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Abstract— This paper presents a novel frequency-based
method to estimate the structure and parameters of a grid
equivalent model by measuring currents and voltages at the
terminals of the point of common coupling. This model is
instrumental in calibrating the controller of grid connected
power converters. The proposed approach is demonstrated on
the two most common equivalent grid structures of second and
forth order respectively, and can be generalized to arbitrary
grid order. Additionally, the method provides a measure to
assess the quality of available data for estimation purposes,
and therefore to determine the estimation feasibility with the
given data-set.

I. INTRODUCTION

Power electronics converters are estimated to process
around 70% of the world’s electricity and this figure is
expected to further increase with the integration of renewable
energy sources in the grid. They enable reliable and efficient
power transfer for a wide range of applications across various
industries such as mobility, oil and gas, renewable energy and
power generation.

Traditionally, power grids were characterized by high
inertia and of relative strong or fixed nature, which allowed
the operation of power converters by proper calibration of
their controllers during the commissioning phase. Nowadays,
frequent changes in the grid structure and strength require
the controllers to be reconfigured online based on estimated
grid impedance which helps preserve stability and optimal
performance, see, for example, stability analysis [1, 2],
voltage control [3]–[5], adaptive current controller [6] and
islanding detection for protection purposes [7, 8].

Identification methods can be generally categorized into
passive and active ones. Passive techniques estimate the grid
impedance using the available voltage and current at the
point of common coupling (PCC) without any additional
signal injection into the grid [9]. They include state observers
[10], Kalman filters [11, 12] and least-squares solutions
[8, 13]. In contrast, active methods require the injection of
an additional signal perturbation into the grid with the risk of
disturbing the connected converter(s) away from normal op-
eration. These approaches include variation of the converter
operating points [12, 14]–[16], and frequency-based injection
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[3, 5, 17]–[26]. In both cases the quality of the estimation is
highly dependent on the data frequency content and quality.
This aspect is however not directly addressed in the existing
methods, as they provide no explicit criteria nor analysis
tools to assess the data quality with respect to identification
feasibility and accuracy. Moreover, most of the approaches
in the referenced works focus on first-order grid models,
e.g., RL-type (resistor-inductor), and do not include higher-
order models, for example, LCL-type (inductor-capacitor-
inductor) grid models that are quite common wind power
generation applications. Finally, the above methods already
assume a fixed grid structure and focus on the estimation of
the parameters.
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Fig. 1. Measuring electric signals at the point of common coupling and
estimating an equivalent grid impedance.

The contribution of this paper is to bridge the aforemen-
tioned gaps and provide an effective, accurate and efficient
method to identify the structure and parameters of higher-
order equivalent grids. Moreover, it provides a measure of the
estimation accuracy based on data quality. We assume that
measurements of voltages and currents with an appropriate
sampling rate are available at the PCC (see Fig. 1). Based
on the measured data, we present a novel frequency-based
impedance estimation approach that identifies the structure
and parameters of the underlying grid, and in the process an
assessment of the feasibility of estimation based the “richness
of the measured data”. The frequency-domain nature of
the approach allows to eliminate measurement noise or
ineffective frequency content from the signals prior to the
estimation process. This improves robustness, efficiency and
accuracy of the estimation.

The remainder of this article is organized as follows:
Section II describes the system under consideration and
formulate the identification problem. Section III is devoted to
describe the main paper contribution and the details of the
proposed method. Section IV then describes the algorithm
steps and Section V demonstrates the method effectiveness
on a concrete example. Section VI provides conclusive
remarks and remarks on potential future work.
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II. PROBLEM STATEMENT AND SYSTEM MODELING

A typical by-directional, grid-connected power conversion
system setup includes the power grid with a transformer
and input/output filter, the power converter with a motor or
generator and finally the load. The filters, transformers and
machine parameters are typically known by the converter that
optimally calibrate its operation based on those parameters.
The grid characteristics after the transformer are however
unknown to the converter, (see Fig. 1), so an initial calibra-
tion is performed during the commission phase to guarantee
stable operation for the specific grid.

This approach is sufficiently reliable for conventional
stable and predictable grids. However, for the new generation
of grids, populated by intermittent generation and loads
elements and characterized by unpredictability and high
dinamicity, one converter controller configuration cannot
optimally provide the performance requirements under all
different transient and steady state operating conditions. This
leads at best to under performance and often to compromised
stability and reliability of the system.

A consistently updated knowledge of the changes affect-
ing the grid can support the online reconfiguration of the
converter controller leading to a more reliable and stable
operation.

