the liver. Glucagon,
the counterpart of insulin, triggers glycogenolysis, a process
where stored glucose is released from the liver to raise
the BGL. Without insulin to enable glucose uptake, the
body generates energy for its cells in an alternative process
creating toxic bi-products. Accumulation of these bi-products
can be lethal. As a result, people with T1D require life-long
insulin therapy to survive.

In addition to immediate survival, keeping the BGL within
a tight range is crucial to avoid short- and long-term com-
plications. However, keeping the BGL in a healthy range is
no simple task. For a person with T1D, it involves constant
monitoring of BGL, estimation of consumed carbohydrates
and the adjustment of insulin doses in accordance with activ-
ity level and physiological variations. With the advancement
of the artificial pancreas (AP), some of these tasks can be
automated. An artificial pancreas consists of a continuous
glucose monitor (CGM) to measure the BGL, an algorithm
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to calculate the needed input to drive BGL into the target
range, and a pump to infuse the computed dose of insulin and
possibly glucagon. Today, several commercial AP systems
exist with a subcutaneous drug delivery route [1]. In such
hybrid closed-loop systems, the user must estimate and
announce the number of carbohydrates in a meal at the
time of consumption to achieve good control. This places
a significant workload on the user. Instead, delivering drugs
intraperitoneally may enable fully automatic systems [2]. The
intraperitoneal route of drug delivery offers faster dynamics
than the subcutaneous route such that an AP control algo-
rithm can respond in due time without meal announcements.
In addition, bi-hormonal artificial pancreas systems with
insulin and glucagon guards against hypoglycemic episodes
and provides additional safety [3]–[6].

In several AP systems, model-based control algorithms
show promising results. However, this control framework
requires a personalized prediction model for each individual.
Human models exist for subcutaneous systems, but for
the intraperitoneal drug delivery route they remain to be
identified. In previous work, we present an intraperitoneal
prediction model for pigs and identify parameters in anes-
thetized animals using intravenous glucagon, glucose and
insulin injections [7]. To obtain a system for use in awake
pigs, we must re-identify a subset of parameter values. We
will need a similar procedure to adapt the model to human
individuals. As a first step towards clinical implementation,
we aim to design a pre-clinical trial that can provide suffi-
cient data for system identification in awake pigs. For simpler
and safer data collection, we propose to excite the gluco-
regulatory system through meals, and subcutaneous insulin
and glucagon injections.

One approach to designing a clinical trial is optimal
experimental design [8], [9]. The method offers a framework
to design trial protocols that enhance the ability to estimate
a selected set of model parameters [10]. Within diabetes
research, the method has shown to improve glucose tolerance
tests and clinical trial designs for AP studies [11]–[13] as
well as in the design of therapies for type 2 diabetes (T2D)
[14], [15]. In this work, we apply model-based design of
experiment (MBDoE) to identify an optimal trial protocol
for parameter identification. We apply parameters from two
anesthetized pigs in our design model. The goal is to identify
a data collection protocol to estimate four central parameters
in a prediction model for awake pigs.

This paper is structured as follows. Section II introduces
the model and method used to design an optimal experiment.
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In Section III, we present the computed trial protocols. We
discuss the possible clinical use-case of MBDoE in Section
IV and conclude on the findings in Section V.

II. METHODS

A. Design model

As our design model, we use a published bi-hormonal
prediction model for intraperitoneal AP systems, (1a)-(1g)
[7]. To use meals as an additional input for system excitation,
we augment the prediction model with a two-compartment
meal model, (1h)-(1i) [16]. The augmented model consists
of nine equations that describe the gluco-regulatory system,

ẋ1(t) = −(β1 + β2x2(t) + β3x3(t))x1(t)

+HGPmeta + γ7(ω)dEGP + γ7(ω)
x9(t)

τm
, (1a)

ẋ2(t) = −x2(t)β5 + β5β7γ1(ω)x4(t)− β5Fsat, (1b)
ẋ3(t) = −x3(t)β8 + β8Fsat, (1c)
ẋ4(t) = −γ1(ω)x4(t) + γ8(ω)u(t), (1d)
ẋ5(t) = β9(−x5(t) + β10x6(t)), (1e)
ẋ6(t) = −γ2(ω)x6(t) + γ9(ω)h(t), (1f)

