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Abstract— The computation of symbolic controllers for non-
linear plants is typically computationally expensive due to the
well-known curse-of-dimensionality. In fact, those controllers
must be computed before operating the closed loop. This note
presents a method to modify symbolic controllers while they are
operating the closed loop to avoid spontaneously inserted state
obstacles. In addition, we utilize methods of plan recognition in
combination with our new algorithm for providing a technique
of decentralized runtime assurance for efficient task allocation
and mission guidance in a multi-UAV setting. Promising results
and the applicability of the found method is demonstrated by
simulation and experiments with real physical systems.

I. INTRODUCTION

Symbolic control is a method to compute feedback con-
trollers in a fully automated manner given the plant dynamics
and control objective [1]. An outstanding property of this
method is that the controller, once successfully computed,
provably enforces the specification. Tuning or verification
steps are obsolete. Although symbolic control allows to take
into account uncertainties in the plant dynamics, measure-
ment errors, state and input obstacles, all of the mentioned
constraints have to be known at the time of synthesis. Once
the controller is computed changes in those constraints,
thus in the assumed control problem, lead to loosing all
guarantees about the behavior of the closed loop. As the
synthesis technique suffers from the curse-of-dimensionality,
the computation is typically time demanding making re-
computations useless for maintaining the correctness of the
controller. On the other hand, estimating the constraints
overly conservative to cover all possibilities typically results
in an unsolvable control problem.

In practice, there are plenty of control applications where
constraints are quantitatively unknown beforehand, e.g. col-
lision avoidance for navigation systems or more generally,
cyber-physical systems operating in dynamically changing
environments. To give a concrete example, consider a team
of firefighting drones, each one steered by a (symbolic)
controller in a decentralized architecture, e.g. [2]. Each drone
is delivering water to the fires from a base station. During this
mission, a new obstacle appears in the area, e.g. caused by a
rescue helicopter crossing the area unexpectedly. See Fig. 1.
In that moment, the symbolic controller steering the drone
looses all its guarantees so that the drone may hit the new
obstacle area. A complete re-computation of the symbolic
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controller is not an option as the runtime is typically in the
order of hours [2, Sect. IV.A] and therefore severely exceeds
the time constraints of a collision avoidance maneuver.

In this note we present a technique to correct the given
controller quickly such that in reasonable situations the drone
in the example above remains in a safe state. More generally,
we provide a method to adjust an already computed symbolic
controller when a new state constraint appears during the
operation of the closed loop. Moreover, we show that the
plan recognition methodology for symbolic optimal control,
firstly introduced in [2], is functioning for the extension
introduced in this note. Furthermore, we demonstrate the
integration of the plan recognition monitor in a runtime
assurance framework for efficient and communicationless
mission task allocation in a multi-UAV setting. The runtime
assurance methodology was firstly introduced by [3]. Decen-
tralized approaches are rare and presented in latest works,
e.g. [4]. The present note is thematically part of techniques
for synthesis of symbolic controllers such as [5]–[7]. On
the other hand, the algorithm to present is also related to
the theory of hyper-graphs since it basically takes a hyper-
graph as input and operates on it. In fact, coming from that
direction the work closest to ours is [8]. In the latter work,
algorithms are presented for maintaining shortest paths in
large hyper-graphs based on the famous Dijkstra algorithm
[9]. Our algorithm also aims at “maintaining” optimal paths
in a changing hyper-graph, yet it is based on a version of
the Bellman-Ford algorithm as presented in [6]. (For the
advantages of the Bellman-Ford algorithm in the context of
symbolic control, see also [6].)

The remaining sections of this note are organized as

Fig. 1: Firefighting scenario. The orange- and gray-coloured cuboids repre-
sent the fires and a hill, respectively. The drone shall reach all of A1, . . . , A4

and stay in each for some time without colliding with the obstacle Hdyn,
which is spontaneously injected during flight.
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follows. The problem, which the novel algorithmic technique
solves, is formally defined in Section II. The algorithm itself
is presented and discussed in Section III. Two simulation
examples are presented in Sections IV and V, respectively,
where the latter includes a comprehensive demonstration for
decentralized runtime assurance for task allocation in a multi-
UAV setting. Finally, conclusions are given in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

This paper builds upon symbolic (optimal) control as
formulated in [1], [10] and takes up algorithmic techniques
established in [6] for synthesizing symbolic controllers.
Below, we give a short summary of the used concepts.

