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Abstract— In this paper, real-time weather and ship data
will be used for mathematical modeling and cruise ship speed
optimization. The ship data will be used for the construction of
prediction models for hotel and auxiliary power consumption.
Two different prediction model types will be compared: a simple
polynomial model with linear parameters, as well as an artificial
neural network. The effect of the ship’s speed will be predicted
using voyage optimization software, which takes into account
weather and sea forecasts as well as the ship’s hydrodynamic
properties, for calculation of the required propulsion power
as a function of speed. Total predicted power demand will be
finally converted to fuel consumption, using information about
the engine efficiencies. Furthermore, the associated cost will
be attached to the edges of a graph, from which an optimal
speed profile will be selected using dynamic programming. The
performance of the models will be compared, and it is found
that more than 3% of fuel savings are reported using both
model types for the studied voyage.

I. INTRODUCTION

Cruise ship operations are an integral part of the global
tourism industry, catering to millions of passengers each year.
One of the key challenges faced by the cruise industry is
optimizing the operational aspects of cruise ships to ensure
efficient fuel consumption and reduce environmental impacts.
As sustainability becomes an ever more critical concern,
optimizing cruise ship speed as an operational solution takes
on increasing significance, not only for cost savings but also
for mitigating greenhouse gas emissions [1].

System modeling can be done using several techniques,
namely Regression-based Expected behavior models [2],
Ensemble learning models [3], Extreme learning machine
and neural network [4], and Linear-Parameter-Varying (LPV)
modeling [5]. On the other hand, speed profile controlling
can be done using various methods: Optimal Control [6],
Adaptive Control [7], and Dijkstra Algorithm [8], [9].
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versity, Henrikinkatu 2, 20500, Turku, Finland

2 Department of Mechanical Engineering, University of Turku, Finland
3 VTT Technical Research Centre of Finland, Espoo, Finland
4 Napa Ltd., Tammasaarenkatu 3, 00180 Helsinki, Finland
5 Meyer Turku Oy, Telakkakatu 1, 20240 Turku, Finland
6 Department of Computer Engineering, Åbo Akademi University,
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Due to stringent regulations set by the International Mar-
itime Organization (IMO) on greenhouse gas (GHG) emis-
sions from ships, there is a growing body of research focused
on enhancing ship energy efficiency. For instance, according
to [10], convex optimization is proposed for adjusting ship
speed based on forecasted environmental conditions, aiming
to reduce fuel consumption and carbon emissions. The study
demonstrates the efficiency of this approach, particularly for
constant conditions, but notes challenges with time-varying
scenarios. Other notable studies on this topic include [11],
[12], and [13]. However, it’s worth noting that there is a lack
of research regarding the hotel power system in the literature,
highlighting the need for further investigation in this area

This research paper addresses the intricate task of op-
timizing cruise ship speed with the aim of reducing fuel
consumption by integrating weather data and accommodating
variations in hotel and auxiliary load factors. To achieve
these objectives, we employ polynomial and neural network
models and use dynamic programming to find the optimum
solution. By doing so, we not only target cost reduction but
also contribute to the mitigation of environmental impacts in
the shipping industry.

The rest of the paper is organized as follows. In Section
II, one-month data is analyzed, and two different models
are constructed. In Section III, using the developed models,
the optimum speed profile is calculated for the fixed path
with different voyage duration. Finally, in Section IV, we
summarize the key findings and insights from our study,
emphasizing the implications for cruise ship operations and
cost reduction.

Fig. 1. The studied one-month cruise-ship voyage
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II. MODELING

In this study, we have comprehensively analyzed data from
a mid-sized cruise ship primarily operating in the Caribbean
and Mediterranean Seas, with detailed specifications and
characteristics as follows. The tonnage of 100,000 gross tons
and dimensions of 295 meters in length and 42 meters in
beam. Propelled by a conventional diesel-electric propulsion
system, it features a total installed power capacity of 48 MW
and was constructed in 2017.

Initially, this section will closely examine the data to
filter out irrelevant variables and identify key properties
useful for modeling. To model the power consumption of the
hotel power system (Photel) on the cruise ship, we explore
two distinct approaches. The first employs a polynomial
function in which its parameters are obtained using the
least squares method, approximating Photel as a function of
various environmental and operational variables, optimized
to minimize a mean squared error cost function. The second
approach leverages Artificial Neural Networks (ANN), which
adapt their structure during training to capture complex,
nonlinear relationships between variables.

