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Abstract— The inherently nonlinear, large-scale, and time-
varying nature of district heating systems pose significant
challenges from a control perspective. In this paper, we address
these challenges by applying an economic MPC. Economic
MPC is a dynamic real-time optimization method, enabling
both optimal planning and stability of the closed-loop system.
Our strategy constitutes several steps. First, we introduce
a discrete-time modular framework for the district heating
system, establishing its strict dissipativity with respect to a
desired, potentially time-varying, equilibrium. We identify a
set of meaningful objective functions for the district heating
systems, preserving this property. Second, we show how strict
dissipativity implies the turnpike property, which, in turn,
guarantees approximate optimality, practical stability, and re-
cursive feasibility for the EMPC closed-loop. Finally, we provide
numerical simulations to demonstrate the effectiveness of our
work.

I. INTRODUCTION

The global energy landscape is undergoing a significant
evolution, marked by the transition towards sustainable
energy resources and the pressing need to reduce CO2

emissions. In this regard, the integration of district heating
systems (DHS) into the energy sector plays a crucial role
because heating and cooling has approximately 50% contri-
bution to the total energy demand within Europe [1]. One
considerable challenge is the scheduling and control of DHS
due to their large scale and due to inconsistent generation
from renewable sources. However, the potential flexibility of
DHS provides significant opportunities for its improvement
with respect to the older generation systems. Achieving these
improvements will require more advanced models, forecasts,
and real-time optimal operational strategies.

Real-time optimal control for DHS has been studied in,
for instance, [2], [3], where an MPC was designed using
linearized thermal models, and in [4], where an alternative
approach was pursued to deal with pressure drop in the
network for fixed temperature supply and return dynamics.
Recently, nonlinear optimization has found its way into
the DHS control literature in two ways: i) by estimating
the time delay in pipes [5], and ii) by discretizing the
partial differential equations (PDEs) governing heat transport
dynamics for optimal control [6], instantaneous (optimal)
control [7], and adaptive (optimal) control [8]. Moreover,
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a nonlinear MPC for DHS was introduced in [9], however,
closed-loop properties were not addressed.

Formerly, optimization and control of applications similar
to DHS, such as the process industry, have been combined
through a hierarchical two-step approach [10]. In this ap-
proach, the top level consists of a real-time optimization that
computes optimal setpoints for the system in equilibrium,
which are then fed to a low level stabilizing model predictive
controller to regulate the system. Nonetheless, shortcomings
of this approach arise, in particular, when slow dynamics
drive the system, potentially leading to conservative deci-
sions or infeasible setpoints caused by model inconsistencies
[11]. On the other hand, benefits of a synthesized approach,
called economic model predictive control (EMPC), include
faster response to disturbances, no over-regulation, and exact
constraint implementation (no safety margins); see [12].

EMPC is a generalization of stabilizing MPC, where the
cost function is not necessarily a penalization of the distance
to a specified equilibrium, but can encompass a broader range
of objectives, such as energy minimization [13]. Nonetheless,
closed-loop performance of EMPC does not inherently share
the same guarantees as stabilizing MPC. Furthermore, for
nonlinear or time-varying systems, it is often difficult to
find suitable terminal conditions that ensure stability and
recursive feasibility of the closed-loop [14]. Therefore, we
require that the EMPC finds the optimal trajectory by itself.
A key property for optimal control problems that ensures that
the EMPC closed-loop solution remains close to the optimal
trajectory is called the turnpike property. Evidence for the
existence of this property can often be obtained empirically
through simulation, however, there has been a substantial
development in the literature indicating that the turnpike
property can be implied from another property, called strict
dissipativity; see [13], [14], [15], [16], [17], and [18].

For physical systems, strict dissipativity may be inter-
preted as the dissipation of energy to the environment.
However, in the context of optimal control, even for the
thermodynamic systems considered in this work, it does not
have to serve this interpretation [15]. Particularly, this is
because strict dissipativity is respective to a specific cost
function and equilibrium, and this equilibrium does not need
to be the one where the total energy stored is equal to zero.
Generally, verification of strict dissipativity is not an easy
task. It demands the existence of a storage function such
that the dissipation inequality is satisfied at all times, which
is difficult to check analytically in general. Therefore, a nu-
merical approach was developed to verify strict dissipativity
for continuous-time optimal control problems in [18] and for
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discrete-time problems in [19] and [20].
In this paper, we present a modeling framework for a DHS,

demonstrating, both analytically and numerically, its strict
dissipativity for a range of cost functions. Subsequently, we
exploit this dissipativity to establish the turnpike property,
which, in turn, implies approximate optimality, practical
stability, and recursive feasibility for the closed-loop. To the
best of our knowledge, this type of dissipativity analysis
for EMPC has not been studied in the context of DHS. In
the simulations section, we show empirical evidence for the
turnpike property and demonstrate the performance of the
EMPC.