ẋ7(t) = γ3(ω)x3(t)x1(t)− γ4(ω)
HGPmeta

β4
, (1g)

ẋ8(t) = d(t) · 1000

cMwG
− 1

τm
x8(t), (1h)

ẋ9(t) =
1

τm
(x8(t)− x9(t)), (1i)

where

HGPmeta = β4x5(t)

√
x7(t)

100
· e−β11x3(t), (1j)

Fsat = β6
δ12γ5(ω)x4(t)

δ13 + δ12β7γ1(ω)x4(t)
. (1k)

x1 [mmol/L] is the plasma glucose, x2 [U/min] is the
effective insulin in the body and x3 [U/min] is the effective
insulin in the liver. x4 [U/mL] denotes the insulin in the
intraperitoneal fluid. The glucagon in the system is split
between the effective glucagon in the body, x5 [µg/min], and
the glucagon in the intraperitoneal fluid, x6 [µg/mL]. x7 [%]
is the glycogen storage level in the liver. x8 [mmol] and x9
[mmol] describe the absorption of meal input, d(t) [g/min].
As other inputs, the system receives subcutaneous injections
of insulin, u(t) [U], and glucagon, h(t) [µg]. HGPmeta

[mmol/L/min] is the hepatic glucose production and Fsat [U]
is the function to model the saturation of the hepatic first pass
effect. The system outputs discrete glucose measurements,

yk = x1(tk) + vk, (2)

are influenced by the measurement noise, vk ∼ Niid(0, R).
The model parameters are listed in Table I and have not

been published previously. They were identified using the
method presented in [7], for the pig experiments described
in [17]. As stated in [7], the glycogen storage recharging
rate, γ3, in anesthetized pigs are very small, while as stated

in [17], we experienced that the glycogen storage level refills
faster in awake animal and we expect higher rate of refilling
in humans. Since the method presented in this paper is
planned to be used for awake animal experiments and later
in humans, we used higher values for γ3 similar to [17].

B. Optimal Experimental Design
In optimal experimental design, we aim to maximize the

information content of an experimental data set to enhance
the estimation of the model parameters, θ = {β1, β2, β3, β4}.
We solve an optimization problem to identify an experimen-
tal design vector, ϕ, that best excites the modelled system,

min
ϕ

ψ(ϕ, θ), (3a)

s.t. ϕ = [u(t), h(t), d(t)], (3b)
x(0) = x0, (3c)
ẋ(t) = f(t, x(t), u(t), h(t), d(t), θ), (3d)
ŷk = g(tk, x(tk)), (3e)
0 ≥ c(t, x(t), u(t), h(t), d(t), θ). (3f)

We approximate the dynamics of the system by the model
(1) that we denote f(·). The discrete measurement function,
g(·), is specified indirectly by (2), i.e. g(tk, x(tk)) = x1(tk).
x0 contains the initial values for all of the Nx system
states. Insulin, u(t), glucagon, h(t), and meals, d(t), are
the system inputs. The model estimates a discrete series of
measurements, ŷ. Equation (3f) denotes the input and output
constraints.

The cost function in Equation (3) acts on the parameter
variance-covariance matrix, Cθ, which quantifies the para-
metric uncertainty. To improve the parameter estimates, we
wish to reduce the value of Cθ. Hence, we wish to determine,

ϕ̂ = argmin{ψ[Cθ(θ, ϕ)]} ≈ argmin{ψ[I(θ, ϕ)]} (4)

where ψ is the design criterion, an assigned measurement
function of Cθ [10]. As an approximation of Cθ, we apply
Fisher’s information matrix, I(θ, ϕ).

