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Abstract— In this paper we propose a data-driven ap-
proach to the design of reduced-order unknown-input observers
(rUIOs). We first recall the model-based solution, by assuming
a problem set-up slightly different from those traditionally
adopted in the literature, in order to be able to easily adapt it
to the data-driven scenario. Necessary and sufficient conditions
for the existence of a reduced-order unknown-input observer,
whose matrices can be derived from a sufficiently rich set of
collected historical data, are first derived and then proved to be
equivalent to the ones obtained in the model-based framework.
Finally, a numerical example is presented, to validate the
effectiveness of the proposed scheme.

I. INTRODUCTION

Since the seventies, the control community has put lots of
efforts in finding solutions to the state estimation problem in
the presence of unknown inputs acting on the system. Several
methods have been employed, ranging from algebraic [12],
[13], [19] and geometric [2] methods to generalized inverse
approaches [14], [15]. The majority of the existing solutions
requires the perfect knowledge of the system, namely that
the matrices involved in the process description are available.
However, in practical situations this is not always the case
and very often one has to deal with black box models,
relying only on the information provided by the inputs and
the outputs of the system. On the other hand, nowadays, in
the big data era, large amounts of data can be collected and
used to get insights into the process that has generated them.
Hence data-driven techniques in the field of control theory
have gained increasing attention. Data-driven methods have
been proposed, in particular, to tackle the state estimation
problem [4], [8], [16], and more specifically the unknown-
input state estimation problem. In particular, in [17], a
novel data-driven unknown-input observer (UIO), based on
behavioral system theory and the result known as Willems’
Fundamental Lemma [20], has been proposed. Necessary
and sufficient conditions for the existence of a UIO that
makes the state estimation error converge asymptotically to
zero, regardless of the unknown inputs, have been derived,
based on data. In [9] the design of full-order UIOs has been
further explored, by providing weaker conditions for problem
solvability, and a complete parametrization of the UIOs one
can derive from a given set of historical data. Moreover, it has
been shown that the data-driven approach provides a problem
solution under the same conditions under which a UIO can be
derived from the complete knowledge of the system matrices.
The algorithms proposed in [9], [17] are purely data-driven,
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namely they do not require any preliminary identification
step.

When the system whose state we want to estimate is
extremely complex, implementing a full order UIO may
be particularly demanding. Indeed, reduced-order observers
have been widely investigated, from a model-based per-
spective, due to their parsimonious nature that is always a
desirable characteristic in engineering applications. In [5],
[10], a reduced-order unknown-input state estimator (whose
dimension is equal to the difference between the dimension
of the state and the dimension of the unknown input) has
been proposed, by first eliminating the effect of the unknown
input on part of the state variables, and then designing a
conventional Luenberger observer for the subsystem driven
by known inputs only. A uniform design procedure for
constructing reduced-order unknown-input observers (rUIOs)
of order either equal to the difference between the dimension
of the state and the dimension of the unknown input, or to
the difference between the dimension of the state and the
dimension of the output, has been proposed in [11]. The
second type of reduced-order unknown-input observers has
been investigated also in [3], [13]. However, to the best of
the authors’ knowledge, rUIOs have never been addressed
from a data-driven perspective.

In this paper we propose a data-driven approach to the
design of reduced-order unknown-input observers, by adopt-
ing a hybrid solution, since we first identify from data the
output matrix of the data-generating system and then we
leverage solely the collected data to design the rUIO. The
result is not only an algorithm for state estimation of lower
complexity with respect to the full-order ones, but also a less
demanding procedure to generate the observer matrices from
the collected data, due to their lower dimensions.

The results proposed in this paper clearly bear similarities
with those derived in [9], [17] where a data-driven approach
to the design of full-order UIOs is proposed. However,
adapting the traditional model-based methods for rUIO de-
sign to the data-driven context is not immediate. Indeed,
classic model-based techniques have either introduced the
restrictive hypothesis that the output variables are a subset
of the state variables (see, e.g., [13]), or have resorted to
a generic change of basis in the state space [11], which
would be difficult to extend to the data-driven approach. So,
the first step has been to revise the model-based solution
to the problem, in such a way that its extension to, and
comparison with, the one we propose based on collected
data is possible. The necessary and sufficient conditions for
the existence of a reduced-order unknown-input observer
provided, e.g., in [11], [13], hold also in our setting, but
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need to be particularized to our specific description of the
system. Based on them, we propose a data-driven algorithm
to solve the problem. More in detail, we provide necessary
and sufficient conditions for the existence of a reduced-
order data-driven UIO and we show that they are actually
equivalent to the ones obtained in the model-based approach.
This means that the data-driven implementation does not
impose additional assumptions that would be unnecessary
if we knew the system matrices. On the other hand, the pos-
sibility to effectively design an rUIO from data, by avoiding
redundancy and minimizing the computational effort, without
affecting the estimation performance, is quite important from
a practical point of view.