The total power consumption can be decomposed as
Ptotal(t) = Pprop(t) + Paux(t) + Photel(t), where Pprop is
the power usage of the propulsors, Photel is the power needed
for serving the passengers, and Paux is the rest (mainly
power needed for serving the engines). This decomposition
is motivated by the fact that propulsion is largely operator-
controlled, with some influence from the weather. Hotel
power again relies on passenger activities, which we aim
to forecast, and is unrelated to propulsion. Auxiliary power
encompasses all other factors, influenced by the former two
but not vice versa.

Propulsion power is predicted using the NAPA Voyage Op-
timization API [14], which employs hydrodynamic models,
ship characteristics, and weather data to calculate propulsion
power. In our research, as NAPA Voyage Optimization can
provide an estimation of propulsion power with specific ship
speed, time, and coordinates, our modeling section primarily
focuses on hotel and auxiliary power consumption.

Power distribution among various ship systems varies
according to the ship’s operational state. In the sailing phase,
propulsion and non-propulsion are typically distributed about
70:30. This is also true for our data, propulsion systems
consume on average 69% of total power. We also choose
to split up the 31% non-propulsion service power to hotel
services related to the passengers (13%), and all the other
non-propulsion (auxiliary) systems (18%). Conversely, when
the ship is docked at the harbor, power allocation shifts sig-
nificantly, with propulsion requiring only 6%, hotel services
utilizing 52%, and auxiliary systems 42%. Notably, speed
optimization is not applicable during the harboring state, and
it falls outside the scope of our research.

A. Data analysis

Our dataset comprised approximately 500 distinct data sig-
nals, including variables like ambient temperature, humidity,
wind speed, and wind direction. The data was sampled at

one-minute intervals over the course of one month. Although
transoceanic voyages are infrequent for cruise ships, we have
recognized their significance in our modeling process. These
extended journeys provide valuable information for a more
realistic and accurate model. For this study, we focused on
the route shown in Fig. 1.

In this study, we consider ten features for the modeling
stage, as listed in Table I. Note that Photel,avg is the daily
average power consumption of the hotel as a function of
the local time. In the load distribution process, the hotel
power must be determined first before calculating the thrust
power. Consequently, the thrust power cannot be used as
a feature to estimate the hotel power. Similarly, scrubber
power is irrelevant and will also be excluded from the hotel
model. Using Neighborhood Component Analysis (NCA),
a non-linear, non-parametric method designed for feature
selection in regression tasks [15], we calculate and present
the importance of these ten features in Table. I.

TABLE I
NEIGHBORHOOD COMPONENT ANALYSIS OF THE MANUALLY SELECTED

FEATURES

Features (notation) Hotel Feature
wight

Aux-
iliary

Feature
wight

Ambient
temperature (Tamb) √ 8.613 √ 7.793

Ambient
humidity (Hamb) √ 8.291 × 6.214

Number of
passengers (Npsg) × 1.315 × 0.432

Sea
temperature (Tsea) √ 4.969 √ 7.587

Relative
wind speed (Vwind) √ 5.433 × 3.156

Ambient
pressure (Pamb) √ 5.35 × 4.609

Moist air
enthalpy (Hm) × 0.007 × 3.503

Hotel
average power (Photel,avg) √ 7.412 × -

Propulsion
power (Pprop) × - √ 6.408

Scrubber
power (Pscrub) × - × 0.028

The low weight assigned to Pscrub is due to its strong
correlation (Pearson correlation coefficient of 0.87) with
Pprop. This high correlation indicates a significant positive
linear relationship, meaning they tend to increase together.
While both Hamb and Tsea received significant weights in
the auxiliary model initially, but in the model fitting stage,
it was found that Hamb actually worsened the validation
performance, and Hamb was removed as a feature.