To minimize the volume of the variance ellipsoid, we ap-
ply the design criteria known as D-optimality, i.e. minimizing
the determinant of the Fisher information matrix,

ψD(ϕ, θ) = det (I(θ, ϕ)) , (5)

where Fisher’s information matrix is defined as

I(θ, ϕ) =

N∑
k=1

Sy(tk)
TR−1Sy(tk). (6)

R is the covariance matrix of the measurements, N is
the total number of measurements over the length of the
experiment, and Sy is the output sensitivity matrix. Sy(tk)
is a measure of the change in the output, y, for each of the
nθ estimated parameters at sampling point k,

Sy(tk) =
[
∂y(tk)

∂θ̂1
. . . ∂y(tk)

∂θ̂nθ

]
. (7)

We normalize the nθ parameters with respect to the
(supposed) true values shown in Table I and compute Sy

using central differentiation.
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TABLE I
PARAMETERS FOR THE DESIGN MODEL

Parameter Pig A Pig B Unit Description
β1 0.5264 0.2464 [min−1] Insulin-independent glucose uptake rate
β2 0.5707 1.8443 [U−1] Insulin sensitivity rate in liver
β3 10.9873 15.1293 [U−1] Insulin sensitivity rate in other organs
β4 23.4194 5.8133 [mmol/L/µg] Glucagon sensitivity of liver cells
β5 2.9453 - [min−1] Body response time to insulin
β6 1 - [U/min] Maximum insulin clearance rate of the liver from blood
β7 2.8116 - [1/mL] Coefficient in hepatic first-pass effect, representing peritoneal fluid volume
β8 0.1215 - [min−1] Liver response time to insulin
β9 6.2253 - [min−1] Liver response time to glucagon
β10 1 - [mL/min] Coefficient (gain) in response of liver to insulin equation
β11 10−4 - [unitless] Inhibition of glucose production by effective insulin
γ1(ω) 2.1818− 0.0280ω - [min−1] Diffusion rate of insulin
γ2(ω) 4.8745− 0.0469ω - [min−1] Diffusion rate of glucagon
γ3(ω) 0.0055 + 0.0393ω - [%/mmol/U] Charging rate of glycogen storage level
γ4(ω) 59.9974− 0.7692ω - [%/mmol/µg] Discharging rate of glycogen storage level
γ5(ω) 6.1343− 0.0786ω - [mL] Volume of peritoneal fluid diffusing from peritoneal to portal vein
γ7(ω) 202.6956/ω - [1/L] Proportion to inverse plasma volume
γ8(ω) 1/ω - [1/mL] Inverse volume of the fluid in peritoneal that insulin dissolves in
γ9(ω) 1/ω - [1/mL] Inverse volume of the fluid in peritoneal that glucagon dissolves in
δ12 1 - [unitless] Coefficient in hepatic first-pass effect saturation function
δ13 1 - [U/min] Half-saturation of the insulin hepatic first-pass effect
R 0.1872 - [mmol2/L2] Covariance of CGM measurement noise [18]
ω 36 40 [kg] Body weight
α7 7.7792 28.9723 [%] Initial glycogen storage level
τm 40 - [min] Meal absorption time constant [16]
cMwG 180.156 - [g/mol] Molecular weight of glucose

C. Decision Variable

We wish to determine the decision variable ϕ,

ϕ = {tI , tH , d, I,H} (8)

where tI and tH are vectors of the injection times for
nI subcutaneous insulin injections and nH subcutaneous
glucagon injections, respectively. d lists the meal sizes for
nd meals. I and H contain the injection doses for insulin
and glucagon, respectively.

D. Design Constraints

We enforce a number of constraints on the system inputs
and outputs to have a safe and physiological solution to the
optimization problem. Table II lists the minimal and maximal
values for the inputs in ϕ, where tend [hours] is the length
of the experiment, and ω [kg] denotes the body weight.
To account for delayed input effects, the model does not
receive any inputs in the last four hours of the experiment.
We determine the minimal and maximal meal sizes from the
body weight of the individual. For safety, we do not allow
the insulin injections to exceed 3U.

E. Simulation and implementation

We set meal times to 2 hours and 6 hours after the start
of the experiment and fix the length of the experiment to
12 hours. Table III lists the initial design vector for the
optimization problem. For the initial states of the design
model, we assume that no insulin or glucagon has been
administered immediately before the start of the experiment.

