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Abstract— This paper presents a framework designed to
address the challenges of runtime formation switching and
collision avoidance for multi-agent systems (MASs) operating
under undirected and switching network topologies. Within
this framework, we investigate time-varying formation tracking
(TVFT) control for linear multi-agent systems in the presence
of actuator failures and maneuvering leader. One of the main
challenges in designing a formation tracking controller is the
leader’s independent selection of diverse time-varying formation
(TVF) configurations for the followers without pre-specifying
them, with each configuration lasting for specific durations.
To address this challenge, we introduce a set of distributed
observers, each concurrently estimating these formation config-
urations for its assigned follower. Using these estimates and the
collision-avoidance algorithm, the proposed controller enables
the followers to synchronize with the leader’s chosen runtime
formations, all without any collisions. Moreover, uniform ul-
timate boundedness (UUB) of followers’ collective formation
tracking error is rigorously guaranteed using Lyapunov’s stabil-
ity theory. Finally, a simulation example illustrating the results
is given.

I. INTRODUCTION

Formation control for multi-agent systems, a cornerstone
of cooperative control, orchestrates group behavior across
diverse disciplines like robotics, transportation, control, and
communication. This technology continues to revolutionize
various fields by enabling functionalities like coordinated
robot assembly lines, synchronized drone shows, and dis-
tributed communication networks. In most previous research,
formation control has been predominantly explored using
simplified motion models (i.e., first, second, and high-order
integrator dynamics), limiting its applicability to a broad
range of practical systems.

TVFT control, as discussed in [1], [2], [3], [10], is an
important concept that describes how followers’ arrangement
(i.e., shape) progresses while tracking the leader. Essentially,
TVFT serves as a generalization encompassing consensus,
consensus tracking, and formation as its special cases. In
the existing literature, researchers investigated TVFT control
for both homogeneous [1] and heterogeneous multi-agent
systems [2], [3] under various network topologies: undirected
[1], directed [2], and switching [3]. However, all prior re-
search [1], [2], [3], [5], [6], [7], [10] has exclusively focused
on TVFT control with a predefined follower configuration
chosen at the outset. Contrary to existing research, relaxing
the scenario (or assumption) of predefined formation opens
up possibilities for enhancing the applicability of TVFT,
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although it would introduce additional complexity into TVFT
control. As of our current knowledge, the existing literature
has not yet addressed the challenge of TVFT control for non-
predefined TVF configurations. In this study, we intend to fill
this gap by employing a distributed observer technique.

In practice, due to the phenomenon of link failures and
the creation of new links caused by environmental changes,
the graph topology may change over time [14], [15]. Thus,
studying TVFT control for a non-predefined TVF configura-
tion under switching topologies is practical and significant.

Over the past decade, there has been a notable emphasis
on addressing collision avoidance [6], [7], [11], [12] and
ensuring fault tolerance [1], [13] in multi-agent systems. In
most existing work, the artificial potential field method is
the most commonly adopted collision avoidance technique,
which depends upon the gradient of the potential function
[7], [11], [12] defined for all points in the region of interest,
calculated from the sensor field of vision. However, this pro-
cess needs constant updating of the potential function as the
agent maneuvers. To overcome this challenge, we propose an
energy-efficient discrete collision avoidance algorithm that
eliminates the necessity for continuous updates.

In contrast to studies [1] and [2], which feature simpler
analyses due to the leader’s control input being zero, result-
ing in scenarios where the leader either converges to the
origin or continuously follows a circular path. However, this
work allows the unrestricted maneuvering of the leader by
incorporating the methods from [1], [12], which simultane-
ously adapt to both the leader’s maneuvering due to its non-
zero control input and actuator faults.

Motivated by the above discussion, the key contributions
are listed as follows:

• This paper introduces a novel, distributed observer-
based approach for leader-driven runtime formation
switching in multi-agent systems (MASs) under switch-
ing graph topologies. It departs from prior works where
the time-varying formation (TVF) configuration for
followers is predetermined. In this approach, followers
are unaware of their formation, and the leader solely
decides and generates formations in runtime, with the
autonomy to maintain the last selection or transition
to different ones as needed, all within the scenario of
dynamic network connections.

• Here, both the leader’s maneuvering and the faults in
the followers’ actuators are adaptively managed through
a single fault-tolerant technique [1].

• This work presents a novel collision avoidance tech-
nique that is both discrete and computationally efficient.
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II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notations and Graph Theory
Let 0n and 1n denote column vectors with all n-elements

being zeros and ones, respectively. The superscripts † and T
represent pseudo matrix inversion and matrix transposition,
respectively. Let Z+ (Z⊕), Rn, and Rn×m represent the sets
of positive (non-negative) integers, (n× 1) real column vec-
tors, and (n×m) real matrices, respectively. With yi ∈ Rn or
yi ∈ Rn×m, i = 1, ..., N , the vector or matrix [yT1 , ..., y

T
N ]T

is denoted by col(y1, ..., yN ). For a given w ∈ Rn, ∥w∥j
represents its j-norm. The notations In, Q ≻ 0, λmax(.),
λmin(.), and (.⊗.) represent the identity matrix of dimension
(n×n), the positive definite Q, the maximum eigenvalue, the
minimum eigenvalue, and the Kronecker product operation,
respectively. Let sig(z)b = sign(z)|z|b, where z ∈ (R or Rn
or Rn×m), b > 0, and sign(.) is the sign function.