We also conducted a backward elimination (removal of
one at a time) of the selected features, which showed that
ambient humidity, wind speed, and ambient pressure might
not be as crucial for the hotel’s polynomial model but are
essential for the neural network model, indicating that the
NCA works well for the ANN model while being less
reliable for standard linear regression problems. Since these
features did not hinder the performance of the polynomial
model, and for the sake of a fair comparison between the

1636



two techniques, we used the same inputs for both models.
From a physical perspective, the number of passengers is
expected to influence the prediction of hotel load. Despite
this expectation, our analysis revealed that the inclusion
of the number of passengers features did not significantly
impact any of the models in our specific case study. However,
it is important to note that the lack of significance in our
analysis may be attributed to the minimal variation observed
in the number of passengers within our dataset. This suggests
that while the feature may not be crucial for our specific
scenario, its importance could vary in other case studies
where the variance in the number of passengers may be more
pronounced.

As noted before, the data from when the ship is in port is
excluded. The empty areas in Fig. 2 correspond to this data.
The speed of the ship is zero at port, so no speed optimization
is needed, and thus, the data is irrelevant for this study.

It can be seen in Fig. 2 and Fig. 3 that the ship operates
in the Caribbean Sea from 20 March to 6 April and in
the Mediterranean Sea from 13 April to 20 April. Figure
1 illustrates the ship’s trajectory as it traversed the Atlantic
Ocean. This voyage spanned from 06 April at 23:29 to 13
April at 05:20. We used half of this data for training and
half for validation. The motivation for this is that the sea
and ambient temperature are changing the most during this
part. When it comes to other data, about 1/5 of the data is
chosen for validation. In all cases, data is divided into 24-
hour slots, as the average hotel load is given different values
as a function of the day of time. The test data that is actually
used for speed optimization is excluded from the model fit.

Two different approaches are employed in the next section
to model the power consumption of a cruise ship. The first
approach utilizes a polynomial model with linear parameters
obtained using a standard least-squares method. The second
approach uses a neural network to model the ship’s power
consumption.

B. Polynomial model

In this section, we create a polynomial model to under-
stand and predict power use in both the hotel and auxiliary
systems. We’ll explain how we choose the inputs, find
the best settings, and see how well the model performs.
We’ll also share the results and their performances. This
model helps us understand and make informed decisions
about cruise ship power consumption. Furthermore, we
also apply this modeling method to the auxiliary system,
showing that it works well with different parts of our
study. To simplify, we define the input vectors as χh =
[Tamb, Hamb, Tsea, Vwind, Pamb, Photel,avg] for the hotel’s
model and χa = [Tamb, Tsea, Pprop] for the auxiliary model.
Using these vectors, the hotel model can be described as
P̂hotel = fhotel

poly (χh), where fhotel
poly (.) : R6 → R is a generic

mapping to be selected as an input design. In this study,

fhotel
poly (.) is considered as

fhotel
poly (χh) =

∑
i∈I1

ci1T
i
amb +

∑
i∈I2

ci2H
i
amb +

∑
i∈I3

ci3T
i
sea

+
∑
i∈I4

ci4V
i
wind +

∑
i∈I5

ci5P
i
amb +

∑
i∈I6

ci6P
i
hotel,avg

wherein Ii’s are the predefined indexing sets, cij are tuning
parameters that would be selected in an optimal manner.
This nested optimal problem consists of one outer Integer
Optimal Problem and one inner Least-Squares problem. The
following Mean Squared Error (MSE) criterion is considered
for this problem

J =
1

N

N∑
k=1

(Photel(k)− P̂hotel(k))
2 (1)

Therefore, the optimization problem could be formulated as

{cij , Ii} = argmin J. (2)

The auxiliary system can be effectively modeled using a
similar approach employed for hotel modeling. In the context
of this paper, the auxiliary model is referenced as P̂aux =
faux
poly(χa), where faux

poly(.) : R3 → R is considered as

faux
poly(χa) =

∑
i∈I1

ci1T
i
amb +

∑
i∈I2

ci2T
i
sea +

∑
i∈I3

ci3P
i
prop

Figure 2 displays the outcomes of our polynomial mod-
eling. It is evident that both the hotel and auxiliary models
accurately represent the daily and monthly power trends. To
assess their performance, we focus on the test data, where
the hotel model achieves an MSE of 0.027, and the auxiliary
model has an MSE of 0.033. These low MSE values confirm
the models’ effectiveness in capturing the system behaviors.

C. Artificial neural network model

Artificial Neural Networks (ANNs) are computational
models inspired by the neural structure of the human brain.
They are composed of interconnected layers of artificial
neurons, including input, hidden, and output layers. ANNs
are renowned for their ability to capture intricate patterns in
data.