The paper is structured as follows. In Section II, we
introduce the model of a thermal node and how they can be
interconnected to form two main types of thermal networks
representing a DHS. In Section III, we provide the results
on strict dissipativity of the thermal networks. In Section IV,
we summarize implications this property has for EMPC, and
finally, in Section V, we demonstrate the performance of the
EMPC algorithm.

II. MATHEMATICAL MODEL

A. Modeling approach and assumptions

We consider a DHS to be a network of thermal compo-
nents (pipe segments, heat exchangers, buffers, etc.), where
we define this network on a connected directed graph G =
(N , E) with a set of nodes N = {1, . . . , n} connected by
edges E = {1, . . . , e}. A node, which we will refer to as
a thermal node (TN) hereafter, represents a finite constant
volume of water with a certain temperature. A thermal node
interacts with other connected nodes, but also with its direct
surroundings (see Fig 1). On the other hand, an edge defines
which nodes interact with each other. Therefore, an edge
has zero volume, but does have a temperature and velocity
associated with it.

We model the thermal dynamics of a node through
an approximation of the 1-dimensional compressible Euler
equations for cylindrical pipes [7], [8]:

∂ρ

∂t
+

∂(ρv)

∂x
= 0, (1a)

∂(ρv)

∂t
+

∂(ρv2)

∂x
+

∂p

∂x
+ ρgẑ +K

ρ

2d
|v|v = 0, (1b)

∂T

∂t
+ v

∂T

∂x
+

p

ρcp

∂v

∂x
− K

2cpd
|v|v2 + 4U

ρcpd
(T − Ta) = 0,

(1c)

that describe the temporal and spatial evolution of three
central variables; temperature T (t, x) [K], the flow velocity
v(t, x) [m s−1], and pressure p(t, x) [Pa] of water. The other
parameters are the density of water ρ [kg m−3], gravity
g [m s−2], slope of pipe ẑ [-], friction coefficient K [-], di-
ameter of pipe d [m], heat transfer coefficient U [J m−2K−1],
specific heat capacity of water cp [J kg−1K−1], and am-
bient temperature Ta [K]. Let q = Av (A being cross-
section) denote the volume flow of water through a node.
For simplicity, we assume that the mass flow q satisfies
qmax ≥ q ≥ qmin > 0.

Subsequently, we introduce a set of assumptions that serve
to derive a suitable model for optimization and control of the
DHS.

Assumption 1: The water inside a thermal node is as-
sumed to be incompressible, i.e., ∂v

∂x = 0. Furthermore, the
density of the water inside a thermal node is assumed to be
constant, i.e., ∂ρ

∂t = 0.
Assumption 1 is a fairly standard assumption in the

literature; see e.g., [7] and [8]. Naturally, ∂ρ
∂x = 0 follows

from application of Assumption 1 to (1a).
Assumption 2: Heat losses from friction are very small

compared to other terms in (1c), therefore, we assume
K

2cpd
|v|v2 = 0 as in [8].

Assumption 3: We neglect dynamics on the flow rate, i.e.,
∂v
∂t = 0, because of the significant separation in time scales
between thermal and hydraulic dynamics, and because the
frictional term in (1b) dominates the inertial term [6].

Finally, we are left with the following simplified stationary
incompressible 1-dimensional Euler equations:

∂p

∂x
+ ρgẑ +K

ρ

2d
|v|v = 0, (2a)

∂T

∂t
+ v

∂T

∂x
+

4U

ρcpd
(T − Ta) = 0. (2b)

Consequently, equation (2a) does not depend on time and
can be written as a nonconvex constraint, i.e. g(v, p) = 0.
In what follows, we will not consider this constraint as we
assume it can always be satisfied retrospectively, as long as
the velocity is properly bounded. As a result, we are left with
equation (2b). Before we introduce the model of a node, we
require an additional assumption.

Assumption 4: The operational temperature in the net-
work is always greater than or equal to the (maximum)
ambient temperature.
This assumption is required to maintain nonnegativity of
the states within the system, this is a technically motivated
assumption but practically reasonable. In practice, even the
lowest return temperature of a DHS typically exceeds the
ambient temperature by some margin.