A. Notation
The set of integers and the set of non-negative integers is

denoted by Z and Z+, respectively. For a, b ∈ Z, a ≤ b, the
notation [a; b] means the set {a, a + 1, . . . , b}. The symbol
∅ stands for the empty set. For sets A and B the notation
f : A ⇒ B means that f is a set-valued map. f is strict if
f(a) ̸= ∅ for all a ∈ A. The notation AB stands for the set
of all maps B → A. In particular, AZ+ is the set of all time-
discrete signals with values in A. A signal v ∈ {0, 1}Z+ is
non-zero if v(t) = 1 for some t ∈ Z+.

B. Plant and closed loop
This work uses the methodology of transition systems

in discrete time to model plant dynamics. Specifically, the
dynamics is assumed to be given by the difference inclusion

x(t+ 1) ∈ F (x(t), u(t)). (1)

Here, x and u are the state and input signal taking values in
nonempty sets X and U , respectively, and

F : X × U ⇒ X (2)

is a strict set-valued map, so that the dynamics (1) is non-
blocking and allows to take into account uncertainties. We
refer to the triple

(X,U, F ) (3)

as transition system. A controller, which can be intercon-
nected with (3), is then a strict set-valued map

µ : X ⇒ U × {0, 1}, (4)

where the second component of the image is technically
required to indicate if the controller is in operation (’0’)
or off (’1’). Consequently, the closed loop dynamics is
characterized by (1) such that control signal u satisfies

u(t) ∈ µ(x(t))1 (5)

for all t ∈ Z+. See Fig. 2.
The set Bp(µ×S) for the plant S in (3) and initial state p ∈

X is of paramount importance in symbolic control, which is
the set of all signals (u, v, x) ∈ (U×{0, 1}×X)Z+ that fulfil
(1), (5) and v(t) ∈ µ(x(t))2 for all t ∈ Z+ with x(0) = p.
In words, Bp(µ×S) contains all possible input-output pairs
produced by the closed loop.

The performance of controllers is measured using the said
set as summarized subsequently.

Plant (X,U, F )

Controller µ

Other control mechanism

x

v

u

0
1

Fig. 2: Closed loop architecture [11] as considered in this work.

C. Closed loop performance

In order to quantify the performance of a controller, sym-
bolic optimal control [10] uses in the simplest formulation
the cost functional

J(u, v, x) = G(x(T )) +

T−1∑
t=0

g(x(t), x(t+ 1), u(t)) (6)

with T := inf v−1(1), where v is a non-zero signal, and with
the following involved components. The terminal cost

G : X → R+ ∪ {∞} (7)

rates the state at stopping time while the running cost

g : X ×X × U → R+ ∪ {∞} (8)

accumulatively rates state and control signal. Finally, the
performance of a controller µ as in (4) is evaluated by the
closed-loop performance Lµ : X → R+ ∪ {∞} defined by

Lµ(p) := sup
(u,v,x)∈Bp(µ×S)

J(u, v, x). (9)

Thus, performance is measured with respect to the worst-
case trajectory of the closed loop.

D. Controller synthesis

To begin with, an optimal control problem is defined as
the 5-tuple

(X,U, F,G, g) (10)

with components as in (3), (7) and (8). The synthesis
methods of symbolic optimal control aim at synthesizing
controllers that minimize the closed-loop performance (9)
as defined for (10) for every initial state.

The key idea of symbolic controller synthesis is to transfer
the original problem with possibly continuous state space to
a problem with discrete state and input space [1]. The details
of the said transformation are not relevant for this note so
that we may assume in the remaining part of this section that
a finite transition system is given, which is a system (3) such
that X and U are finite sets. Together with the transitions
function F we can interpret (3) as a hyper-graph. (Edges
from states may point to several successor states.)