Mathematically, each neuron computes a weighted sum
of its inputs, applies an activation function (e.g., sigmoid
or linear), and generates an output. The training of ANNs
involves the optimization of weight and bias parameters
to align with desired outputs, a process typically achieved
through techniques like gradient descent.

In our research, we utilize two distinct neural network
models to address the dynamics of power consumption
within our study. The first model, tailored for hotel power
consumption is P̂hotel = Nhotel(χh), which is an ANN
featuring a single hidden layer with 11 neurons. This design
aims to capture essential patterns and variations in the con-
text of hotel power consumption. The Levenberg-Marquardt
training algorithm (trainlm) is applied, optimizing the
model’s 89 weight elements. The robust training functions
of this model make it a powerful tool for modeling hotel
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Fig. 2. Model fits for the polynomial models

power consumption, demonstrating its adaptability and high
performance.

For modeling auxiliary power consumption, we extend
the same approach used for the hotel system, employing an
ANN with increased complexity and is noted by P̂aux =
Naux(χa). This ANN architecture features two hidden lay-
ers, with 15 neurons in the input layer and three neurons
in each hidden layer. This enhanced design allows us to
capture intricate relationships within the three input data
parameters considered previously, providing deeper insights
into auxiliary power consumption dynamics.

With a total of 124 weight elements and utilizing the
trainlm algorithm, this neural network serves as a crucial
tool in modeling auxiliary power consumption. Its adaptabil-
ity and strong performance underscore its significance in our
research.

The performance of our modeling process is visually
demonstrated in Fig. 2 and Fig. 3. To facilitate a com-
prehensive comparison of the models, we present the re-
sults in Tab. II. This table evaluates the models using two
distinct metrics: MSE and the Correlation Coefficient (R).
Our findings clearly indicate that the ANN model surpasses
the Polynomial model in performance, as reflected in both
evaluation metrics.

In the forthcoming section, we present an optimization
problem that aims to identify the optimal cruise ship speed
profile with the primary objective of minimizing fuel con-
sumption.

III. SPEED OPTIMIZATION

Cruise ship speed optimization involves advanced tech-
nologies and operational practices to enhance efficiency.
These include state-of-the-art propulsion systems, weather

TABLE II
MODEL PERFORMANCE COMPARISON USING MSE AND CORRELATION

COEFFICIENT METRICS

MSE R
Model train valid test train valid test

Hotel System
Poly 0.029 0.038 0.027 0.89 0.86 0.9
ANN 0.025 0.032 0.022 0.91 0.88 0.93

Auxiliary System
Poly 0.070 0.039 0.033 0.78 0.91 0.74
ANN 0.049 0.025 0.022 0.86 0.93 0.83

routing, navigation tech, and eco-friendly practices, all aimed
at reducing fuel consumption and emissions to align with
sustainability goals.

We leverage NAPA’s API to construct a unidirectional
graph that plays a pivotal role in our study. The nodes in this
graph are defined by the relevant attributes, encompassing lo-
cal/global time, distance from the initial point, geographical
coordinates, weather data, average hotel power consumption,
and engine configuration. The edges connecting these nodes
carry weights that symbolize fuel consumption during tran-
sitions between nodes. This graph can be used for minimiza-
tion of fuel consumption using dynamic programming.

These node attributes are employed to predict both ho-
tel and auxiliary power consumption, as computed in the
preceding section. Propulsion power is forecasted using
the NAPA API. Consequently, we integrate this propulsion
power prediction into an auxiliary model. This integrated
model allows us to predict the total power required for the
cruise ship.

In summary, by utilizing NAPA’s API and considering
the node attributes within our graph, we estimate hotel and
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Fig. 3. Model fits for the ANN models

auxiliary power consumption. Coupled with the propulsion
power prediction from NAPA, we compute the total power
needed for the vessel.

On the ship under investigation, there are four engines
available for propulsion. These engines consist of two larger
ones of the same size and two smaller ones of the same
size. It is worth noting that, on the sea, one avoids using
only one engine and all four engines, but all other five
combinations are considered in this study (S: small engine,
L: large engine): SS, LS, LL, LSS, and LLS.