B. Thermal node model

A final step in defining a node model consists of a spatial
discretization of (2b) according to an upwind scheme. This
enables a spatially discrete formulation of finite volume cells
in the network. Consequently, the dynamics of a thermal
node i ∈ N , can be described by the following scalar
continuous-time ordinary differential equation (ODE):

ViṪi = −qi(Ti − T−i)− αi(Ti − Ta) + hi

yi = qiTi,
(3)

where Vi denotes the node volume, qmax ≥ qi ≥ qmin > 0
denotes mass flow of water, Ti denotes temperature of water
in the node, T−i is the temperature of the inflow into the
node, and αi = 4Ui/ρcpdi is the heat loss coefficient.
Additionally, if node i represents a heat exchanger, then the
transfer of heat from one side to the other is defined by hi;
see [21].
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A simple state transformation xi = Ti − Ta, assuming
w.l.g. that the ambient temperature is equal for all nodes,
will let us write the dynamics as

Viẋi = −(qi + αi)xi + ui + hi

yi = qixi,
(4)

which is graphically depicted in Fig 1, where ui = qix−i.

Fig. 1. A thermal node

C. Interconnection of thermal nodes

DHS are large-scale systems consisting of the intercon-
nection of pipes, heat exchangers, buffers, etc. All of these
components can be modeled using the previously defined
thermal node model (4). In general, the physical connection
between these components is by means of pipelines. Through
these pipelines, water is transported from producer to con-
sumer. Here, we introduce two types of network topologies
that represent a DHS.

Definition 1 (Closed thermal network): A closed thermal
network is a collection of thermal nodes N for which G is
strongly connected. See Fig 2 for an example of a closed
thermal network.

Fig. 2. A closed thermal network

Definition 2 (Open thermal network): An open thermal
network is a collection of thermal nodes N such that G is
weakly connected. Additionally, to ensure mass conservation,
all source nodes have an external input acting on them (and
all sink nodes have an output flow associated to them). See
Fig 3 for an example of an open thermal network.

Fig. 3. An open thermal network

In addition, we require a rule for the mixing of multiple
flows. To this end, we define two sets E−i and E+i for the
incoming and outgoing edges of node i, respectively. The
temperature of the inflow x−i is determined by taking a
weighted average of the temperatures of all edges directed
towards node i (i.e., xj for j ∈ E−i), where the weights
are equal to the mass flows associated to each edge. Subse-
quently, based on [7], we define, for i ∈ N ,

xj = xi, j ∈ E+i, (5)

and

x−i =

∑
j∈E−i

qjxj∑
j∈E−i

qj
=

1

qi

∑
j∈E−i

qjxj , (6)

where the last step follows from conservation of mass, which
states that for a node i ∈ N ,∑

j∈E−i

qj = qi =
∑

j∈E+i

qj . (7)

In turn, conservation of mass is a result of Assumption 1.
Now, the interconnection between nodes is physically

defined by the transfer of energy between them, hence, the
coupling of these nodes can be realized by a static matrix
that describes how the input energy ui to TNi depends on
yj as follows [22]:

u = MG(q)y, (8)

where u = col(ui)i∈N , y = col(yi)i∈N , q = col(qi)i∈N , and
MG(q) is the transpose of the weighted adjacency matrix of
G with each weight being qj/qi for j ∈ E−i.

Remark 1: In a closed network, (8) is equivalent to con-
servation of energy, meaning that MG(q)1 = 1. As a
result, if we define the closed thermal network through this
interconnection, energy conservation will be guaranteed. For
example, in Fig 2, we have

Mc
G(q) =


0 q2

q1
0 0 q5

q1
1 0 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

.

On the contrary, for the open network in Fig 3, we get

Mo
G =

0 0 0 0
1 0 0 0
1 0 0 0
0 0 1 0

.

D. State-space representation of the DHS interconnection

We define the system in state-space form by substituting
(8) into the system of equations that arises when the scalar
equations in (4) are extended to a vector incorporating all
xi for i ∈ N , for the two previously introduced thermal
networks:

1) A closed thermal network:

V ẋ = Ac(q)x+Bh,

z = Cx,
(9)
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2) An open thermal network:

V ẋ = Ao(q)x+Bouo +Bh,

z = Cx,
(10)

where x = col(xi)i∈N , V = diag(Vi)i∈N , h = col(hi)i∈W
with W = {i : hi ̸= 0}, uo = qoxo ∈ Rno with no the
number of open connections (i.e., blue inflows in Fig 3),
and

Ac/o(q) = −Q(I −M
c/o
G (q))−Dα,

with Q = diag(q) and Dα = diag(αi)i∈N . Here, we
distinguish between z ∈ Rl and y ∈ Rn with l ≤ n, where z
are temperature measurements and y are internal subsystem
energies.