This paper considers two of the most common grid equiv-
alent models used to calibrate converter controllers during
commissioning the RL and LCL circuit depicted in figure 2.
Given voltage and current measured at the converter point
of common coupling, Vpcc and Ipcc respectively, an unknown
grid voltage Vg at 50Hz frequency, we need to identify the
grid structure (RL or LCL) and parameters, characterize
the estimation accuracy based on signals frequency content,
and finally provide a measure of the signals quality for
estimation purpose. We note here that, although all the results
in this paper are relative to those two models, the method
can be extended to higher order model under appropriate
assumptions and additional measurements. However, addi-
tional measurements of state variables will be required as
the system order increases.

III. PROPOSED METHOD

In the following we consider a general n-th order linear
grid model, the relationship between the current Ipcc and the
voltages Vpcc is given in the frequency domain as follows

Ipcc( jω) = Gpcc( jω)Vpcc( jω)+Gg( jω)Vg( jω), (1)

where Gpcc( jω) and Gg( jω) are two transfer functions
representing the impedance in the network.

The objective is to estimate the impedance transfer func-
tion between the PCC voltage and current Gpcc( jω).

We assume that the grid voltage Vg is a pure harmonic
wave with frequency content at 50 Hz and that the voltage
and currents at the PCC have a sufficiently rich frequency
content due to the inverter switching. Let Î and V̂ denote,
respectively, the Discrete-Fourier Transforms (DFT) of the
current and voltage signals at the PCC after removing the
fundamental 50Hz component. Under these assumptions, an
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Fig. 2. Equivalent circuit for grid impedance. RL model (top) and LCL
model (bottom).

estimate of the transfer function can be obtained using Eq.
(1) by taking the ratio of the current and voltage spectral
signals as follows:

Gpcc( jω)≈
Îpcc( jω)

V̂pcc( jω)
, (2)

where Î and V̂ are the DFTs of the signals sampled at
frequency fs, the system frequency content ω is well below
the Nyquist frequency (2π fs/2). For brevity, the term ”pcc”
is omitted in the sequel.

A. Network Structure Identification

The first objective in the identification process is to
determine the order of the system and therefore the structure
of the grid, based on the measured data set. We employ a two
step approach based on singular value decomposition (SVD)
of the system Hankel matrix.

The first step consists on constructing the Hankel matrix
using the estimated frequency response as per equation 2.

H =


h1 h2 . . . hr
h2 h3 hr+1
...

. . .
...

hr hr+1 . . . h2r−1

 ,

where index r is chosen to be greater than the system
order and the elements hk are values of the system impulse
response at different times and are calculated as,

hk =
1
N

N−1

∑
n=0

G(e jωn)e j2πkn/N , (3)

where N is the number of frequency samples. The resulting
matrix captures the dynamics of the underlying system.

Next the singular values of the Hankel matrix is used
to identify the number of dominant poles and hence the
order of the transfer function. The singular value decomposi-
tion (SVD) approach provides insights into the relationship
between input and output signals in system identification.
Specifically, the singular values capture the magnitude and
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complexity of the system’s dynamics, aiding in the identifi-
cation of dominant poles and separating them from the noise.
The left singular vectors reveal the input-output relationship
assisting in input excitation design. The right singular vectors
offer insight into output sensitivity, model structure iden-
tification, and model order estimation. By analysing these
matrices, valuable information about the system’s behaviour,
input-output relationships, and model characteristics can be
extracted, enabling the system identification process.

To estimate the transfer function order accurately, the
singular values obtained from SVD are sorted in descending
order. A dramatic decrease in the singular values can be
associated with the noise formed by small singular values,
thus determining the order of the transfer function and
therefore the grid structure.

B. Estimating the transfer function coefficients

Once we have determined the order of the transfer func-
tion, we can proceed to estimate the parameters. Here we
consider the case of LCL grid, depicted in figure 2, however
the estimation method can be readily applied to other con-
figurations as well. From the Kirchhoff laws we can derive a
relationship between the converter current, I, and the voltages
V , which in Laplace domain is expressed as follows:

I(s) =
A(s3)

B(s4)
V (s)+

ks
B(s4)

Vg(s)

= G(s)V (s)+Gg(s)Vg(s),
(4)

where A(s3) and B(s4) denote polynomial of order 3 and 4,
respectively, and k is a coefficient that makes B(s) a monic
polynomial, i.e. with the highest degree coefficient as 1.

In order to estimate the transfer function G(s) we assume
that the unknown grid voltage Vg is composed by a unique
harmonic wave at 50Hz, and with negligible other frequency
content. Additionally we assume the transfer function to be
stable and neglect the transient response from the data set.