TABLE II
CONSTRAINTS

Input/Output Min Max Unit
tI 0 tend − 4 [hours]
tH 0 tend − 4 [hours]
d ω/3 ω · 1.5 [g]
I 0 3 [U]
H 0 100 [µg]
y 3.9 10.0 [mmol/L]

TABLE III
INITIAL DESIGN VECTOR

Input Unit
tI = [0, 1, 5] [hours]
tH = [1, 7] [hours]
d = [ω/3, ω/3] [g]
I = [0, 0, 0] [U]
H = [0, 0] [µg]

Additionally, the subject is fasting prior to trial start. As a
result, the initial states of the system are

x0 = [y0 0 0 0 0 0 α7 0 0]T , (9)

where y0 = 7 mmol/L is the initial blood glucose level and
α7 [%] is the initial glycogen storage level.

As stated in [7], β1, β2, β3, β4, and α7 are considered
as an individual parameter that are required to be identified
for each subject. In this paper, the aim is to design a simple
experimental procedure to improve the identification of the
parameters for the starting up a closed-loop experiments.
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A low α7 at the beginning of the experiment will lead
to inadequate liver responses to glucagon in the subject.
Therefore, ensuring the identifiability of β4 (sensitivity to
glucagon) requires us to confirm that the subject’s glycogen
storage level is sufficiently high before the experiments.
This can be achieved by avoiding fasting and exercise and
minimizing the use of glucagon prior to the experiments.

During the closed-loop experiments, the proposed esti-
mator [17] will estimate the value of the α7 based on the
model parameters. Therefore, our main focus in this paper
is to design an experimental procedure that maximize the
accuracy of identifying β1, β2, β3, and β4.

To achieve this, a protocol outlined in Fig. 1 is devised
for the initiation of the closed-loop experiments. In the
proposed protocol, two meals with accompanying exercise
are scheduled to initiate insulin and glucagon injections and
to identify the individual parameters. The rest of the day is
planed with meals and no exercises to fill up the glycogen
storage level. Later, using the proposed optimal experimental
design method in this paper, the dynamics of the system is
excited to increase the accuracy of identifying β1, β2, β3,
and β4. Additionally, the PID controller proposed in [19]
could also be used to control the blood glucose prior to the
parameter identification.

We assume that endogenous glucose production, degp
[mmol/L/min], remains constant when the body receives no
glucagon, insulin or meal input. To obtain degp, we solve a
steady state problem for the glucose concentration x1 = 7
mmol/L, when the model receives no inputs.

We implement the simulation and MBDoE in Matlab
R2020b, and solve the optimization problem using sqp.
We simulate insulin and glucagon injections as impulses and
administer the meal inputs over five minutes.

III. RESULTS

For the two pigs, we solve the optimization problem in
(3) in accordance with the individual parameters, the design
constraints, the initial states and the initial design vector.
Figure 2 shows the resulting optimal designs.

The two designs show similar characteristics. In both
cases, the glucose curve moves between the upper and lower
bound of the target range over the course of the experiment.
Within the first two hours, we inject insulin in maximal doses
of 3U. The injections help to a reduce the glucose values
throughout the experiments. To counter the decrease in BGL
from insulin injections, we administer glucagon injections
and meals. For both pigs, the first meal is the largest. The
experiments test the glucagon effect in connection with and
without insulin injections. In both protocols, we administer
glucagon injections after one and eight hours. After glucagon
injections, we see a reduction in the glycogen storage level.

The optimal design maximizes the output sensitivity of
the four parameters we wish to estimate. Figure 3 shows the
sensitivities of the four parameters over the course of the two
experimental protocols. When we inject insulin, the output
briefly becomes sensitive to β2. Over the remainder of the
experiments, a sensitivity to β3 is present, however it fades

over time as less insulin is active in the body. In connection
with glucagon injections, we see a peak in the sensitivity to
β4. β1 has the highest sensitivity throughout the experiment.
Towards the end of the experiment, where less insulin is
active and glucose levels rise due to a meal and a glucagon
injection, the sensitivity to β1 increases even further. The
output is least sensitive to β2, indicating that it may be
the hardest parameter to identify from the experimental data
sets.