In operation, we always want to consider closed thermal
networks, however, from a computational perspective, there
are two reasons why open thermal networks may be ad-
vantageous. These are: a) to reduce model complexity. For
example, we can disregard dynamics within the return net-
work, since heat exchanger return temperatures are typically
intentionally maintained at a constant level. Consequently,
their inclusion in the model is not strictly necessary or even
beneficial [6], and b) to reduce unwanted effects of dis-
cretization. For instance, for implicit discretization schemes
(simulation section), there is an implicit dependency on the
previous state that propagates backwards. In closed systems,
this means that the effect of the discretization propagates
back until it reaches the starting point. This results in rather
extreme averaging effects for large mass flows, in particular,
for systems with few states.

III. STRICT DISSIPATIVITY OF THERMAL
NETWORKS

In this section, we establish strict dissipativity, both analyt-
ically and numerically, for open and closed thermal networks
introduced in the previous section. We require this property
to ensure certain guarantees for the EMPC algorithm for
DHS given in the next section.

Definition 3 (Strict dissipativity): A discrete-time dynam-
ical system

x(k + 1) = f(x(k), u(k)), x(0) = x0, (11)

with x(k) ∈ Rn, u(k) ∈ Rm, f : Rn × Rm → Rn, and
(x(k), u(k)) ∈ X× U is strictly dissipative w.r.t. the supply
rate s(x, u) = ℓ(x, u)−ℓ(x∗, u∗) and the optimal steady state
(x∗, u∗) ∈ X×U, if there exists a storage function λ : X → R
bounded from below on X and a function ζ ∈ K∞ such that
for all (x, u) ∈ X× U,

λ(f(x, u))− λ(x) ≤ s(x, u)− ζ(|x− x∗|). (12)

A. Dissipativity of closed thermal networks

We apply an explicit Euler discretization to system (2) to
obtain:

V x(k+1) = V x(k)+Ac(q)x(k)+Bphp(k)−Bdhd, (13)

where we decomposed Bh(k) into a controllable part
Bphp(k) and a known (constant) disturbance −Bdhd, where

hp ∈ Rnp and hd ∈ Rnd represent the producer nodes
and demand nodes, respectively, and Bp ∈ Rn×np and
Bd ∈ Rn×nd consist of augmented column vectors that have
exactly one element equal to 1 at the node that is active.

Theorem 1: The discrete-time closed thermal network
(13) is strictly dissipative with respect to the supply rate
ℓ̂(x, hp, q) = ℓ(x, hp, q) − ℓ(x∗, h∗

p, q
∗) and the optimal

steady state (x∗, h∗
p, q

∗) ∈ Z = X× U×Q with a linear
storage function λ(x) = γ1⊤V x and a linear cost function
ℓ(x, hp, q) = r⊤hp, where r = γ1⊤Bp as long as γ ̸= 0.

Proof: We apply Definition 3 to system (13) to obtain

λ
(
V −1(Ac(q)x+Bphp −Bdhd)

)
≤ r⊤hp − r⊤h∗

p − ζ(|x− x∗|),

which then can be separated into two inequalities, where we
apply λ(x) = γ1⊤V x:

γ1⊤Ac(q)(x− x∗) ≤ −ζ(|x− x∗|),
γ1⊤Ac(q)x

∗ + γ1⊤(Bphp −Bdhd) ≤ r⊤(hp − h∗
p).

Due to mass conservation, we have that multiplying from
the left with 1⊤ cancels out all dependency on q such that
1⊤Ac(q) = −1⊤Dα. Furthermore, it is easy to check that
any equilibrium (xe, hp,e, qe) ∈ Z, not necessarily optimal,
has to satisfy

∑np

i=1 hp,e,i =
∑nd

i=1 hd,i +
∑n

i=1 αixe,i

(energy balance). With this, we are able to state the following
two conditions required for strict dissipativity:

−γ

n∑
i=1

αi(xi − x∗
i ) ≤ −ζ(|x− x∗|), (14)

and

−γ

n∑
i=1

αix
∗ + γ

(
np∑
i=1

h∗
p,i −

nd∑
i=1

hd,i

)
︸ ︷︷ ︸

=0

+ γ

np∑
i=1

(hp,i − h∗
p,i) ≤ r⊤(hp − h∗

p),

(15)

which is satisfied for r⊤ = γ1⊤Bp. Then, the optimal equi-
librium temperature must be minimal if γ > 0, and maximal
if γ < 0 for (14) to hold for any x ∈ X.1 To illustrate,
in Fig 4, we compare the two planes for any (arbitrary)
equilibrium point xeq ∈ X. When xeq > xmin, we find
that the dissipation inequality is not satisfied for part of the
feasible set, and we do not have strict dissipativity. Hence,
we require xeq = xmin = x∗ for strict dissipativity.