Having briefly reviewed the concepts used in symbolic
control, we can define the problem to be addressed in this
note.
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E. Problem formulation

First of all, we recall that classical reach-avoid problems
can be formulated using the formalism above [10, Sect. III].
In particular, state obstacles are modelled using the running
cost function (8) as follows. A non-empty set H ⊆ X is a
(state) obstacle if the following condition is true:

y ∈ H ⇒ ∀(x,u)∈X×U : g(x, y, u) =∞. (11)

The terminal cost in (7) for a reach-avoid problem is defined
as 0 on target states and as ∞ on any other state.

Let an optimal control problem (10) be given, a controller
µ as in (4) and a non-empty set A ⊆ X such that Lµ(p)
is finite for every p ∈ A. In words, the controller µ solves
the problem for all initial states in A in the sense that the
target is finally reached. (Optimality of the controller is not
relevant for our purposes.) In this case, for every p ∈ A,
there is a control symbol available by which we mean that
µ(p)1 contains exactly one element of U . (Subsequently, we
assume that Lµ(p) =∞ implies µ(p)1 = U .)

Now, assume that the set of state obstacles is enlarged at
some point of time while the closed loop is operating and
thus, some H∗ ⊇ H becomes valid. I.e. the function g in
(10) becomes a function g∗ satisfying (11) with H∗ in place
of H . The obvious approach to recompute a controller for
the new control problem (X,U, F,G, g∗) requires typically
as much runtime as the computation of µ.

The main contribution of this note is an algorithm that
computes a stopgap quickly with the following properties:
Consider the control problem

(X,U, F, 0, g∗), (12)

where the 0 means that the terminal cost function is iden-
tically zero on its domain. Consider the corresponding cost
functional J∗ for this modified problem. The key property
of the algorithm is that J∗ remains finite whenever a control
symbol is (still) available for current state of the plant, so
the newly inserted obstacle (or any other obstacle) is not hit
at any time.

III. ALGORITHM

To begin with, we note that the notion of predecessors of
states is meaningful in our context, which is the set

pred(x, u) = {y ∈ X | x ∈ F (y, u)}. (13)

The idea of the algorithm is to trace back predecessors
of states that are new obstacle states. The control symbol is
“corrected” in a certain sense if a transition is possible to
unaffected states.

More specifically, the controller to return is initialized as
the original controller µ firstly (line 1) and the new obstacle
states are thrown into the set F (line 2). Iteratively, every
predecessor y of a state in F shall change the control symbol
(line 8) if the original controller steers y into a state in F
(lines 6–7). Otherwise, the state y is also declared a new
obstacle state (lines 23–24).

The search for an alternative control symbol (lines 17–24)
tests all remaining elements of U by testing successors (line

18): If all successors have a valid control symbol then y can
be assigned an alternative control symbol (line 19).

Algorithm 1 Spontaneous state constraint insertion

Input: X , U , F , µ, Hnew,
Assumption: Lµ(p) =∞⇒ µ(p)1 = U // see (9)

1: µnew ← µ
2: F ← Hnew
3: while F ̸= ∅ do
4: for all x ∈ F do
5: for all u ∈ U do
6: for all y ∈ pred(x, u) do
7: if u ∈ µ(y)1 and x ∈ F (y, u) then
8: TRYFINDALTERNATIVE(y)
9: end if

10: end for
11: end for
12: end for
13: F ← F ′

14: F ′ ← ∅
15: end while
Output: µnew

16: procedure TRYFINDALTERNATIVE(y)
17: for all u′ ∈ U \ {u} do
18: if ∀z∈F (y,u′) : µnew(z) ̸= U then
19: µnew(y)1 ← {u′} // alternative found
20: return
21: end if
22: end for
23: F ′ ← F ′ ∪ {y} // no alternative
24: µnew(y)1 ← U
25: end procedure

The following theorem describes technically the fact that
the state signal of the closed loop will never reach Hnew
if it did not for the original controller and if the algorithm
succeeded in finding an alternative control symbol for the
initial state.