The paper is organized as follows. Section II introduces the
rUIO design problem and presents a revised solution in the
model-based framework. Section III proposes the problem
solution by using a data-driven approach. Finally, a numerical
example illustrates the paper results.

Notation. Given a matrix M ∈ Rp×m, we denote by
M† ∈ Rm×p its Moore-Penrose inverse [1]. Note that if
M is of full row rank, then M† = M⊤(MM⊤)−1. The
null and column spaces of M are denoted by ker (M) and
Im(M), respectively. Given a vector sequence v(t) ∈ Rn,
where t ∈ Z+, we use the notation {v(t)}Nt=0, N ∈ Z+, to
indicate the sequence of vectors v(0), . . . , v(N).

II. PROBLEM FORMULATION

Consider a discrete-time linear time-invariant (LTI) system
Σ, described by the following equations:

x(t+ 1) = Ax(t) +Bu(t) + Ed(t), (1a)
y(t) = Cx(t), (1b)

where t ∈ Z+, x(t) ∈ Rn is the state of the system,
u(t) ∈ Rm is the (known) control input, d(t) ∈ Rq is the
unknown input or disturbance, and y(t) ∈ Rp is the output.
The dimensions of the system matrices are omitted, as they
can be deduced from the dimensions of the system variables.
The analysis carried out in this paper would still hold, with
minor changes, if we replaced the output equation in (1b)
with y(t) = Cx(t) +Du(t). However, in order not to make
the subsequent calculations unnecessarily involved, in the
following we assume that y(t) only depends on x(t). Without
loss of generality (w.l.o.g.), we assume that E ∈ Rn×q

is of full column rank, and that C ∈ Rp×n is of full
row rank, i.e., rank(E) = q and rank(C) = p. If E is
not of full column rank, we can redefine the disturbance
vector. On the other hand, if C does not have full row
rank, we can neglect redundant measurements. We assume
w.l.o.g. that C = [ C1 | C2 ], with C1 ∈ Rp×(n−p) and
C2 ∈ Rp×p nonsingular, so that after partitioning the state
vector as x(t) = [ x1(t)

⊤ x2(t)
⊤]⊤, where x1(t) ∈ Rn−p

and x2(t) ∈ Rp, the output equation in (1b) becomes

y(t) = C1x1(t) + C2x2(t). (2)

By premultiplying both sides of (2) by C−1
2 , we obtain

x2(t) = C−1
2 y(t)− C−1

2 C1x1(t). (3)

Therefore, if we can estimate the first part of the state vector,
namely x1(t), we can easily recover also the remaining state
variables by making use of (3).

Definition 1. An LTI system Σ̂ of order n− p, described by
the equations

z(t+ 1) = AUIOz(t) +Bu
UIOu(t) +By

UIOy(t), (4a)
x̂1(t) = z(t) +DUIOy(t), (4b)
x̂2(t) = −C−1

2 C1z(t) + (C−1
2 − C−1

2 C1DUIO)y(t), (4c)

where t ∈ Z+, z(t) ∈ Rn−p is the state and x̂(t) =
[x̂1(t)

⊤ x̂2(t)
⊤]⊤ ∈ Rn is the output, is a reduced-

order unknown-input observer (rUIO) for system Σ in
(1) if e(t) ≜ x(t) − x̂(t) asymptotically converges to
zero for every choice of z(0) and every input/output pair
({u(t)}t∈Z+ , {y(t)}t∈Z+) of the system (1).

In other words, a reduced-order unknown-input observer
is an LTI system of dimension lower than the dimension of
the system Σ that, when fed by the input/output trajectories
of Σ, generated corresponding to an arbitrary x(0) and
an arbitrary disturbance d(t), provides as its output an
asymptotic estimate of the state of Σ, independently of its
initial condition z(0).