Let the index 0 denote the leader, and the followers are
indexed from 1 to N , denoted jointly as F = {1, ..., N}.
For switching topologies, we consider the set of all possible
undirected graphs as {Gs(t) : s(t) = 1, ...,M}, where s(t)
denotes the topology switching signal. In graph Gs(t), the
communication links among the followers and between the
leader and followers are expressed through the adjacency
matrix As(t) = [a

s(t)
ij ] ∈ RN×N and the diagonal matrix

diag(as(t)10 , ..., a
s(t)
N0 ), respectively. The Laplacian matrix of

Gs(t) is given as £s(t) = [l
s(t)
ij ] ∈ RN×N with properties

l
s(t)
ii = a

s(t)
i0 +

∑N
j=1,j ̸=i a

s(t)
ij and ls(t)ij = −as(t)ij , i ̸= j.

III. PROBLEM STATEMENT

A. Agents Dynamics
Consider a multi-agent system with a leader and N

followers. The agents’ dynamics are as follows:

ẋi(t) = Axi(t) +B
(
ui(t) + fi(t)

)
, i ∈

(
F ∪ {0}

)
, (1)

where xi(t) ∈ Rn, ui(t) ∈ Rm, and fi(t) ∈ Rm are
state, control input, and actuator bias fault of i-th agent,
respectively. A ∈ Rn×n and B ∈ Rn×m are known constant
matrices. In this work, the leader is assumed to be fault-free,
i.e., f0(t) = 0m.

B. Formation Switching and Key Definitions
The time-varying formation for the followers with respect

to the leader as the formation reference is characterized by
h(t) = col

(
h1(t), ..., hN (t)

)
∈ RNn. Unlike prior research,

this study investigates a scenario where the followers are
unaware of h(t), as it is exclusively determined by the leader
in runtime, all within the realm of switching topologies.

In this work, suppose the leader has the autonomy to
independently select a pair

(
Ck,h

(
tkα
))

, k ∈ Z+ at t = tkα,
such that C(t) = Ck, ∀ t ∈

[
tkα, t

k+1
α

)
as shown in Fig.

1. Using these selections, the leader determines h(t) for
followers from the following switched system [8], [9]:{
ḣ(t) =

(
IN ⊗ Ck

)
h(t), t ∈

[
tkα, t

k+1
α

)
, k ∈ Z+,

h
(
tkα
)
=
{ hin, if k = 1;
R(k, k − 1)h

(
tk−α
)
+ b(k, k − 1), if k > 1,

(2)

where Ck ∈ Rn×n represents the formation matrix, and
hin ∈ RNn represents the initial formation vector. R(k, k−1)
∈ RNn×Nn and b(k, k− 1) ∈ RNn together define the reset
map for adjusting the formation vector at t = tkα for k > 1.

t

C1

C2
Ck

k-th formation

t1α = 0 t2α tkα tkβ tkγ tkδ tk+1
α

h(tkα)

C(t)

Fig. 1:
{(
h(tkα),C

k
)}

k∈Z+

chosen by the leader in runtime.

Furthermore, it’s important to mention that the system (1)
achieves TVFT for the leader-selected k-th formation, if the
following tracking feasibility condition holds:(

IN ⊗ (In −BB†)
(
A− Ck

))
h(t) = 0Nn. (3)

Otherwise, TVFT for k-th formation is not achievable.
Here, we introduce significant timestamps that will be

frequently mentioned in this paper, defined as follows:
Let the time-sequence be

{
tkp : p ∈ {α, β, γ, δ}, k ∈ Z+

}
,

that satisfies 0 = t1α ≤ t1β < t1γ < t1δ < t2α ≤ t2β < t2γ < t2δ <

... < tkα ≤ tkβ < tkγ < tkδ < ... as shown in Fig. 1, where

• tkα is the time stamp at which the leader chooses
k-th formation or transitions from (k − 1)-th to k-th
formation.

• tkβ denotes the time stamp within
[
tkα, t

k+1
α

)
at

which all followers’ collective matrix estimation
error is zero and remains zero until tk+1

α , i.e.,
Ĉ(t) −

(
1N ⊗ Ck

)
= 0Nn×n, ∀ t ∈

[
tkβ , t

k+1
α

)
,

where Ĉ(t) = col
(
Ĉ

1
(t), ..., Ĉ

N
(t)
)
∈ RNn×n. Here,

Ĉ
i
(t) ∈ Rn×n, i ∈ F is the observer estimate of C(t)

for i-th follower.