III.1 Theorem. Consider (3), (4) and Hnew ⊆ X as inputs
to Alg. 1. Further, let p ∈ X , let v be a non-zero stopping
signal, let J∗ be the cost functional for the control problem in
(12) and let S be the transition system in (3). The controller
µnew returned by Alg. 1 is such that

J∗(u, v, x) <∞
for all (u, x) ∈ Bp(µnew × S) if Lµ(p) < ∞ and if
µnew(p) ̸= U .

Proof. Let p ∈ X be such that the condition in the statement
of the theorem holds. Since µnew(p) ̸= U either µnew(p)1 =
µ(p)1 or µnew(p) had been assigned in line 19 of Alg. 1.
In the first case the state trajectory is as for the original
controller since p was never an element of F . In the second
case, the test in line 18 ensures that g(p, x1, u) <∞ for all
x1 ∈ F (p, u) with u ∈ µ(p)1. By induction, the proof is
complete.
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Fig. 3: Transition system with 14 states and two input elements, where the
states 0, 1, 2, 3 are target states. The original controller µ is defined as to
enforce (only) the transitions drawn with a solid black line for each state.
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Fig. 4: Spontaneous spatial obstacle avoidance scenario of Section IV.

We would like to emphasize that there is no guarantee
that the controller returned by Alg. 1 will solve the original
optimal control problem in (10). The only given guarantee is
that the new obstacle will be avoided. Therefore, optimality
is abandoned in favour of execution time (runtime) so that a
“safety” controller is available as fast as possible.

We briefly illustrate the algorithm on a small example.

III.1 Example. The transition system to consider is depicted
in Fig. 3. In fact, the system has 14 states and the control
symbols 0 and 1, whose transitions are the solid and dashed
arrows, respectively. E.g., for the transition function F of
this system it holds F (10, 0) = {6, 7}, F (10, 1) = {5, 6}
and pred(6, 0) = {9, 10}, pred(6, 1) = {10}. The initial
controller is such that every state ends in one of the states
{0, 1, 2, 3}. Now, the state 6 is declared a new obstacle, i.e.
Hnew = {6}, which implies that a trajectory starting in state
13 may result in the obstacle state 6. In particular, µ may
steer state 13 to state 10 and subsequently to state 6. In
order to avoid state trajectories to reach that unwanted state
Alg. 1 is applied and proceeds as follows. Initially, F =
Hnew = {6}. The function TRYFINDALTERNATIVE fails for
state 10 ∈ pred(6, 0) since for the alternative control symbol
1 it holds 6 ∈ F (10, 1). In contrast, µ1(9) = {1} in line 19
since F (9, 1) = {4}. Hence, F = {10} in line 23. In the
last iteration of the algorithm, µnew(x)1 becomes {1} for
x ∈ {13, 14} since pred(10, 0) = {13, 14}. Consequently,
µnew steers state 13 to state 9 and finally to state 0, at which
µnew(0)2 = µ(0)2 = 1 indicates that a target state has been
reached.

IV. SIMULATION EXAMPLE – VEHICLE ON A ROAD

We consider a vehicle on a road, which abruptly has to
avoid an obstacle on the roadway and to reduce its velocity,
respectively. The states of the vehicle model are the planar
position (x1, x2), the orientation x3 and the velocity x4 of
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Fig. 5: Reduction of the velocity of the vehicle due to the spontaneously
inserted obstacle H1 in (15).

the vehicle while the inputs are the acceleration u1 and the
steering angle u2. Specifically, we use dynamics [12], [13]

ẋ ∈ f(x, u) +W

with

f(x, u) =

(x4 cos(α+ x3) · β, x4 sin(α+ x3) · β, x4 tan(u2), u1),

where U = [−6, 4] × [−0.5, 0.5], α = arctan(tan(u2)/2),
β = cos(α)−1, W = {(0, 0)} × [−0.01, 0.01] × [−0.1, 0.1].
The initial controller is synthesized to work on the states in