The transfer function G( jω) can then be decomposed into
real and imaginary parts as follows,

G( jω) =
A(( jω)3)

B(( jω)4)
≈

Îpcc( jω)

V̂pcc( jω)
= rr(ω)+ jri(ω), (5)

or,
A(( jω)3) = (rr(ω)+ jri(ω))B(( jω)4), (6)

where A and B are the nominator and denominator polyno-
mials respectively, and rr and ri are, the real and imaginary
parts of the I-over-V ratio at each frequency. Next we rewrite
explicitly the terms of A and B:

A(( jω)3) = a3( jω)3 +a2( jω)2 +a1( jω)+a0

= (rr(ω)+ jri(ω))(( jω)4 +b3( jω)3 +b2( jω)2

+b1( jω)+b0).

we then define parameter vector, x, which captures the
polynomial coefficients of A and B as

x :=
[
b3 b2 b1 b0 a3 a2 a1 a0

]T
.

Subsequently, Eq. 6 transforms into the following form:

ω
4
[

rr
ri

]
︸ ︷︷ ︸

z(ω)

=

[
−riω

3 rrω
2 riω −rr 0 −ω2 0 1

rrω
3 riω

2 −rrω −ri −ω3 0 ω 0

]
︸ ︷︷ ︸

H(ω)

x, (7)

where frequency dependency of ri and rr are omitted for
brevity.

Eq. 7 is an algebraic equality of the form z(ω) = H(ω)x,
where z and H both depend on the frequency, whereas x is
a constant parameter vector.

This prompts to employ the recursive least squares method
(RLS) on frequency domain data to estimate the parameter
vector and consequently the entire transfer function G(s).
The RLS algorithm operates from the lowest frequency (DC)
up to a specific frequency ωmax (ωmax < 2π fs/2), continually
updating the parameter estimation vector x̂ through the
following iterative update law:

x̂n+1 = x̂n +K(z(ωn)−H(ωn)x̂n), (8)

where subscript n captures the index of frequency points
used for the estimation, and the matrix K is the optimal gain
matrix derived by the following equation

K = PHT (HPHT +R)−1, (9)

where R is the covariance matrix on the z(ω), and P is the
covariance matrix of the estimate given by,

P = (I −KH)P(I −KH)T +KRKT . (10)

C. Data quality analysis

In identifying system structure and parameters we assumed
that the system was sufficiently persistent excited by the
input, that is the collected input and output data were suffi-
ciently rich in term of frequency content for the identification
to be effective. This is however not always guaranteed and
the data richness has to be assessed before employing the
data for the identification process.

Informativeness of a frequency component refers to how
much value it adds to the estimation of the parameters [27].
As previously defined, the relationship between vector z(ω),
and the parameter vector x, is given by the following linear
equation,

z(ω) = H(ω)x, z ∈ R2, H ∈ R2×m, x ∈ Rm. (11)

Any vector x lying in the null-space of H has no effect on
the measurements. In other words, if x∗ is the least-squares
solution to Eq. 11, adding any vector to x∗ that belongs to
the null-space of H, is still a valid solution. More rigorously,

H(x∗+ xnH) = Hx∗, (12)

where xnH ∈ null(H) and x = H†z. The dependency on ω is
omitted for clarity.
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To have a numerically robust and precise estimation of the
parameter vector x over a set of frequency points, the null-
spaces of H’s at different frequencies, i.e. null(H(ωn)), must
cross one another. Since H is a 2-by-m matrix, where m is
the dimension of parameters, the null-space of H has order
of m-2. That is, the null-space is a hyperline in the parameter
space. Fig. 3 graphically illustrates this concept. The point
x∗i ’s denote the least square solutions to z(ωn) = H(ωn)xn,
and lines represent the null-spaces of each frequency.

x∗1 ∈ null(H1)x∗2 ∈ null(H2)

x∗3 ∈ null(H3)

θ23

Fig. 3. Graphical representation of the null-space crossings.

For a given frequency ωn, the minimum relative-crossing-
angle in which the null-space of H(ωn) crosses all other
null-spaces can be calculated as

θi j(ωn) = min
ω j

∠(null(Hi), null(H j)), (13)

where ∠ denotes the principal angle between two subspaces
(see Theorem 1 in [28]). The larger the angle is (up to 90◦),
the more information is introduced by the new direction of
null(H(ωn)) [2].