• tkγ denotes the time stamp within
[
tkα, t

k+1
α

)
at

which all followers’ collective formation estimation
error is zero and remains zero until tk+1

α , i.e.,
ĥ(t) −

(
1N ⊗ h(t)

)
= 0N2n, ∀ t ∈

[
tkγ , t

k+1
α

)
,

where ĥ(t) = col
(
ĥ
1
(t), ..., ĥ

N
(t)
)

∈ RN2n. Here,

ĥ
i
(t) ∈ RNn, i ∈ F is the observer estimate of h(t)

for i-th follower.

• tkδ denotes the time stamp within
[
tkα, t

k+1
α

)
at which

all followers’ collective formation tracking error is ϵ
and remains within ϵ−error bound until tk+1

α , i.e.,∥∥x(t)− h(t)−
(
1N ⊗ x0(t)

)∥∥
2
≤ ϵ, ∀ t ∈

[
tkδ , t

k+1
α

)
,

where x(t) = col
(
x1(t), ..., xN (t)

)
∈ RNn, and ϵ > 0

is the upper bound of the formation tracking error to be
evaluated later.
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C. Control Objective

The objective is to design methods for collision-avoidance
and runtime formation switching in multi-agent systems that
operate in undirected and switching topologies. In particular,
we aim to achieve collision-free TVFT control for arbitrary
formations chosen by the leader in runtime, even under
changing graph topologies. Additionally, this work handles
challenges due to leader’s maneuvering and actuator faults.
The followers are said to achieve collision-free TVFT if for
any bounded

{
xi(0)

}N
i=0

,

∥xi(t)− hi(t)− x0(t)∥2 ≤ ϵ, ∀i ∈ F ,
∀t ∈

[
tkδ , t

k+1
α

)
,∀k ∈ Z+

holds while ensuring xi(t) ̸= xj(t), ∀ j ∈
((

{0}∪F
)∖

{i}
)

for all time under Gs(t) ∈ {G1, ...,GM}.
Furthermore, system (1) adheres to the following assump-

tions in order to accomplish the above-defined objective.
Assumption 1: The pair (A,B) is stabilizable.
Assumption 2: Each topology graph Gs(t) ∈ {G1, ...,GM}

is connected and remains fixed during [tr, tr+1), where tr
represents the switching instant of s(t), starting at t0 = 0.

Assumption 3: The interval
[
tkα, t

k+1
α

)
must be of suf-

ficient duration to ensure that the k-th formation can be
achieved for all followers.

Assumption 4: The piece-wise constant matrix C(t) is
either the zero matrix or possesses simple eigenvalues with
real parts equal to zero.

Assumption 5: In (1), u0(t) and fi(t), i ∈ F are unknown
and satisfies ∥u0(t)∥2 ≤ ū0 and ∥fi(t)∥2 ≤ f̄i, respectively.

Remark 1: Assumptions 1 and 2 are standard assumptions
for controllable and connected MASs [15]. In the absence
of assumption 3, a scenario might occur where the leader
transitions to the k-th formation without having achieved the
(k − 1)-th formation for all followers. Assumption 4 elimi-
nates impractical formation configurations that exhibit either
growing or decaying behavior. Assumption 5 is required for
the calculation of ϵ.

IV. RESULTS

A. Design of Formation Observer
The design of adaptive finite-time observer estimating

C(t) and h(t) for the i-th follower is constructed as follows:

˙
Ĉ
i
(t) = −η1 sig

{
H
s(t)
i (t)

}p1 − η2 sig
{
H
s(t)
i (t)

}q1
, (4a)

˙
ĥ
i
(t) =

(
IN ⊗ Ĉ

i
(t)
)
ĥ
i
(t)− ℘i(t)ξ

s(t)
i (t)

− η3 sig
{
ξ
s(t)
i (t)

}p2 − η4 sig
{
ξ
s(t)
i (t)

}q2
,

(4b)

℘̇i(t) =
(
ξ
s(t)
i (t)

)T
ξ
s(t)
i (t), ℘i(0) = ℘i0, i ∈ F , (4c)

where Ĉ
i
(t) ∈ Rn×n and ĥ

i
(t) = col

(
ĥ1
i
(t), ..., ĥN

i
(t)
)
∈

RNn represent the estimates of C(t) and h(t) for
the i-th follower, respectively. Here, H

s(t)
i (t) =(∑N

j=1 a
s(t)
ij

(
Ĉ
i
(t) − Ĉ

j
(t)
)

+ a
s(t)
i0

(
Ĉ
i
(t) − C(t)

))
and ξs(t)i (t) =

(∑N
j=1 a

s(t)
ij

(
ĥ
i
(t)− ĥ

j
(t)
)
+ a

s(t)
i0

(
ĥ
i
(t)−

h(t)
))

. ℘i(t) is the coupling gain, while p1, p2, q1, q2,

η1, η2, η3, and η4 are the design parameters satisfying the
following Lemma 1.