B. Dissipativity of open thermal networks

Again, here we apply an explicit Euler discretization to
(10) to obtain:

V x(k+1) = V x(k)+Ao(q)x(k)+Bouo(k)−Bdhd, (16)

but we assume hp = 0, since we can control heat insertion
through uo(k) ∈ Rno .

1For γ = 0 we have only dissipativity, not strict dissipativity.
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Fig. 4. Illustrating hyperplanes of the (difference in) storage function
and supply rate. Strict dissipativity holds when the blue plane is above the
green plane within the feasible set. Note that the slope of the red line,
which encodes the effect of heat losses, has been greatly exaggerated for
illustrative purposes. The distance measure ∆xeq > 0 suggests a subset of
the feasible set does not satisfy the dissipation inequality.

Theorem 2: The discrete-time open thermal network (16)
is strictly dissipative with respect to the supply rate
ℓ̂(x, uo, q) = ℓ(x, uo, q) − ℓ(x∗, u∗

o, q
∗) and the optimal

steady state (x∗, u∗
o, q

∗) ∈ Z = X× U×Q with a linear
storage function λ(x) = γ1⊤V x and a linear cost function
ℓ(x, uo, q) = γ1⊤(Bouo −BdB

⊤
d Qx).

Proof: The result is similar to the proof for closed
thermal networks (Theorem 1). The main difference is that
in this case, we get an additional term from 1⊤Ao(q)x =
−
∑n

i=1 αixi − 1⊤BdB
⊤
d Qx. Nonetheless, just like in the

closed thermal network case, we can write the first inequality
centered around x∗ to obtain

−γ

n∑
i=1

αi(xi − x∗
i ) ≤ −ζ(|x− x∗|).

Then, the remaining parts are used to form the second
inequality

− γ

(
n∑

i=1

αix
∗
i + 1⊤BdB

⊤
d Q∗x∗ + 1⊤Bdhd − 1⊤Bou

∗
o

)
︸ ︷︷ ︸

=0

+ γ1⊤ (Bo(uo − u∗
o)−BdB

⊤
d (Qx−Q∗x∗)

)
≤ ℓ̂(x, uo, q),

which we simplify by defining ∆u := 1⊤(Bouo −
BdB

⊤
d Qx). This change results in the following inequality:

γ(∆u−∆u∗) ≤ ℓ̂(x, uo, q),

and, consequently, we have to satisfy this with equality if
∆umin < ∆u∗ < ∆umax. Therefore, in analogy with the
closed example, we have strict dissipativity with respect to
the state whenever x∗ is minimal (for γ > 0) and maximal
(for γ < 0).

Remark 2: This particular cost function represents the
difference between the sum of energy at each pipe inlet and
the sum of energy of the flow exiting the pipe after each
consumer.

Remark 3: Both results for closed and open thermal net-
works rely on using a specific cost function that is linear
in the input energy. Moreover, we see that this assumption
yields strict dissipativity for a specific equilibrium on the
boundary of our constraint set, and with respect to x only.
This begs the question whether other cost functions, or strict-
ness with respect to the input, are a possibility. Analytically,
it is difficult to construct higher order storage functions to
allow for various meaningful cost functions, but numerically,
we can increase the complexity of the storage functions.
Motivated by this, we present a numerical approach in the
following section.

C. Numerical verification of strict dissipativity

In this section, we provide a numerical approach to verify-
ing strict dissipativity. We extend the definition to strictness
with respect to both state and input, therefore, we introduce
the notation |(a, b)|a∗,b∗ = ||a− a∗||+ ||b− b∗||.

1) Method: Contrary to an analytical approach, in a nu-
merical approach, we have the ability to expand the range of
potential storage functions, which enhances our prospects of
identifying a storage function that satisfies strict dissipativity
for any specified cost function. On the other hand, we are
restricted to evaluate systems of low dimension due to high
computational demands.