[0, 60]× [0, 8]× R× [0, 18]

and is specified to steer the vehicle into the set [55, 60] ×
[0, 4] × R × [0, 18]. The running cost function enforces a
proper driving style. It is defined through

g(x, y, u) = τ2 + u2
2 + min

m∈M
∥x−m∥2,

where τ = 0.1 and M is the union of the two cen-
terlines of the roadways, i.e. the union of [0, 60] ×
{2} × [−7π/16, 7π/16] × [0, 18] and [0, 60] × {6} ×
[9π/16, 23π/16]×[0, 18]. Next, we apply Alg. 1 to this plant
and the following two obstacles (separately):

H0 = [20, 40]× [0, 4]× R× [0, 18] (14)
H1 = [20, 40]× [0, 8]× R× [12, 18] (15)

For H0 the vehicle must avoid the spatial obstacle while
for H1 a reduction of the vehicle speed is enough. The
computation of the initial controller takes about 15 minutes
while Alg. 1 needs 25 and 11 seconds for H0 and H1,
respectively. The software implementation of Alg. 1 is based
on [14] and for this example run on 24 threads on Intel
Xeon E5-2697 v3 (2.6 GHz). Some interesting parts of the
trajectories are depicted in Fig. 4 and Fig. 5, respectively.

V. RUNTIME ASSURANCE FOR TASK ALLOCATION IN A
MULTI-UAV SCENARIO

In addition to the single UAV mission control framework
and the plan recognition monitor (PRM) we presented in
[2], in this work we (i) integrated the collision avoidance
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(CA) algorithm described above and (ii) we developed the
framework further to be used in a communicationless, coop-
erative multi-UAV setting: In this case-study, we extended the
PRM to substitute communication requirements for multi-
agent cooperation by state estimations of teammates. Addi-
tionally, we implemented a decentralized Runtime Assurance
(RTA) mechanism to assure efficient mission progress and
completion in the presence of environmental disturbances
and spatio-temporal uncertainty of cyber-physical systems. In
the following we will give a short introduction to the touched
subjects and methods. We then introduce the scenario and
describe the progress of a mission alongside its timeline.

A. Plan Recognition for state estimation

Referenced as plan recognition by planning, [15], [16]
introduced a methodology, which allows an observer to infer
the current behavior of a system by comparing its actions
to a set of virtual plans generated by a planning algorithm.
Inspired by approaches for the navigational domain [17]–
[21], we contributed the integration of the methodology in
the symbolic optimal control framework in [2]:
In short: We assume, that there is a strict set-valued map
H : X ⇒ Y available to control the plant (3), which maps
states to subsets of a given (non-empty) output set Y .
Further, a potentially incomplete sequence (o(0), . . . , o(T ))
of observations in Y of the plant (3) is available, which has
the property that there exists for all t ∈ [0;T ] an initial state
p ∈ X , a controller µ of the form (4) and (u, x) ∈ Bp(µ×S)
such that

o(t) ∈ H(x(t)). (16)

The PR problem can now be defined: Given a set of
K > 1 controllers {µ1, . . . , µK} for plant S and an
observation sequence (o(0), . . . , o(T )), T > 0, identify
µ∗ ∈ {µ1, . . . , µK} such that there exists p ∈ X and
(u, x) ∈ Bp(µ× S) satisfying (16) for all t ∈ [0;T ].
By experience (see [2]), we have to cover uncertainty and
real-world inaccuracy: We assume Y = R3 and H is given
by H(x) = x+ [−κ/2, κ/2]3, where we set the acceptable
offset threshold κ = 0.15[m], which is the diagonal dimen-
sion of the drone.
By observing an UAV’s position over time and solving this
problem online while mission execution, the PRM identifies
µ∗, and thus is able to infer the future trajectory and the target
state(s) of an observed, cooperative system without direct
communication. For the RTA mechanism, this information
is fundamental to make efficient task allocations in multi-
UAV missions settled in dynamic environments.