To accurately predict the fuel consumption for each edge,
it is imperative to consider the Specific Fuel Oil Consump-
tion (SFOC) of the ship’s engines, as depicted in Fig. 4.
SFOC is a critical measure of engine efficiency, quantifying
the amount of fuel required to generate a unit of power.
Lower SFOC values correspond to higher engine efficiency.
Fig. 4 illustrates that a transition to the most efficient engine
load is at 85%. No higher loads than that are allowed, so
abrupt shifts in the total SFOC curve are obtained at this
point, the engine combination is changed, and the combined
engine load adjusts to a less efficient level. For the sake of
simplicity, we have not accounted for the costs associated
with engine switches in Fig. 4.

In summary, by incorporating the relevant attributes into
the graph, we can determine the fuel consumption for trav-
eling between specific coordinates at a designated speed.
To identify the optimal speed profile within this graph, we
employ Dijkstra’s algorithm [16].

In this study, we address the speed profile optimization
problem, focusing on a 32-hour voyage that serves as our
test data in the modeling section. The optimization results
are presented in Fig. 5. Notably, each node in the graph is
connected to nine edges, with the right-side edges featuring
higher speeds compared to their left-side counterparts. This

Fig. 4. Total SFOC as a function of power generated when the engine
load is distributed equally between engines. Loads up to 85% are utilized

distinction is evident when examining the normalized ship
speed in Fig. 5.

The speed profiles optimized using the two different
models, namely ANN and Poly, are compared with the
actual speed profile of the ship. A closer examination of the
normalized fuel consumption (as depicted in Fig. 5) reveals
that the actual system consumes more fuel during the middle
part of the voyage, where the operators utilize the LLS
combination. The ANN speed profile results in fuel savings
of 3.08%, while the Poly speed profile results in 3.23% fuel
savings, as shown in Tab. III. For a fair comparison between
the speed profiles, the total power consumption was in all
cases recalculated using the VO propulsion and the ANN
hotel and auxiliary power consumption. The obtained total
consumption was furthermore converted to fuel consumption
using the SFOC curve. Table III shows fuel savings and used
engine combinations. Apart from the actual 32-hour journey,
longer and shorter voyage durations are also considered. The
comparisons are then against the actual voyage. It comes as
no surprise that longer voyage durations save fuel, but one
can also see that speed optimization is useful for cases where
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one needs to catch up in time.

Fig. 5. Optimized and actual speed profiles

TABLE III
FUEL CONSUMPTION AND SAVING ANALYSIS. VD: VOYAGE DURATION,

EC: ENGINE COMBINATION, OPT: OPTIMAL, AND FS: FUEL SAVING

Model VD
(h)

EC average
speed

EC
Opt.
speed

Optimal
vs

actual
FS (%)

Optimal
vs

average
FS (%)

30 LLS-LSS LLS-LL -1.30 0.98
31 LLS-LSS-LL LSS-LL 1.44 1.62

Poly 32 LLS-LL LL-LS 3.32 1.29
33 LLS-LL LL-LS 4.78 2.27
34 LL-LS LL-LS 6.08 2.04
30 LL LL-LS 0.40 0.36
31 LL-LS LL-LS 2.61 0.49

ANN 32 LL-LS LSS-LS 4.34 0.09
33 LL-LS LS 5.80 0.18
34 LS LS-SS 6.97 0.15

IV. CONCLUSIONS

Ship and weather data were used for cruise-ship speed
optimization. The ship data was used for the construction of
prediction models for hotel and auxiliary power consump-
tion. Two different prediction model types were compared:
a polynomial model with linear parameters, as well as a
neural network. The effect of the ship speed was predicted
using voyage optimization software, which took into account
weather and sea forecasts as well as the ship’s hydrodynamic
properties, for calculation of the required propulsion power
as a function of speed. Total predicted power demand was

finally converted to fuel consumption, using information
about the engine efficiencies. All this information was
stored in a graph, from which an optimal speed profile
was selected using dynamic programming. Both considered
modeling techniques perform well on both tasks, the more
complex neural network slightly better. Higher than 3% fuel
savings were reported in both cases for the studied journey.
As a potential avenue for future research, enhancing the
model’s performance could involve developing an adaptive
framework for generating the hotel’s average power feature.
Additionally, integrating battery storage alongside engine
systems to store surplus power for improving fuel efficiency
warrants consideration.
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