Clearly, by the way we have defined it, a reduced-order
UIO Σ̂ exists if and only if a full-order UIO for x1(t) alone,
described by (4a) and (4b) (see [6], [7]), exists. The “only if”
part is obvious. Conversely, if the observer (4a) - (4b) ensures
that e1(t) ≜ x1(t)− x̂1(t) converges to zero asymptotically,
then by making use of (3) and (4c) we can ensure that

e2(t) ≜ x2(t)− x̂2(t) = −C−1
2 C1e1(t) (5)

converges to zero, in turn. So, from now on we will focus on
the UIO (4a)-(4b). To design it, it is convenient to partition
all the matrices of the system in (1) conformably with the
block partition of C, namely as

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, E =

[
E1

E2

]
.

By splitting the dynamics of the two parts of the state vector,
we can rewrite equation (1a) as

x1(t+ 1)=A11x1(t) +A12x2(t) +B1u(t) + E1d(t) (6a)
x2(t+ 1)=A21x1(t) +A22x2(t) +B2u(t) + E2d(t).(6b)

If we now substitute equation (3) in (6a), we get

x1(t+ 1) = [A11 −A12C
−1
2 C1]x1(t) +A12C

−1
2 y(t)

+ B1u(t) + E1d(t). (7)

We can now provide necessary and sufficient conditions
for a state-space model described as in (4) to represent an
rUIO for system Σ.

Proposition 2. The system in (4) is an rUIO for system Σ
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if and only if the following conditions hold:

AUIO = (I −DUIOC1)(A11 −A12C
−1
2 C1)

−DUIOC2(A21 −A22C
−1
2 C1) (8a)

Bu
UIO = (I −DUIOC1)B1 −DUIOC2B2 (8b)

By
UIO = AUIODUIO + (I −DUIOC1)A12C

−1
2

−DUIOC2A22C
−1
2 (8c)

(I −DUIOC1)E1 −DUIOC2E2 = 0 (8d)
AUIO is Schur stable. (8e)

When so, the state estimation error on x1(t) obeys the
autonomous asymptotically stable dynamics

e1(t+ 1) = AUIOe1(t). (9)

Proof. By making use of equations (3), (6b) and (7), and
the UIO description in (4a)-(4b), we derive the dynamics of
e1(t) = x1(t)− x̂1(t), i.e.,

e1(t+1) = x1(t+ 1)− x̂1(t+ 1)

=x1(t+ 1)− z(t+ 1)−DUIOy(t+ 1)

=x1(t+ 1)−AUIOz(t)−Bu
UIOu(t)−By

UIOy(t)

−DUIOC1x1(t+ 1)−DUIOC2x2(t+ 1)

=AUIOe1(t) +
[
(I −DUIOC1)(A11 −A12C

−1
2 C1)

−AUIO −DUIOC2A21 +DUIOC2A22C
−1
2 C1

]
x1(t)

+
[
(I −DUIOC1)A12C

−1
2 +AUIODUIO −By

UIO

−DUIOC2A22C
−1
2

]
y(t)

+
[
(I −DUIOC1)B1 −DUIOC2B2 −Bu

UIO

]
u(t)

+
[
(I −DUIOC1)E1 −DUIOC2E2

]
d(t).

Therefore, e1(t) is independent of the disturbance d(t)
and asymptotically convergent to zero, for every choice of
u(t), t ∈ Z+, x(0) and z(0), if and only if conditions
(8a)÷(8e) hold. The second statement is obvious.

We now introduce the concept of acceptor, previously
adopted in the context of behavior theory [18]. Roughly
speaking, a system Σ̃ is an acceptor for system Σ if it
receives as its input trajectories the input/output trajectories
generated by Σ and admits among its possible outputs the
state trajectory that Σ generates corresponding to that specific
input/output pair.