IV. DISCUSSION

In this paper, we compute separate trial protocols to best
identify parameters in two pigs. In practice, the trial protocol
would typically be generalized for the trial population rather
than individually designed. The results display similar input
times for glucagon and insulin injections in the two indi-
viduals, but the dose sizes differ. In Pig A, we inject 9U of
insulin whilst Pig B only receives 6U despite having a higher
body weight. In glucagon injections, Pig B receives almost
the double amount compared to Pig A over the course of the
experiment. Comparing the initial glycogen storage levels,
Pig B has a higher initial amount of glycogen to release
and this allows a design with larger glucagon injections.
Despite the dose differences, the results hint that certain input
patterns can enhance system excitation. In both designs, we
inject insulin within the first two hours and we see that the
first meal is the largest. We administer the first glucagon
injection together with an insulin injection, and inject the
second towards the end of the experiment when the insulin
effect is lowest. We can apply these insights in a generalized
trial protocol.

In a safety-critical system, i.e. an animal or person with
diabetes, implementing an optimal protocol directly can be
dangerous. When computing the protocol, we incorporate
a number of assumptions into the structure of the design
model and the model’s parameter set. We cannot guarantee
that these assumptions mirror the physical system we will
perform the experiment on. Hence, a direct implementa-
tion may cause unexpected and harmful system responses.
Addtionally, MBDoE results tend to depend on the initial
design vector and the initial states. In most systems, many
local minima exist. Hence, the solution to the optimization
problem will depend on how we initialize the solver and
which solver we apply. This uncertainty may make it hard
to use a MBDoE framework for trial design in a highly
regulated area, e.g. the medical device industry. Using grid
search and slack variables when solving the optimization
problem can mitigate some of these issues, improving the
chance of finding an optima and making the solution less
sensitive to the initial input. If used with caution, we believe
that MBDoE can offer useful inputs for the trial design.

We propose to use MBDoE in an iterative fashion with
inputs from subject matter experts, i.e. veterinarians or
clinicians. Experts may select the initial design vector for the
MBDoE, and the following optimization can assess whether
a modification of the design vector leads to a higher chance
of system identification. Based on the output of the MBDoE,
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Fig. 1. An overview of the proposed structure for initiating a closed-loop experiment using the model presented in [7], the dual-hormone intraperitoneal
moving horizon estimator (DIP-MHE) in [17], and the suggested optimal experimental design in this paper; MPC, model predictive control; BGL, blood
glucose level.

(a) Pig A (b) Pig B

Fig. 2. Optimal design for 12 hour long experiment. G is the plasma glucose concentration. The green area shows the 3.9-10 mmol/L target range. h is
the size of the glucagon injections, u denotes the dose of insulin injections, and d shows the meals absorption rate of the two meals. GSL is the glucagon
storage level in the liver. The glucose curve remains within the target range and there are no system inputs in the last four hours of the experiment.

the subject matter experts can adjust the protocol to improve
safety if they consider the new design concerning. The
optimization may be repeated with the new design protocol.
One or several iterations may be used to achieve a final
protocol.

In the optimization problem’s current form, no end-point
constraints are placed on the glycogen storage level. Ideally,
we want a high storage level at the end of experiments.
If the glycogen storage level is depleted, a bi-hormonal
controller will in practice be reduced to insulin-only control,

since glucagon injections will not release glucose into the
blood stream. In future work, we aim to add end-point
constraints on the glycogen storage level in order to enable
the implementation of a closed-loop system directly after
parameter estimation.

V. CONCLUSION

In this work, we apply MBDoE to identify trial protocols
to collect data for identification of a bi-hormonal intraperi-
toneal prediction model. For an experiment in awake pigs, we
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(b) Pig B

Fig. 3. Output sensitivities of the four parameters. β1 denotes the insulin-independent glucose uptake rate. β2 is the insulin sensitivity rate in liver. β3

describes the insulin sensitivity rate in other organs. β4 is the glucagon sensitivity of the liver cells.

determine the optimal input of meals, subcutaneous insulin
injections, and subcutaneous glucagon injections over 12
hours. The optimized protocols for two separate animals
show similar input patterns. However, due to safety require-
ments, a direct implementation of the design may not be
applicable in a clinical setting. Still, the insights gained from
a MBDoE protocol, i.e. the timing and relative sizes of
inputs, may guide clinicians and veterinarians in the design
of data collection protocols.
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