In short, the objective is to find a function λ : Rn → R
from a given set Λ = {λ} and a scalar σ ∈ R that satisfy
the following inequality:

ℓ(x, u)−σ+λ(x)−λ(f(x, u))−ζ(|(x, u)|x∗,u∗) ≥ 0, (17)

for a discrete-time system (11) by writing an optimization
problem as follows:

max
σ∈R, λ∈Λ

σ,

s.t. (17),
gi(x, u) ≥ 0, ∀i = {1, . . . , l},

(18)

where g : Rn+m → Rl comprises all state and input
constraints, i.e., (x, u) ∈ X × U. Problem (18) is a semi-
infinite optimization, which is generally hard to solve. In-
stead, we implement a relaxation based on the S-procedure,
as was done in [19]. This procedure makes use of sum of
squares (SOS) programming by defining Λ as a set that
contains parameterized polynomial basis functions of x up
to a certain degree d. Subsequently, rather than proving the
inequality in (18) directly, the goal is to prove that there
exists a λ ∈ Λ such that the left hand side of (17) can be
written in SOS formulation [20]. Furthermore, by introducing
SOS multiplier variables µi : Rn+m → R for each constraint
gi(x, u), i = {1, . . . , l}, which are polynomial basis func-
tions themselves, we can rewrite all inequalities gi(x, u) ≥ 0
within the dissipativity inequality.

As a result, we get the following polynomial optimization
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problem:

max
σ∈R, λ∈Λ

σ,

s.t. ℓ(x, u)− σ + λ(x)− λ(f(x, u))

− ζ(|(x, u)|x∗,u∗)− g(x, u)⊤µ ≥ 0,

(19)

which can be solved efficiently using sum of squares. The
solution σ∗ represents a lower bound on the optimal stage
cost ℓ(x∗, u∗); see [20]. Simultaneously, we require σ∗ ≥
ℓ(x∗, u∗) to satisfy the inequality in (17). Thus, concluding
that we need σ∗ = ℓ(x∗, u∗).

2) Results: We tested a set of cost functions for the
following open thermal network with two states:[
x1

x2

]+
=

[
1− q+α

V 0
q
V 1− q+α

V

] [
x1

x2

]
+

[
q
V
0

]
xo +

[
0
1
V

]
hd,

(20)
where we substituted uo(k) = q(k)xo(k) in (16), where q(k)
is the mass flow and xo(k) is the pipe inlet temperature.
Also, hd is the extracted heat. The system is subject to box
constraints g(x, xo, q) ≤ 0.

We choose a set of storage functions Λ = {θ ∈ R6|λ(x) =∑3
d=1 θdx

d
1 + θd+3x

d
2} and, similarly, define a set of mul-

tiplier functions of degree 1. Then, we solve problem (19)
to find σ∗. To confirm if σ∗ guarantees strict dissipativity,
we solve a separate optimization problem to find the value
of the cost at the optimal equilibrium, i.e., ℓ(x∗, x∗

o, q
∗) =

min{ℓ(x, xo, q)| s.t. x = f(x, xo, q), and (x, xo, q) ∈ Z}.
Thus, we are able to confirm strict dissipativity with

respect to state and input, whenever σ∗ ≥ ℓ(x∗, x∗
o, q

∗).
Table I contains four possible cost functions with different
equilibrium points for which this is the case.

TABLE I
EXAMPLES OF COST FUNCTIONS THAT GUARANTEE STRICT

DISSIPATIVITY

Stage cost Equilibrium
ℓ = Rx2

o + q2, R ≥ 1/ρ2 Minimum inputs
ℓ = (xo − xo,R)2 + (q − qR)2 Reference setpoints (xo,R, qR)

ℓ = −qx1 Maximum supply temp. and flow
ℓ = (qx1 − ER)2 Satisfies reference q∗x∗

1 = ER

Remark 4: We used ζ = ϵ|(x, xo, q)|x∗,x∗
o,q

∗ as a K∞
function with ϵ = 10−7 to enforce strictness of the inequality
with respect to states and inputs.

IV. ECONOMIC NONLINEAR MODEL
PREDICTIVE CONTROL

In this section, we summarize a set of results from the
literature on EMPC. In particular, we refer the reader to
works such as [13], [14], [15], [16], for details on the
methods and proofs. Here, we only state the important
concepts relevant for this work, which are mostly related
to the time-varying case, as presented in [14].

A. Problem formulation

Consider the time-varying discrete-time dynamics

x(k + 1) = fk(x(k), u(k)), x(0) = x0, (21)

with x(k) ∈ Rn, u(k) ∈ Rm, k ∈ N, and fk : Rn × Rm →
Rn.

The receding horizon optimal control problem without
terminal conditions is defined as

VN,k(xk) = min
xN ,uN

k+N−1∑
i=k

ℓi(x(i), u(i)),

s.t. x(i+ 1) = fi(x(i), u(i)),

x(i) ∈ Xi, u(i) ∈ Ui,

i = {k, . . . , k +N − 1},
x(k) = xk.