Definition 3. Given system Σ, described by the equations
(1), we say that an LTI system Σ̃ described by

z(t+ 1) = Ãz(t) + B̃

[
u(t)
y(t)

]
,

x̃(t) = C̃z(t) + D̃

[
u(t)
y(t)

]
,

where t ∈ Z+, z(t) ∈ Rnz is the state of the system, u(t) ∈
Rm and y(t) ∈ Rp are the system inputs, and x̃(t) ∈ Rn is
the output, is an acceptor for Σ if for every input/output/state
trajectory ({u(t)}t∈Z+ , {y(t)}t∈Z+ , {x(t)}t∈Z+) generated
by Σ, there exists an initial condition z(0) for Σ̃ such that
{x̃(t)}t∈Z+ = {x(t)}t∈Z+ is the output of Σ̃ corresponding

to the input pair ({u(t)}t∈Z+
, {y(t)}t∈Z+

) and the initial
condition z(0).

The following result, that will be used later in the paper,
formalizes the fact that a system described as in (4) is an
acceptor for Σ if and only if conditions (8a)÷(8d) hold.

Lemma 4. Given system Σ, described by the equations (1),
an LTI system described as in (4) is an acceptor for Σ if
and only if its matrices satisfy (8a)÷(8d).

Proof. If conditions (8a)÷(8d) hold, the dynamics
of the estimation error is described as in (9).
Let ({u(t)}t∈Z+ , {y(t)}t∈Z+ , {x(t)}t∈Z+) be an
input/output/state trajectory generated by Σ. If we assume
z(0) = x1(0) − DUIOy(0) then x̂1(0) = x1(0) and
e1(0) = 0. Therefore e1(t) = 0 for every t ∈ Z+. This
ensures that e2 is identically zero, in turn, and hence
x̂(t) = x(t) for every t ∈ Z+.

Conversely, if at least one of the conditions (8a)÷(8d) does
not hold, the dynamics of the estimation error is not that
of an autonomous system. So, it is always possible to find
an initial condition x(0) and input signals {u(t)}t∈Z+

and
{d(t)}t∈Z+

such that for every z(0) the estimation error is
not identically zero.

It is worth remarking that while a UIO is always an
acceptor, the converse holds if and only if also condition
(8e) holds.

We now provide necessary and sufficient conditions for the
solvability of (8) and thus for the existence of a reduced-
order UIO (4). In [11] these conditions have been derived
under the assumption that C = [ 0 | Ip ], a situation we can
always reduce ourselves to by resorting to a suitable change
of basis (see [13]). Therefore, in the following lemma we
only recall these conditions without providing the proof.

Lemma 5. There exist matrices AUIO, B
u
UIO, B

y
UIO and

DUIO of suitable sizes that satisfy conditions (8a)÷(8a), and
hence there exists an rUIO of the form (4), if and only if

(a) rank(CE) = rank(E) = q, and

(b) rank
[
zIn −A −E

C 0

]
= n+ q, ∀z ∈ C, |z| ≥ 1,

or, equivalently (see Theorem 2 in [6]), the triple (A,C,E)
is strong* detectable [6].

The conditions stated in the previous lemma are the
same conditions that guarantee the existence of a full-order
unknown-input observer [6], [7]. So, there exists a reduced-
order UIO if and only if there exists a full-order UIO. We
are now ready to formalize the problem we want to solve.

Problem. Given system Σ described as in (1), with unknown
matrices, design (if possible) a data-driven rUIO for Σ,
described by equations (4), by making use only of some data
collected during an offline finite time experiment.
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III. DATA-DRIVEN REDUCED-ORDER UIO

As in [9], [17], we suppose that the system matrices are
unknown and that we have performed an offline experiment
during which we have collected some input/output/state
trajectories in the time-interval [0, T − 1], with T ∈ Z+

sufficiently large. It has already been highlighted in [9], [17]
that assuming to have access to the state, during the offline
experiment, is necessary, since it would not be possible
to uniquely identify the state of the system, and hence to
construct a UIO, without knowing the dimension and the ba-
sis of the state-space. The input/output/state trajectories can
be represented by the following sequences of vectors, i.e.,
ud = {ud(t)}T−2

t=0 , yd = {yd(t)}T−1
t=0 and xd = {xd(t)}T−1

t=0 .
Even if we cannot measure the disturbance d(t), it is however
convenient to define also the sequence of historical unknown
input data, namely dd = {dd(t)}T−2

t=0 . For the subsequent
analysis, we group the data into the following matrices:

Up ≜
[
ud(0) . . . ud(T − 2)

]
∈ Rm×(T−1),

Xp ≜
[
xd(0) . . . xd(T − 2)

]
∈ Rn×(T−1),

Xf ≜
[
xd(1) . . . xd(T − 1)