Fig. 4 shows the calculation result of informativeness
of frequency components for the LCL-type grid impedance
estimation. The red curve illustrates the subspace angle of
each frequency with respect to all other frequencies, which
can be interpreted as information richness of each frequency.
As illustrated in the plot, lower frequency and resonance
neighborhood components provide the main contribution to
the parameter estimation.

10-1 100 101 102 103 104 105

Frequenvcy [Hz]

10-4

10-3

10-2

10-1

100

101

102

103

M
ag

ni
tu

de

0

5

10

15

20

25

30

35

40

C
om

po
ne

nt
 a

ng
le

 [d
eg

]

Fig. 4. Evaluation of the frequency content richness for the LCL grid
type: (blue) the magnitude of the impedance transfer function, (red) relative
degree (informativeness) of the frequency content.

D. Algorithm steps

The method workflow, depicted in Fig. 5, is composed
by three main blocks consisting of: signal acquisition and
processing, data analysis and structure and parameter iden-
tification. In the first block the PCC currents and the volt-
ages signal are measured. The measurements are then pre-
processed to remove noise and the 50Hz component. Then
the Discrete Fourier Transform (DFT) is computed. The
resulting frequency domain data are then fed into the network
identification unit, where the Hankel matrix is constructed
and decomposed using singular value decomposition in order
to identify the impedance type, i.e. RL, LCL, and etc. Once
the type is known, a linear model relating the unknown
parameters to the measurements, i.e. z(ω) = H(ω)x, can be
built. The generalized condition number of H(ω) matrix is
a useful measure in assessing the reliability of the solution
at the given frequency. If the condition number is large, the
matrix is close to being singular, and thus, the corresponding
frequency component is discarded. In addition, an analysis
of data informativeness is performed on the data to evaluate
the contribution of each frequency component to the grid
parameter estimation. The frequency components that add
no or limited information are discarded. If the number of
informative frequencies is less than a threshold, the problem
is considered infeasible, meaning that the frequency content
is not rich enough to perform the grid impedance estimation;
otherwise, the impedance estimation process is then carried
out over the informative frequency set.

In case of constant impedance the data evaluation and
identification process can be carried out offline. For variable
grid impedance all described modules can be run efficiently
online.

IV. SIMULATION RESULTS

The effectiveness and accuracy of the proposed solutions is
evaluated using field data from MV drives including voltage-
source and current source converters for both balanced and
unbalanced grid scenarios.

We consider a frequency range from DC to fmax = 4kHz
below the Nyquist frequency (see Fig. 6). The estimation
result of the impedance transfer function is illustrated in Fig.
6. As we can see, the estimated transfer function fits in most
of the frequency range, especially near the resonance region.
Fig. 7 depicts the estimation results of the 8 polynomial
coefficients as the frequency sweeps from DC to ωmax. It
can be observed that the estimation slow down its learning
process as soon as the resonance frequency 1500Hz is
surpassed.

Fig. 8 shows the final converged values of the polynomial
coefficients with their corresponding converged 6 standard
deviations (6σ ) bound.

A. RL-type grid

As a demonstrative example, we consider an RL type grid,
resulting in the impedance transfer function being a first
order system with two unknown parameters: R and L. Fig.
9 illustrates the estimation result of R and L parameters as
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Fig. 5. Estimation method steps.

the frequency sweeps from zero to ωmax. Here, the maximum
frequency is set to 2

3 ωNyquist with the sampling time Ts = 1ms
and N = 1000 samples in the DFT. The covariance matrix
P is used to give an estimate of the confidence interval on
the estimated parameters. The six-sigma interval, i.e. ±3σ ,
is plotted in dashed lines in Fig. 9. The 3σ bound on R and
L is approximately 2% and 0.1%, respectively.

V. CONCLUSION

This paper proposes a comprehensive, frequency domain
based method to identify the structure and parameters of an
unknown electric grid, based on voltage and current measure-
ments. The method is based on a recursive least square (RLS)
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method.
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formulation in frequency domain resulting in an accurate
and computationally efficient solution. Additionally, a data
analysis is provided to classify the input output data and asses
their quality and effectiveness for the identification process.
The method has been successfully tested on field data, and
it has demonstrated its potential to support diagnostic and
control design for power conversion applications. In future
work, for the case of limited data informativeness, we plan
to define a region in the parameter space whose size will
be determined by the data frequency content. This will
provide a direct correlation between the data quality and the
identification accuracy, and hence define a fingerprint of the
data that can guarantee a reliable identification.
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[28] Åke Björck and G. H. Golub, “Numerical methods for computing an-
gles between linear subspaces,” Mathematics of Computation, vol. 27,
no. 123, pp. 579–594, 1973.

1989