(22)

The solution of the optimal control problem is an optimal
trajectory (x∗

N , u∗
N ) for a specified horizon N ∈ T . In MPC,

the optimal control problem in (22) is solved iteratively. In
each step, the feedback control law

µN,k(xk) = u∗
N (0)

is applied to the system. Generally, to ensure stability of
the closed-loop system, a terminal cost and constraint are
required. These conditions will ensure that the closed-loop
converges to the infinite-horizon optimal trajectory. However,
for nonlinear time-varying systems, it is not straightforward
to compute these terminal ingredients, and in EMPC we
typically do not have any knowledge of optimal trajectories.
Instead, we are interested in showing whether the solution
of the closed-loop MPC without terminal conditions approx-
imates the solution of the infinite horizon problem. To this
end, we introduce the following definitions.

Definition 4 (Time-varying strict dissipativity [14]): A
discrete-time system (21) is strictly dissipative with respect
to the supply rate sk(x, u) = ℓk(x, u) − ℓk(x

∗(k), u∗(k))
and the optimal trajectory (x∗(k), u∗(k)) ∈ Xk×Uk if there
exists a storage function λk : N × Xk → R bounded from
below on Xk with ζ ∈ K∞ such that for all (x, u) ∈ Xk×Uk

and for all k ∈ N, we have

ℓk(x, u)− ℓk(x
∗(k), u∗(k))

+ λk(x)− λk(fk(x, u)) ≥ ζ(|(x, u)|x∗(k),u∗(k)).
(23)

Assumption 5 (Continuity of VN,k at x∗ [14]): There ex-
ists a function βV such that for each x ∈ X, k ∈ N, N ∈ T ,
the following holds:

|VN,k(x)− VN,k(x
∗(k))| ≤ βV (|x|x∗(k)). (24)

This assumption also means that the optimal value function
is bounded.

Strict dissipativity and boundedness of the optimal value
functions are sufficient conditions for the existence of the
turnpike property in time-varying systems [17]. Intuitively,
the turnpike property suggests that the closed-loop EMPC
solution remains close to the optimal trajectory for the ma-
jority of the time. As it turns out, the turnpike property will
guarantee us three key properties regarding the performance
of the EMPC [15]. These are: approximate optimality, con-
vergence to the optimal trajectory, and recursive feasibility.
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B. Application to thermal systems

We have already shown that the time-invariant system
(13) is strictly dissipative for ℓ(x, hp, q) = r⊤hp when a
constant disturbance hd is acting on the system. That said,
the strict dissipativity property extends directly to the time-
varying case as in (23) with hd = hd(k). This follows from
the fact that, in each time instance k, we can perform the
same analysis for the corresponding optimal equilibrium, i.e.,
the equilibrium for which

∑np

i=1 h
∗
p,i(k) =

∑nd

i=1 hd,i(k) +∑n
i=1 αix

∗
i (k), to satisfy the dissipation inequality. In the

open case of (20), we have also proven that we can have
strict dissipativity with different cost functions at different
equilibrium points. Even though we were only able to verify
this on a small-scale system, we believe that the addition
of thermal nodes in an open network should not affect the
result.

V. SIMULATIONS

In this section, we consider a three consumer, one producer
district heating network. The network is modeled as a tree
structure, where all the flow from the producer is distributed
to the consumers through a supply pipe. Each consumer
has its own time-varying demand hd,i > 0. The layout is
illustrated in Fig 5.

Fig. 5. DHS layout for simulations. The numbers on the edges denote the
pipe length in kilometers.

We assume the return pipe has a constant temperature, and
therefore, we do not include it in the model. Thus, the model
of the network is derived from the open thermal network
(10). A spatial discretization step of 500 meter is used, and,
as a result, we have n = 40 states in the model.

A. Discretization

In order to solve the optimal control problem we require a
discrete-time model of the system. Thermal systems typically
have large inertia, and their dynamics change relatively
slowly. Moreover, it is desirable to have sufficient time for
solving the optimal control problems to ensure tractability.
Therefore, it is preferable to work with large time steps (i.e.,
15 minutes to 1 hour); see [7] for more details.

For explicit discretization schemes, a necessary condition
for convergence of the numerical solution of a partial differ-
ential equation (PDE) is called the Courant-Friedrichs-Lewy
(CFL) condition, which states that the displaced mass in one
time step is less than or equal to the volume of each cell,
i.e., q(k)τ ≤ V, k ∈ N.