B. Decentralized Runtime Assurance Mechanism

Traditional RTA mechanisms survey parameters of a single
system to keep it in a defined set of safe states [22]–[26],
using variations of the simplex architecture, introduced by
the foundational work of [3], [27]. In newer approaches,
(de-)centralized multi-system RTA architectures at the level
of control and/or guidance are considered. These approaches
rely on the (implicit) assumption of available and correct
information of system states between agents or subsystems

Fig. 6: Architecture of the Runtime Assurance Mechanism

[4], [28], [29]. Additionally in our work, we aim at assuring
not only safe, but (i)cost efficient task execution at mission
planning level. Furthermore, we (ii) assume, that there is
only a minimum, partial set of state information obtain-
able (incomplete positional data of UAVs/agents). The RTA
mechanism to be introduced is composed of the following
components, depicted in Fig.6: An Input manager is process-
ing incomplete positional data by filtering and interpolation.
As described before, Plan Recognition Monitors provide the
teammates mission states assured by observations. A Mission
replanning algorithm (MP), which is based on [2], [30] and
extended in this work for comparison of estimated mission
costs of all UAVs to reallocate own tasks for minimum
sum of costs. The Emergency monitor is enforcing collision
avoidance, respectively return-to-base maneuvers triggered
by thresholds at any time. The Mode switch is commanded
by the monitors, respectively by MP. A built-in waypoint
manager is steering the plant by processing the sequence of
targets planned by the MP.

The RTA mechanism is executed by each of m individual
UAVs and not influenced by any central decisive or control-
ling entity. Thus, we denote it as decentralized. For each
of (m − 1) observed teammates, an UAV has to execute
one PRM module instance, which calculates up to K virtual
plans based on control modes {µ1, ..., µK}. Thus, scalability
can be defined as: O((m − 1) × K). We now introduce
the firefighting scenario and describe the above mentioned
implementations by a test case resulting in a successful
mission completion. See a timeline for mission execution
in Fig.7.

C. Multi-UAV firefighting scenario

The firefighting scenario is settled in a map with targets
A1, ..., A4, the No-Go Areas H0, ...,H4 and a dynamic
obstacle Hdyn, which appears during mission to trigger a
CA maneuver of UAV1(red). The start- and end-state of the
mission is at the base Abase. The task is to visit targets Ai

and place retardant to fires without colliding with H0, ...,H4,
Hdyn or a teammate. See Tab.I and Fig.8.

Two homogeneous UAVs are initiated with a pre-computed
mission plan, which is defined by assuming a single UAV
mission, forcing one single UAV to visit all targets, depicted
by the green trajectory, Fig.8a. This represents a worst-case
scenario for efficient firefighting: A single UAV will hardly
be able to carry enough retardant and reach all fires in time
to prohibit them from growing. We now describe mission
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Symbol & Meaning Value (north-east-up coordinate system)
X0 (mission area) [−0.2, 1.8]×[−0.2, 1.8]×[−0.2, 1.8]
Abase (base) [−0.1, 0.1]×[−0.1, 0.1]×{0}
Ahover (generic hover area) [−0.1, 0.1]×[−0.1, 0.1]×[0, 0.15]
A1 (water release area) (0.05, 1.5, 0.15) +Ahover
A2 (water release area) (0.6, 0.8, 0.2) +Ahover
A3 (water release area) (1.36, 1.26, 1.13) +Ahover
A4 (water release area) (1.4, 0.2, 0.3) +Ahover
H0 (obstacle/hill) [0.91, 1.8]× . . .

[1.53, 1.8]× [−0.2, 0.9]
H1, . . . , H4 (fires) −(0, 0, 0.25) +Ai, i ∈ {1, . . . , 4}
Hdyn (dynamic obstacle) [0.22, 0.5]× . . .