]
∈ Rn×(T−1),

Yp ≜
[
yd(0) . . . yd(T − 2)

]
∈ Rp×(T−1),

Yf ≜
[
yd(1) . . . yd(T − 1)

]
∈ Rp×(T−1),

Dp ≜
[
dd(0) . . . dd(T − 2)

]
∈ Rq×(T−1).

where the subscripts p and f stand for past and future,
respectively. In the following, we will make use of the
following matrices

Φ ≜


Up

Yp

Yf

Xp

 , and Φ1 ≜


Up

Yp

Yf

Xp,1

 . (10)

Before providing the data-driven formulation of the reduced-
order UIO, we introduce the following assumption (the same
we adopted in [9] for full-order UIOs, and that follows from
more restrictive assumptions of persistence of excitation of
the input sequences ud and dd):

Assumption: The matrix
[
U⊤
p D⊤

p X⊤
p

]⊤
is of full row

rank, i.e., m+ q + n.

Since the historical data have been generated by the system
Σ, they have to satisfy (1) and in particular it must hold

Yp = CXp. (11)

Under the previous Assumption, the matrix Xp is of full row
rank and thus admits a right inverse. Therefore,

C = YpX
†
p = YpX

⊤
p (XpX

⊤
p )−1.

Once we have recovered the matrix C from the output/state
data, we can also check if it has full row rank. If not, we can
discard the measurements that are linearly dependent on the
others. Again, there is no loss of generality in assuming that
C can be block-partitioned as C = [ C1 | C2 ], where C2 is
nonsingular square. Now that we have the matrix C along
with its partition, we can split the generic state vector xd(t),

belonging to the sequence of historical data xd, into two
blocks xd(t) =

[
xd,1(t)

⊤ xd,2(t)
⊤]⊤, conformably with

the block partition of C. Consequently, the matrices of the
state data split into two parts, namely for i = 1, 2,

Xp,i ≜
[
xd,i(0) . . . xd,i(T − 2)

]
∈ Rni×(T−1),

Xf,i ≜
[
xd,i(1) . . . xd,i(T − 1)

]
∈ Rni×(T−1),

where n1 = n− p and n2 = p, and the following identities
hold

Xp,2 = C−1
2 Yp − C−1

2 C1Xp,1

Xf,2 = C−1
2 Yf − C−1

2 C1Xf,1.

When dealing with data-driven techniques, it is important
that the collected data are representative of the underlying
system. The following definition captures this concept.

Definition 6. [9], [17] The set of (input/output/state) tra-
jectories ({u(t)}t∈Z+

, {y(t)}t∈Z+
, {x(t)}t∈Z+

) is said to be
compatible with the historical data (ud, yd, xd) if

u(t)
y(t)
x(t)

x(t+ 1)

 ∈ Im



Up

Yp

Xp

Xf


 , ∀t ∈ Z+. (12)

Under the Assumption, it has been proved in [9] (see, also,
[17]) that the trajectories generated by the system Σ in (1)
are all and only those compatible with the given historical
data. In [17, Lemma 2], it has also been shown that there
exists an acceptor of order n for Σ described by

z(t+ 1) = AUIOz(t) +Bu
UIOu(t) +By

UIOy(t),

x̂(t) = z(t) +DUIOy(t),

if and only if
ker (Xf ) ⊇ ker(Φ). (13)

This result, applied to the reduced-order scenario, leads to
the following proposition (whose proof can be obtained by
suitably adjusting that of Lemma 9 in [9]).

Proposition 7. There exists an acceptor described as in
(4) for Σ (equivalently, an acceptor described by (4a)-(4b)
for the trajectories ({x1(t)}t∈Z+

, {u(t)}t∈Z+
, {y(t)}t∈Z+

)
of Σ), whose matrices are built using the collected data
Up, Yp, Yf , Xp,1, if and only if

ker (Xf,1) ⊇ ker (Φ1). (14)

If so, for every
[
S1 S2 S3 S4

]
∈ Rn×(m+2p+n−p)

satisfying

Xf,1 =
[
S1 S2 S3 S4

]
Φ1 (15)

the matrices of an acceptor can be expressed in terms of the
matrices S1, S2, S3 and S4 as

AUIO ≜ S4, Bu
UIO ≜ S1,

By
UIO ≜ S2 + S4S3, DUIO ≜ S3.
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Conversely, for every acceptor described by the matrices
AUIO, Bu

UIO, By
UIO and DUIO, we can obtain a solution

of (15) by assuming

S1 ≜ Bu
UIO, S2 ≜ By

UIO −AUIODUIO,

S3 ≜ DUIO, S4 ≜ AUIO.