In general, it might be difficult to satisfy this condition,
especially if we want to (accurately) model pipes using
finite volume cells (i.e., thermal nodes). Hence, an implicit

discretization is preferred, since it always results in a nu-
merically stable discretization. This discretization is defined
by

x(k + 1) = x(k) + τf(x(k + 1), u(k + 1)), (25)

which means that the implicit discretization of (10) is

x(k + 1) = Fo(q(k))x(k)

+Go(q(k))xo(k)−Gd(q(k))hd(k),
(26)

where Fo(q(k)) =
(
I − τV −1Ao(q(k)

)−1
, Go(q(k)) =

τFo(q(k))V
−1Boqo(k), and Gd(q(k)) = τFo(q(k))V

−1Bd.
Moreover, we have substituted uo(k) = qo(k)xo(k) and
shifted the index in q(k + 1), xo(k + 1), and hd(k + 1)
backwards by one because they are piecewise constant func-
tions. Therefore, they are constant between any time step k
and k + 1, and the shift will not affect the model.

B. Settings

The cost function is chosen as a weighted norm of the
temperature at the inlet and the mass flow at the inlet, i.e.,
ℓ(xo, qo) = 50pkx

2
o + ρ2q2o , with time-varying parameter

pk = 0.5 if k ∈ [10, 15] and pk = 1 otherwise. This
cost function encourages minimization of temperature in the
network, while also penalizing the flow rate, but also allows
flexibility to build up a buffer during off peak hours. To
give the controller sufficient time to react to demand and/or
price variations, we choose a prediction horizon of N = 8
and time step τ = 3600. Furthermore, constraints have been
added to restrict large changes in inputs between time steps,
which avoids fast switching. We solve the nonlinear EMPC
problem (22) using IPOPT. Subsequently, we apply the first
element of the optimal sequence of inputs computed in the
optimization to the same system at a much finer discretization
with ten times as many states simulated with a time step of
one second using an ODE solver.

The results of Fig 6 show that the controller is able
to maintain sufficient supply temperature for each of the
consumers. At the same time, there is a period during the
middle of the day where the heat production is ramped up
to account for the evening peak. In addition, we find that

Fig. 6. The pipe inlet temperature and the observed outlet temperatures at
the consumers with Tin = xo and Tout,i = xnc,i .

in our simulations the open-loop trajectories generated by
the EMPC stay near the closed-loop optimal trajectory, but
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diverge towards the end, as can be seen in Fig 7. This
observation further supports our conjecture that the system
exhibits the turnpike property.

Fig. 7. The predicted outlet temperature at consumer 3: the closed loop
solution versus the open loop solutions at each iterate.

VI. DISCUSSION AND CONCLUSION

We presented two different models that can be used in the
context of MPC for DHS, derived from partial differential
equations governing the heat transport dynamics. We then
provided both theoretical guarantees and numerical evidence
for the existence of strict dissipativity in these networks,
accompanied by a set of practically motivated objective func-
tions that enable approximately optimal economic operation
of the controller.

The results from this work have meaningful implications
for DHS. In practice, implementing MPC for DHS should
remain simple, while also providing users with the ability
to customize controller parameters to suit their preferences.
Therefore, it is relevant to look at the case of EMPC without
terminal conditions. We have provided evidence, and in some
cases, demonstrated theoretical validity that the closed-loop
solutions of the EMPC are approximately optimal and prac-
tically converge towards the optimal trajectory. Hence, these
findings can assist practitioners when determining how to
design or tune, for example, their objective function through
a systematic verification approach. Nonetheless, we should
acknowledge that the bridge to actual implementation has
not been crossed yet. The verification results have potentially
broader applicability to more general models and architec-
tures. Furthermore, our modeling framework and verification
approach may prove to be inadequate for certain DHS, e.g.,
when there are discrete decisions involved. Despite these
challenges, the results indicate an important first step towards
the integration of EMPC theory for DHS applications.

For future work, the results can be extended to incorporate
even more generalized sets of objective functions and model
architectures. To this end, we aim to address the challenge of
scalability and extend the application of our theory to larger,
more complex real-world systems. Additionally, considering
the emergence of smart energy systems, we expect that
the analysis of a multi-producer network with enhanced
emphasis on flexibility, such as through more detailed models
for buffers or heat exchangers, would be of substantial value.
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[15] L. Grüne, Why does strict dissipativity help in model predictive
control? urn:nbn:de:bvb:703-epub-4593-9, Department of
Mathematics, University of Bayreuth, Bayreuth, 2020.
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[17] L. Grüne, S. Pirkelmann, and M. Stieler, Strict dissipativity implies
turnpike behavior for time-varying discrete time optimal control prob-
lems. Springer International Publishing, 2018, pp. 195-218.

[18] T. Faulwasser, M. Korda, C.N. Jones, amd D. Bonvin, Turnpike
and dissipativity properties in dynamic real-time optimization and
economic MPC. In 53rd IEEE Conference on Decision and Control,
IEEE, December, 2014, pp. 2734-2739.
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