[0.55, 0.58]× [0.50, 0.85]

TABLE I: Data of spacial objects of the mission. Negative heights in X0 are
due to the fact that the positioning system used for real world experiments
generates a slightly tilted coordinate system in space, see [2]. The presented
collision avoidance algorithm works with arbitrary coordinates of Hdyn,
hence they are fixed here for documentation reasons. Units are meters.

progress and actions taken by the RTA mechanism and its
components:

After take-off at t45, UAV1 is heading to A4. Still on
ground, UAV2 (blue) observes UAV1 violating the threshold
κ and initializes a PR process at t55 (black asterisk in Fig.8a),
which is generating virtual trajectories to all targets, see red
dotted lines in Fig.8a. The PR component always considers
all targets, even if already visited. For safety reasons, it’s
important to identify the current target of an UAV, no matter
if it’s a faulty choice in relation to mission efficiency.

In the following UAV2’s PRM infers, that UAV1 is pursu-
ing the planned trajectory slightly offset, but still heading to
A4. To minimize κ, this offset is adapted by UAV2’s monitor
through replanning the estimated trajectory of UAV1, starting
from its current observed position, visiting remaining targets.
The resulting trajectory estimation A4 → A3 → A1 →
A2 → Abase is shown by the thin red line in Fig.8b, starting
at the correction marked c1@t59. It will be monitored from
now, representing the safe set of UAV1’s mission trajectory
(considering κ, too).

Since UAV2’s PRM inferred, that UAV1 is flying to A4,
the MP component of the RTA mechanism is skipping A4

at t63 for cost reduction: A new plan, including only the
remaining targets, is calculated and commanded to the Mode-
switch component. This results in UAV2 heading directly for
A2 → A1 → A3 → Abase, right after take off at t128, Fig.8b.

Following the experiment’s constraint of not communicat-
ing any mission replanning, respectively task re-allocation,
the PRM of UAV1 gets not informed and is still expecting
UAV2 to follow the initial mission trajectory leading to
A4 (in fact, UAV2 is now heading to A2). At t148, the
PRM of UAV1, supervising the actual flown trajectory of
UAV2, is identifying the violation of κ by UAV2. After
starting a PR process (see blue dotted lines in Fig.8b), UAV1
successfully identifies A2 as UAV2’s current target at t152,
marked c2@t152 in Fig.8c.

Thus, the MP component of UAV1 skips A2 at t152 and
replans its mission to A3 → A1 → Abase. In addition, the
PRM of UAV1 predicts the ongoing mission of UAV2 to
follow A2 → A1 → A3 → Abase depicted by the thin blue
line. Since there is no communication, the UAVs have no

knowledge about the planned target sequence of teammates.
Hence, for safety reasons and complete mission execution
the MP mechanism always considers all remaining targets
until they are marked as surely visited by observation of the
PR component. This is why A1 is considered in both UAV’s
plans, see sequences above.

t148− t192: Both UAVs follow their predicted trajectories,
see thin red, respectively blue lines and compare Fig.8b and
Fig.8c. Since skipped by both UAVs at this time and thus
not valid any more, the thin green line representing the initial
worst-case single UAV mission plan is removed.

While UAV1 is leaving target A3 and heading for A1, the
PRM of UAV1 observes UAV2 flying to A1, too. UAV1’s MP
monitor compares estimated costs from current positions of
both UAVs to reach A1 and finds, that UAV2 will reach A1

accumulating less cost. This triggers a MP process for UAV1
at t186: Since there is no remaining target (A2 was supplied
by UAV2), it is heading to base Abase.

On its way to and while supplying target A1, UAV2
observed UAV1 visiting target A3 (see Fig.8c and Fig.8d).
Since now (Fig.8e), there is no remaining target, the MP
component of UAV2’s RTA mechanism is adapting its mis-
sion plan by skipping A3 at t163 and planning to return
directly to Abase.

At t192 the PRM of UAV2 recognizes this target change
of UAV1 by identifying an offset exceeding κ to the latest
(recall c1 at t59, Fig.8b) estimated trajectory and initializes
a PR process at t192. Starting from the current position of
UAV1 at t192, virtual trajectories to A2 and Abase lay close
together (see Fig.8c). This causes the PRM to process a high
number of observations to get a clear inference for the current
target Abase of UAV1. The PRM accepts the new target at
t216, see marker c3@t216 in Fig.8d.