Remark 8. From Lemma 4 and Proposition 7, it follows
that the kernels inclusion in (14) corresponds exactly to
conditions (8a)÷(8d) derived in the model-based approach,
by imposing the decoupling from all the exogenous variables
in the estimation error dynamics. Indeed, from Proposition 7
it follows that (14) is equivalent to the existence of matrices
AUIO, Bu

UIO, By
UIO and DUIO such that

Xf,1 =
[
Bu

UIO By
UIO −AUIODUIO DUIO AUIO

]
Φ1

If we now exploit the fact that the data have been generated
by the system Σ, we can substitute Yf in the previous
equation with the following expression Yf = C1Xf,1 +
C2Xf,2 = C1(A11Xp,1 + A12Xp,2 + B1Up + E1Dp) +
C2(A21Xp,1 + A22Xp,2 + B2Up + E2Dp) = [C1(A11 −
A12C

−1
2 C1) + C2(A21 − A22C

−1
2 C1)]Xp,1 + CBUp +

(C1A12C
−1
2 + C2A22C

−1
2 )Yp + CEDp and obtain

Xf,1 = [Bu
UIO +DUIOCB | DUIOCE | By

UIO

−AUIODUIO +DUIO(C1A12 + C2A22)C
−1
2 |

AUIO +DUIO[C1(A11 −A12C
−1
2 C1)

+C2(A21 −A22C
−1
2 C1)]

] 
Up

Dp

Yp

Xp,1

 . (16)

At the same time, the historical data have to satisfy the
equations of system Σ (see (7)) and thus

Xf,1 =
[
B1|E1|A12C

−1
2 |A11 −A12C

−1
2 C1

]
Up

Dp

Yp

Xp,1

. (17)

Since the matrix
[
U⊤
p D⊤

p Y ⊤
p X⊤

p,1

]⊤
is of full row

rank 1, by equating the right hand side of (16) and (17) we
obtain exactly the conditions in (8a)÷(8d).

Next, we show that the two conditions in (13) and (14)
are actually equivalent, namely we can build a reduced-order
acceptor for the input/output/state trajectories of system Σ if
and only if we can build a full order acceptor for the same
system.

Proposition 9. Under the Assumption on the data and the
hypothesis that C2 is nonsingular, conditions (13) and (14)
are equivalent.

Proof. Condition (13) implies that

Xf =
[
T1 T2 T3 T4

]
Φ (18)

1The full row rank property of the matrix
[
U⊤
p D⊤

p Y ⊤
p X⊤

p,1

]⊤
follows directly from the Assumption on the data and the full row rank
property of the matrix C.

holds for some
[
T1 T2 T3 T4

]
∈ Rn×(m+2p+n). We

partition the matrix T4 conformably with the partition of the
vector x, namely T4 =

[
T41 T42

]
, with T41 ∈ Rn×(n−p)

and T42 ∈ Rn×p, and we observe that Xp,2 = C−1
2 Yp −

C−1
2 C1Xp,1. This implies that

T4Xp =
[
T41 T42

] [ Xp,1

C−1
2 Yp − C−1

2 C1Xp,1

]
= (T41 − T42C

−1
2 C1)Xp,1 + T42C

−1
2 Yp,

yielding

Xf,1 = [In−p 0]
[
T1|T2 + T42C

−1
2 |T3|T41 − T42C

−1
2 C1

]
Φ1

and hence (14) holds.
Conversely, condition (14) implies that there exists[
S1 S2 S3 S4

]
∈ R(n−p)×(m+2p+n−p) s.t.

Xf,1 =
[
S1 S2 S3 S4

]
Φ1.

Moreover, we have

Xf,2 = C−1
2 Yf − C−1

2 C1Xf,1

= C−1
2 Yf − C−1

2 C1

[
S1 S2 S3 S4

]
Φ1

=
[
−C−1

2 C1S1 | − C−1
2 C1S2 |

C−1
2 − C−1

2 C1S3 | − C−1
2 C1S4

]
Φ1

which leads to

Xf =

[
Xf,1

Xf,2

]
=

[
S1 S2

−C−1
2 C1S1 −C−1

2 C1S2

S3 S4 0
C−1

2 − C−1
2 C1S3 −C−1

2 C1S4 0

]
Up

Yp

Yf

Xp,1

Xp,2


which implies (13).