Lemma 1. Suppose assumptions 2-4 hold, and given that
the leader operates system (2). Then, observer achieves

1) For all k ∈ Z+, lim
t→tkβ

(
Ĉ (t)−

(
1N ⊗Ck

))
= 0Nn×n

and Ĉ(t)−
(
1N⊗Ck

)
= 0Nn×n for all t ∈

[
tkβ , t

k+1
α

)
,

if η1 > 0, η2 > 0, p1 > 1, q1 ∈ (0, 1).
2) For all k ∈ Z+, lim

t→tkγ

(
ĥ(t)−

(
1N ⊗ h(t)

))
= 0N2n

and ĥ(t)−
(
1N ⊗ h(t)

)
= 0N2n for all t ∈

[
tkγ , t

k+1
α

)
,

if η3 > 0, η4 > 0, p2 > 1, and q2 ∈ (0, 1),
where tkβ and tkγ are finite-time settling times. Particularly,
tkβ <t

k∗
β and tkγ <t

k∗
γ with tk∗β = tkα + max

s(t)∈{1,...,M}
ζ, ζ :=

1
η2(1−q1)

[ λmin(£
2
s(t))

λmax(£s(t))

]− 1+q1
2 +np1N

p1−1
2

η1(p1−1)

[ λmin(£
2
s(t))

λmax(£s(t))

]− 1+p1
2 .

Proof: The proof will take a similar approach as the one
presented in [4], which is not included here.

Remark 2: For all t ∈
[
tkγ , t

k+1
α

)
, ∀k ∈ Z+, achieving

ĥ(t)−
(
1N⊗h(t)

)
= 0N2n guarantees ĥ

i
(t) = h(t) for each

follower i (i ∈ F), and consequently ensures ĥi
i
(t) = hi(t),

which is necessary for the controller to be designed.

B. Collision Avoidance scheme

ℜ

cBB† g
||g||2

i

a
xa(tυ)

d xd(tυ)

(a)

g

xai(tυ)
||xai(tυ)||2

xdi(tυ)
||xdi(tυ)||2

i

(b)

i
xi(tυ)

i
xi(t

+
υ )

(c)

Fig. 3: Collision-avoidance ball B
(
xi(tυ),ℜ

)
for i-th fol-

lower at t = tυ . Here, xji(tυ) = xi(tυ) − xj(tυ) for
j = a, d. Additionally, g := xai(tυ)

||xai(tυ)||2 + xdi(tυ)
||xdi(tυ)||2 and

xi(t
+
υ ) := xi(tυ) + cBB† g

||g||2 .

Let’s define a time sequence ∆ := {tυ : tυ = υΓ, υ ∈
Z⊕}, where Γ > 0 is chosen such that no collisions can
occur within [tυ, tυ+1]. At each t = tυ , each follower
(i = 1, .., N ) detects nearby agents within its designated
safety zone, known as collision avoidance ball. Specifi-
cally, each follower initially identifies agents inside the ball
B
(
xi(tυ),ℜ

)
at t = tυ , where xi(tυ) represents the centre

of the ball for the i-th follower, and ℜ is its radius. Let
Ii(tυ) represent the set of agents present inside the collision
ball of the follower i at t = tυ , defined as Ii(tυ) :=

{
j :

xj(tυ) ∈ B
(
xi(tυ),ℜ

)
, j ∈

(
{0}∪F

)∖
{i}
}

. Fig. 3 demonstrates
the process: when follower i detects agents a and d within
its collision ball at instant t = tυ , then it changes its state
impulsively by cBB† g

||g||2 , as shown by the black arrow.
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Typically, we employ the superposition principle when two
or more agents are detected inside the safety ball of follower
i at time instances t = tυ ∈ Z⊕.

Define the collision avoidance component of the control
input ui(t), denoted by ucai (t), for each follower as:

ucai (t) = B†
∑
tυ∈∆

ϖi(tυ) d̄(t− tυ), i ∈ F , (5)

where d̄(t− tυ) is the unit impulse signal at t = tυ and

ϖi(tυ)=


c

( ∑
j∈Ii(tυ)

(
xi(tυ)−xj(tυ)

∥xi(tυ)−xj(tυ)∥
2

)
∥∥∥∥∥ ∑
j∈Ii(tυ)

(
xi(tυ)−xj(tυ)

∥xi(tυ)−xj(tυ)∥
2

)∥∥∥∥∥
2

)
, if Ii(tυ) ̸= ∅;

0n, if Ii(tυ) = ∅.

Here, c > 0 is a constant that scales the impulsive shift.

V. ADAPTIVE CONTROLLER DESIGN

In addition to H
s(t)
i (t) and ξ

s(t)
i (t) in (4), each follower

requires additional information from its neighborhood, which
is described as

zi(t) =

N∑
j=1

a
s(t)
ij

((
xi(t)− ĥi

i
(t)
)
−
(
xj(t)− ĥj

j
(t)
))

+ a
s(t)
i0

(
xi(t)− ĥi

i
(t)− x0(t)

)
, i ∈ F ,

(6)

and writing (6) compactly results in

z(t) = (£s(t) ⊗ In)
(
x(t)− ĥ

⋆
(t)−

(
1N ⊗ x0(t)

))
, (7)

where ĥ
⋆
(t) = col

(
ĥ1

1
(t), ..., ĥN

N
(t)
)

and z(t) =
col
(
z1(t), .., zN (t)

)
.