We assume, that e.g. a rescue helicopter is intruding the
airspace and blocking the volume Hdyn, which is injected
at t208. The calculation time for the collision avoidance
maneuver, respectively a trajectory starting at the current
position of UAV1 at t208 (see black triangle marker, Fig.
8d) to its target Abase considering Hdyn, is 0.276[s]. This
forces UAV1 to conduct a collision avoidance maneuver
at t215, which is causing a strong trajectory offset d1 >
κ and thus a PR process of UAV2 monitoring UAV1 at
t218, Fig.8d. At t221 UAV1 finishes to circumfly obstacle
Hdyn and heads on pursuing its plan to target Abase. This
is inferred by UAV2’s PRM at t222, see the adaption of
trajectory estimation c4@t222 in Fig.8e.

The adjustment c4 does not exactly fit to the flown
trajectory, see distance d2 < κ, but the PR is able to identify
the correct target, since the flown trajectory lies within the
maximum accepted offset threshold κ. This shows the PRM’s
robustness against unknown, severe disturbances, since by
implementation it is not yet able to identify the collision
avoidance mode in particular.

Leaving A1, UAV2’s MP process at t163 is now provoking
a trajectory offset > κ , thus UAV1 starts a PR process
at t230, see Fig.8e. The inference mechanism identifies the
correct target Abase at t237, skips the former trajectory esti-
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Fig. 7: Timeline of the Runtime Assurance Mechanism’s interventions: Plan
Recognition Monitoring (PR-mon.), Mission Planning (MP) and Collision
Avoidance (CA) in a timely ordered sequence for UAV1(U1) and UAV2(U2),
qualitative illustration of intervals.

mation (from t152) and adopts the current one, see c5@t237
in Fig.8f. The end-state of the mission is depicted in Fig.8f.

VI. CONCLUSION

A drawback of symbolic control is the curse-of-
dimensionality. Extensive computing times prevent the
method from being applied to online calculations, e.g. in the
case of sudden changes in environmental constraints. We
developed a method to adapt an existing symbolic controller
to new state constraints at an arbitrary point of time while
executing the closed loop. We demonstrated the successful
implementation of the presented algorithm by two examples
settled in CA scenarios. In addition, we showed the
successful integration of the method into a RTA mechanism.
A detailed description of an example shows the robustness
of the developed architecture and its components. Future
work investigates an extension of the algorithm towards
inclusion of optimality, which was given up in this work in
order to succesfully minimize calculation time. Additionaly,
the integration of particular CA modes to the PRM - solving
the trade-off of short observation times vs. precise inference,
has to be examined. Furthermore, the presented methods
are to be applied and tested with cyber-physical systems.
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(a) Takeoff(t45) of UAV1 and first PR(t55) of UAV2, still on ground,
monitoring UAV1. Red dotted lines represent virtual trajectories.

(b) Adaption of UAV1’s estimated trajectory by UAV2’s PRM at c1.
Takeoff(t128) of UAV2 and first PR(t148) of UAV1 monitoring UAV2.

(c) UAV1’s PRM adopts its replanned estimation of UAV2’s mission, see c2
at t152. UAV1 skips A1 at t186 causing a trajectory violation observed by
UAV2 (t192).

(d) Hdyn is injected at t208. UAV2 finds a new prediciton of UAV1’s path
(c3@t216), which is discarded two time steps later (t218) due to the collision
avoidance maneuver (t215) causing the offset d1 > κ.

(e) The PRM of UAV2 infers the correct target of UAV1 (c4@t222) with a
slight offset in trajectory prediction. UAV1’s PRM observes UAV2 skipping
A3 and triggers a PR process at t230.

(f) UAV1 completes the PR (c5@t237) by identifying Abase as UAV2’s
target. UAV2 finishes its mission by landing at the base. This scene represents
the end state of successful mission execution.

Fig. 8: Mission execution shown in scenes.
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