So far, we have designed only a data-driven acceptor of
the form (4) for the system in (1). To make this acceptor an
rUIO, we need to impose a further requirement, namely we
have to guarantee that the dynamics of the estimation error
is not only autonomous, but also Schur stable.

Theorem 10. Given the historical data (ud, yd, xd), satisfy-
ing the Assumption, there exists a reduced-order unknown-
input observer for system Σ of the form (4), designed from
the historical data, if and only if ∃

[
S1 S2 S3 S4

]
∈

R(n−p)×(m+2p+n−p), with S4 Schur stable, such that (15)
holds.

Proof. As discussed in the previous section, a system de-
scribed as in (4) is a reduced-order unknown-input observer
for system Σ if and only if it is an acceptor and the dynamics
of e1(t) = x1(t) − x̂1(t) is autonomous and asymptotically
stable. By Proposition 7 and the subsequent Remark 8, we
know that there exists an acceptor for system Σ of the
form (4), designed from the historical data, if and only if
∃
[
S1 S2 S3 S4

]
∈ R(n−p)×(m+2p+n−p), such that

(15) holds. Since we have shown that the estimation error on
the first components of the state follows the autonomous dy-
namics e1(t+1) = AUIOe1(t) = S4e1(t), such autonomous
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dynamics is asymptotically stable if and only if S4 = AUIO

is Schur stable.

Note that the general solution to (15) is given by[
S1 S2 S3 S4

]
= Xf,1Φ

†
1 +W

(
I − Φ1Φ

†
1

)
,

where W is an arbitrary matrix of suitable dimensions. So,
once condition (14) holds, one has to explore if there is a
solution to (15), in the set of solutions parametrized above,
with S4 Schur stable.

We finally provide a numerical example to illustrate the
obtained results.

Example 11. Consider a system Σ of order n = 5 described
as in (1) for the following choice of matrices:

A =

[
A11 A12

A21 A22

]
=


0 0 0 0 1/2
1 0 0 0 3/4
0 1 0 0 −2
0 0 1 0 −5/4
0 0 0 1 3

 ,

B =

[
B1

B2

]
=


0 1
2 1
−2 1
0 0
1 0

 , E =

[
E1

E2

]
=


0 1
0 0
0 0
2 1
1 0

 ,

C =
[
C1 C2

]
=

 0 1 −1 2 −1
0 0 2 0 −1
3 0 2 −1 1

 .

Historical (both known and unknown) input data have been
randomly generated, uniformly in the interval (−5, 5) for
the known input u(t), and in the interval (−2, 2) for the
disturbance d(t). The time-interval of the offline experiment
has been set to T = 11. We have collected the data
corresponding to the input/output/state trajectories and then
checked that all the assumptions are satisfied and that the
kernels inclusion holds. Clearly, from Yp and Xp we have
recovered the exact expression of C. We have then set as
matrices of the rUIO in (4) the ones corresponding to the
following particular solution of equation (15):[

Bu
UIO By

UIO −AUIODUIO DUIO AUIO

]
= Xf,1Φ

†
1,

namely

AUIO =

[
0.1580 −0.4135
0.3763 0.0029

]
, Bu

UIO =

[
0.6797 −0.8599
1.8089 1.0409

]
,

By
UIO =

[
−0.1618 0.0889 −0.0382
0.1104 −0.1670 0.3555

]
,

DUIO =

[
0.1200 −0.0201 0.3800
−0.0136 −0.0546 0.0136

]
.

It is easy to verify that the matrix AUIO is Schur sta-
ble. Finally, we have tested the performance of the de-
signed rUIO corresponding to the (known) input u(t) =[
0.8 cos(0.2t+ 2) 3t

]⊤
, t ∈ Z+, and a random distur-

bance d(t) whose first and second components take values
uniformly in the interval (−5, 5) and (−2, 2), respectively.
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Fig. 1. Dynamics of the state estimation error

Figures 1 illustrates the state estimation error, that asymp-
totically converges to zero, as expected.
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