After rearranging (7), we obtain

z(t) = (£s(t) ⊗ In)
(
ϱ(t)− h̃

⋆
(t)
)
, (8)

where h̃
⋆
(t) = ĥ

⋆
(t)− h(t).

In order to synchronize with the leader’s chosen runtime
formation without any collisions under switching network
topologies, the designed adaptive TVFT control protocol,
utilizing Ĉ

i
(t), ĥ

i
(t), and zi(t), is proposed as follows:

ui(t) = ufti (t) + ucai (t)

=
{
− ϕBTΞs(t) zi(t)−

κ2i (t)B
TΞs(t) zi(t)

κi(t)
∥∥BTΞs(t) zi(t)

∥∥
2
+ σ

−B†(A− Ĉ
i
(t)
)
ĥi
i
(t)
}

+
{
B†

∑
tυ∈∆

ϖi(tυ) d̄(t− tυ)
}
, i ∈ F ,

(9)

where ϕ > 0, σ > 0, and Ξs(t) ≻ 0 are design parameters,
B† is the pseudo inverse of B, and κi(t) is given as

κ̇i(t) = −κµκi(t) + κ
∥∥BTΞs(t) zi(t)

∥∥
2
, i ∈ F , (10)

where µ > 0 and κ > 0 are design gains.
Let the formation tracking error for the i-th follower be

ϱi(t) = xi(t)− hi(t)− xo(t), i ∈ F . (11)

Differentiating (11) and utilizing (9) into the derivative yields

ϱ̇(t) = (IN ⊗A)ϱ(t)−
(
IN ⊗ ϕBBTΞs(t)

)
z(t)

−
(
IN ⊗BBTΞs(t)

)
φ(t) + ϑ(t)

+ (IN ⊗B)
(
f(t)−

(
1N ⊗ u0(t)

))
+ (IN ⊗BB†)

∑
tυ∈∆

ϖ(tυ) d̄(t− tυ),

(12)

whereϱ(t)=col
(
ϱ1(t), ..., ϱN (t)

)
,f(t)=col

(
f1(t), ..., fN (t)

)
,

ϑi(t) =
(
A−C(t)

)
hi(t)−BB†(A− Ĉ

i
(t)
)
ĥi
i
(t), ϑ(t) =

col
(
ϑ1(t), .., ϑN (t)

)
,ϖ(tυ) = col

(
ϖ1(tυ), .., ϖN (tυ)

)
, φ(t)

= col
(

κ2
1(t)z1(t)

κ1(t)∥BTΞs(t)z1(t)∥2
+σ
, ...,

κ2
N (t) zN (t)

κN (t)∥BTΞs(t) zN (t)∥
2
+σ

)
.

VI. STABILITY ANALYSIS

Theorem 1: Under all assumptions, consider a MAS sat-
isfying condition (3) with agents (1), where the leader
operates another system (2). If, for mode s(t) = s(tr) during
the interval [tr, tr+1), there exists Ξs(tr) ≻ 0 such that(

ATΞs(tr) + Ξs(tr)A+ ς Ξs(tr)

− 2ϕλmin(£s(tr)) Ξs(tr)BB
TΞs(tr)

)
≺ 0,

(13)

then for the followers utilizing observer (4) and controller
(9), there exist the time stamps

{
tkδ : k ∈ Z+

}
such that the

TVFT error ϱ(t) is UUB and converges to the

Ω :=

{
ϱ(t) : ∥ϱ(t)∥2 ≤

( 1
ψ

(θ
ς
+ ρ
)) 1

2

=: ϵ,

∀t ∈
[
tkδ , t

k+1
α

)
,∀k ∈ Z+

}
,

(14)

where ς > 0 and ρ> 0 are design parameters. θ := 2σN +

µ
N∑
i=1

(
f̄i + ū0

)2
and ψ>0 depends on various topologies.

Proof: At time t and mode s(t) = s(tr) for t ∈ [tr, tr+1),
construct the following topology dependent Lyapunov func-
tion as

V (t) = ϱT(t)(£s(tr) ⊗ Ξs(tr))ϱ(t)

+
1

κ

N∑
i=1

(
κi(t)−

(
f̄i + ū0

))2
, t ∈ [tr, tr+1).

(15)

Upon differentiating (15) and subsequently substituting (9)
and (10) into the resulting derivative yields

V̇ (t) = ϱT(t)
(
£s(tr) ⊗ (ATΞs(tr) + Ξs(tr)A)

)
ϱ(t)

− ϱT(t) (£s(tr) ⊗ 2ϕΞs(tr)BB
TΞs(tr)) z(t)

− 2ϱT(t) (£s(tr) ⊗ Ξs(tr)BB
TΞs(tr)) φ(t)

+ 2ϱT(t) (£s(tr) ⊗ Ξs(tr)BB
†)
∑
tυ∈∆

ϖ(tυ)d̄(t− tυ)

+ 2ϱT(t) (£s(tr) ⊗ Ξs(tr)B)
(
f(t)−

(
1N ⊗ u0(t)

))
+ 2ϱT(t)(£s(tr) ⊗ Ξs(tr)) ϑ(t) + 2

N∑
i=1

[(
κi(t)−

(
f̄i + ū0

))
(
− µκi(t) +

∥∥BTΞs(tr) zi(t)
∥∥
2

)]
, t ∈ [tr, tr+1).

(16)
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Utilizing (8) in (16) and manipulating subsequently yields

V̇ (t) ≤ ϱT(t)
(
£s(tr) ⊗

(
ATΞs(tr) + Ξs(tr)A

− 2ϕλmin(£s(tr))Ξs(tr)BB
TΞs(tr)

))
ϱ(t)

+ ϱT(t) (£2
s(tr)

⊗ 2ϕΞs(tr)BB
TΞs(tr)) h̃

⋆
(t)

− 2

N∑
i=1

κ2i (t)
∥∥BTΞs(tr) zi(t)

∥∥2
2

κi(t)
∥∥BTΞs(tr) zi(t)

∥∥
2
+ σ

+ 2

N∑
i=1

κi(t)
∥∥BTΞs(tr) zi(t)

∥∥
2

− 2
(
h̃
⋆
(t)
)T

(£s(tr) ⊗ Ξs(tr)BB
TΞs(tr)) φ(t)

+ 2ϱT(t) (£s(tr) ⊗ Ξs(tr)BB
†)
∑
tυ∈∆

ϖ(tυ)d̄(t− tυ)

+ 2

N∑
i=1

∥∥BTΞs(tr) zi(t)
∥∥
2

(
f̄i + ū0

)
+ 2
(
h̃
⋆
(t)
)T

(£s(tr) ⊗ Ξs(tr)B)
(
f(t)−

(
1N ⊗ u0(t)

))
+ 2ϱT(t) (£s(tr) ⊗ Ξs(tr)) ϑ(t)

− 2

N∑
i=1

(
f̄i + ū0

) ∥∥BTΞs(tr) zi(t)
∥∥
2

− 2µ

N∑
i=1

(
κi(t)−

(
f̄i + ū0

))
κi(t), t ∈ [tr, tr+1).

(17)

V̇ (t) ≤ ϱT(t)
(
£s(tr) ⊗

(
ATΞs(tr) + Ξs(tr)A

− 2ϕλmin(£s(tr))Ξs(tr)BB
TΞs(tr) + ςΞs(tr)

))
ϱ(t)

− ςV (t) + (
ς

κ
−µ)

N∑
i=1

(
κi(t)−

(
f̄i + ū0

))2
+ ϱT(t)

(
£2
s(tr)

⊗ 2ϕΞs(tr)BB
TΞs(tr)

)
h̃
⋆
(t) + 2σN

− 2
(
h̃
⋆
(t)
)T

(£s(tr) ⊗ Ξs(tr)BB
TΞs(tr)) φ(t)

+ 2ϱT(t) (£s(tr) ⊗ Ξs(tr)BB
†)
∑
tυ∈∆

ϖ(tυ)d̄(t− tυ)

+ 2
(
h̃
⋆
(t)
)T

(£s(tr) ⊗ Ξs(tr)B)
(
f(t)−

(
1N ⊗ u0(t)

))
+ µ

N∑
i=1

(
f̄i + ū0

)2
+ 2ϱT(t) (£s(tr) ⊗ Ξs(tr)) ϑ(t),

t ∈ [tr, tr+1).
(18)

Using (8), we obtain the following

2ϱT(t) (£s(tr) ⊗ Ξs(tr)BB
†)
∑
tυ∈∆

ϖ(tυ) d̄(t− tυ)

≤ 2
∑
tυ∈∆

( N∑
i=1

∥∥BB†Ξs(tr) zi(tυ)
∥∥
2
∥ϖi(tυ)∥2

)
d̄(t− tυ)

+ 2
∑
tυ∈∆

(
h̃
⋆
(tυ)

)T
(£s(tr) ⊗ Ξs(tr)BB

†)ϖ(tυ) d̄(t− tυ).

(19)

By selecting µ ≥ ς
κ , θ := 2σN + µ

N∑
i=1

(
f̄i + ū0

)2
, and(

ATΞs(tr) + Ξs(tr)A− 2ϕλmin(£s(tr))Ξs(tr)BB
TΞs(tr)

+ ςΞs(tr)

)
≺ 0,

in (18), along with the utilization of (19) in (18), we obtain

V̇ (t) ≤ −ςV (t) + θ

+ ϱT(t) (£2
s(tr)

⊗ 2ϕΞs(tr)BB
TΞs(tr)) h̃

⋆
(t)

− 2
(
h̃
⋆
(t)
)T

(£s(tr) ⊗ Ξs(tr)BB
TΞs(tr)) φ(t)

+ 2
∑
tυ∈∆

( N∑
i=1

∥∥BB†Ξs(tr) zi(tυ)
∥∥
2
∥ϖi(tυ)∥2

)
d̄(t− tυ)

+ 2
∑
tυ∈∆

(
h̃
⋆
(tυ)

)T
(£s(tr) ⊗ Ξs(tr)BB

†)ϖ(tυ) d̄(t− tυ)

+ 2
(
h̃
⋆
(t)
)T

(£s(tr) ⊗ Ξs(tr)B)
(
f(t)−

(
1N ⊗ u0(t)

))
+ 2ϱT(t)(£s(tr) ⊗ Ξs(tr))ϑ(t), t ∈ [tr, tr+1).

(20)
During the k-th formation’s interval

[
tkα, t

k+1
α

)
, k ∈ Z+,

observer (4) estimates hi(t) as ĥi
i
(t) for each follower i

over
[
tkα, t

k
γ

)
, and maintains ĥi

i
(t) = hi(t) for the remaining

duration
[
tkγ , t

k+1
α

)
. Thus, studying system stability during[

tkγ , t
k+1
α

)
for each k ∈ Z+ is crucial.

For t ∈
[
tkγ , t

k+1
α

)
, ∀ k ∈ Z+, we have h̃

⋆
(t) = 0 and

ϑ(t) =
(
IN ⊗ (In−BB†)

(
A−C(t)

))
h(t) from Lemma 1.

Consequently, with (3), ϑ(t) = 0. Thus, (20) reduces to

V̇ (t) ≤ −ςV (t) + θ

+ 2
∑
tυ∈∆

( N∑
i=1

∥∥BB†Ξs(tr) zi(tυ)
∥∥
2
∥ϖi(tυ)∥2

)
d̄(t− tυ),

t ∈
(
[tr, tr+1) ∩

[
tkγ , t

k+1
α

))
, k ∈ Z+.

(21)
Define Λk =

(
[tr, tr+1) ∩

[
tkγ , t

k+1
α

))
. In the subsequent

analysis, (21) can take on either of two cases:
Case 1: When Λk =

[
tkγ , t

k+1
α

)
⊆ [tr, tr+1), solving (21)

for V (t) yields

V (t) ≤ θ

ς
+

(
V
(
tkγ
)
− θ

ς

)
e−ς
(
t−tkγ

)
+ 2

∑
tυ∈∇k

γ

([ N∑
i=1

∥∥BB†Ξs(tr) zi(tυ)
∥∥
2
∥ϖi(tυ)∥2

]
e−ς (t−tυ)

s(t− tυ)

)
≤ θ

ς
+ V

(
tkγ
)
e−ς
(
t−tkγ

)
+ 2

∑
tυ∈∇k

γ

([ N∑
i=1

∥∥BB†Ξs(tr) zi(tυ)
∥∥
2
∥ϖi(tυ)∥2

]
e−ς (t−tυ)

s(t− tυ)

)
, t ∈

[
tkγ , t

k+1
α

)
,

(22)
where ∇k

γ :=
{
tυ : tυ = υΓ ≥ tkγ , υ ∈ Z⊕

}
, and s(t − tυ)

is the unit step signal starting at t = tυ .
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Case 2: When Λk = [tr, tr+1) ⊆
[
tkγ , t

k+1
α

)
or [tr, tr+1) ̸=

Λk ̸=
[
tkγ , t

k+1
α

)
, then we define tkγ,1, ..., t

k
γ,N as the topology

switching instants within
[
tkγ , t

)
⊂
[
tkγ , t

k+1
α

)
, such that

tkγ =: tkγ,0 < tkγ,1 < ... < tkγ,N < t < tk+1
α .

Combining the solution of (21) under no switching con-
dition with V

(
tkγ,l
)

≤ ν V
(
tk−γ,l
)

for l = 1, 2, ...,N and
applying it iteratively in reverse order, we obtain

V (t) ≤ θ

ς
+
θ

ς

N∑
l=1

νl e−ς
(
t−tkγ,N−l+1

)

+ νN V
(
tkγ
)
e−ς
(
t−tkγ

)
+ 2

N∑
l=1

(
νN−l+1

{ ∑
tυ∈∇k

γ,l−1,l[ N∑
i=1

∥∥∥∥BB†Ξ
s
(
tkγ,l−1

) zi(tυ)∥∥∥∥
2

∥ϖi(tυ)∥2
]
e−ς(t−tυ)s(t− tυ)})

+ 2
∑

tυ∈∇k
γ,N

([ N∑
i=1

∥∥∥BB†Ξs(tkγ,N ) zi(tυ)
∥∥∥
2
∥ϖi(tυ)∥2

]
e−ς (t−tυ) s(t− tυ)

)
, t ∈

[
tkγ,N , t

k+1
α

)
,

(23)

where ∇k
γ,l−1,l=

{
tυ : tkγ,l−1 ≤ tυ = υΓ < tkγ,l, υ ∈ Z⊕

}
and ∇k

γ,N =
{
tυ : tυ = υΓ ≥ tkγ,N , υ ∈ Z⊕

}
.

Over time, both (22) and (23) independently transform into
(24), as the sum of terms containing decaying exponential
terms in (22) and (23) independently can be replaced with ρ
such that the following holds:

V (t) ≤ θ

ς
+ ρ, t ∈

[
tkδ , t

k+1
α

)
. (24)

Define ψ := min
s:=s(t)∈{1,...,M}

{λmin(£s ⊗ Ξs)}. For t ∈[
tkδ , t

k+1
α

)
, k ∈ Z+, the expression (24) yield ∥ϱ(t)∥2 ≤

ϵ :=
(

1
ψ

(
θ
ς + ρ

)) 1
2

, which guarantees ∥ϱi(t)∥2 ≤ ϵ for each
follower i (i = 1, ..., N) over

[
tkδ , t

k+1
α

)
. □

VII. SIMULATION

Agents’ Dynamics: A =

−1 1 0
0 −2 0
0 0 −0.001

, B =1 0 0
1 1 0
0 0 2

and u0(t) =

{
03, t ∈ [0, 10);

col(−0.1, 0,−0.7), t ∈ [10, 20).

The parameters and faults considered are as follows:
η1 = η2 = η3 = η4 = 5, p1 = p2 = 1.6, q1 = q2 = 0.6,
ϕ = 200, σ = 0.001, κ = 600, µ = 0.01, ς = 6,

ℜ = 5, c = 2.5, f1(t) =

0.2 cos(t− 7)
0
0.3

 s(t− 7),

f3(t) =

−0.3e−0.2(t−7)

0.5
0

 s(t− 7), N = 4, M = 3,

−200 ≤ uftil (t) ≤ 200 for i = 1, 2, 3, 4 and l = 1, 2, 3,

Using (13) for G1: Ξ1=

 0.0987 −0.0017 0
−0.0017 0.0225 0

0 0 0.0327

.

Similarly, for G2 and G3: Ξ2=

 0.0278 −0.0002 0
−0.0002 0.0067 0

0 0 0.01


and Ξ3 =

 0.0656 −0.0008 0
−0.0008 0.0153 0

0 0 0.0225

, respectively.

Fig. 4: Interaction graph topologies: (a) G1; (b) G2; (c) G3.

Fig. 5: Switching signal s(t).

To illustrate the leader-guided TVFT control for MAS
with the above specifications, consider the scenario where, at
t = t1α = 0 sec, the leader decides to arrange the followers in
the time-invariant V -shape formation. By choosing C1 and
h(0) = col

(
h1(0), ..., h4(0)

)
in (2) at t = 0 sec, it generates

the time-invariant V -shape formation, where C1 = 03×3,

h1(0) =

9 cos(45◦)9 sin(45◦)
0

, h2(0) =

 9 cos(45◦)
−9 sin(45◦)

0

,

h3(0) =

18 cos(45◦)
18 sin(45◦)

0

, and h4(0) =

 18 cos(45◦)
−18 sin(45◦)

0

.

At t = t2α = 10 sec, let’s assume the leader chooses to tran-
sition from the time-invariant V -shape formation to the time-

varying circular formation. By choosing C2 =

 0 2 0
−2 0 0
0 0 0


and h(10) = col

(
h1(10), ..., h4(10)

)
consisting of hi(10) =10 cos

(
0.5π(i− 1)

)
10 sin

(
0.5π(i− 1)

)
0

, i = 1, ..., 4 in (2) at t = 10

sec, it generates h(t) = col
(
h1(t), ..., h4(t)

)
consisting of
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hi(t)=

 10 cos
(
2t− 0.5π(i− 1)

)
−10 sin

(
2t− 0.5π(i− 1)

)
0

.

The estimate of hi(t) as ĥi
i
(t) for the i-th (i = 1, 2, 3, 4)

follower, obtained using Lemma 1, is depicted in Fig. 6.
Fig. 8 contains snapshots showing the alignment of fol-
lowers in both V -shape and circular formations chosen by
the leader. When we view these snapshots in sequence, it
illustrates the successful implementation of the proposed
leader-guided collision-free TVFT control. Fig. 7 illustrates
the convergence of system’s TVFT error ∥ϱ(t)∥2 to approxi-
mate bounded set for both V -shape and circular formations,
providing a comprehensive view of the control system’s per-
formance. The impact of the pair

(
f1(t), f3(t)

)
representing

faults and the triplet
(
u0(t), f1(t), f3(t)

)
representing both

faults and the leader’s control input on ∥ϱ(t)∥2 is depicted
in the subplot of Fig. 7.

VIII. CONCLUSIONS
In summary, this study presented a novel framework that

seamlessly incorporates collision-avoidance and runtime for-
mation switching methods in multi-agent systems operating
under switching graph topologies. The follower successfully
achieved leader-selected and leader-guided TVFT control
utilizing estimates from distributed observers. Notably, the
system also demonstrated adaptability by accommodating
actuator failures and unrestricted leader maneuvering. This
comprehensive approach enhances the robustness and flex-
ibility of MASs, marking a significant advancement in the
field of autonomous multi-agent systems.

Fig. 6: Estimation of hi(t) for follower i (i = 1, 2, 3, 4).

Fig. 7: TVFT error norm ∥ϱ(t)∥2.

Fig. 8: Compilation of state snapshots.
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