
Multi-agent Model Predictive Control cooperation in a real eight-tank
plant based on reinforcement learning
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Abstract— In this work, a negotiation agent trained by
deep reinforcement learning methodology is employed in order
to achieve control objectives in a multi-agent cooperative
distributed implementation of model-based predictive control
(MPC). The negotiation agent is located in the upper layer
of a hierarchical control architecture to achieve a consensus
between the different local MPC controllers, providing weight-
ing coefficients for the negotiation process between the control
sequences provided by the local controllers. The training algo-
rithm for the reinforcement learning of this agent is the deep
deterministic policy gradient algorithm (DDPG). The validation
of the negotiation agent has been performed successfully both
in simulation and in a real laboratory plant composed of eight
coupled water tanks, which is a non-linear system characterized
by high interaction between subsystems.

I. INTRODUCTION

Complex large-scale processes are difficult to control using
centralized MPC techniques, mainly due to the difficulty
of obtaining an accurate centralized model of the process
and the high computational capacity required for solving the
optimization problems involved. Then, decentralized control
emerges as a first approach to tackle these problems, because
it considers local models and controllers for the different
subsystems. However, many large-scale systems are made up
of coupled interacting entities, and therefore it is necessary
to adopt a distributed control scheme such as cooperative
distributed model predictive control (DMPC), where infor-
mation is exchanged between local MPC agents.

For the cooperative coordination of the local controllers
and the different control signals that they provide, negoti-
ation between agents is a useful technique, with the aim
to achieve a reasonable consensus between them according
to global control objectives. Moreover, consensus can be
carried out by a negotiation agent that does not require the
local models of the process and with the only additional
communication steps than receiving as inputs the proposals
of the local agents. Some techniques for negotiation are
cooperative games, bargaining games or applying fuzzy logic
inferences, among others [1]. They provide good results,
but with some difficulties to incorporate uncertainty due to
unmodeled dynamics and other unmeasured disturbances.

The deep reinforcement learning (DRL) method, based on
successful reinforcement learning (RL) methodologies [2],
leverage deep neural networks as an approximation function
of the agent’s behaviour to address problems involving
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large continuous state and action spaces [3], with no need
of process models. Basically, the DRL algorithms seek to
optimize the behavior of the agent only through an agent-
environment interaction, where a policy π defines the agent’s
behaviour. The procedure is simple; the agent sends an action
to the environment, and as feedback the agent gets the new
state representing the consequences of the action over the
environment, and the reward, which quantifies the policy
suitability regarding the considered objective.

Currently, DRL is involved in a variety of continuous
control problems in the automatic control context, and in this
work it has been applied to DMPC negotiation of an eight
coupled tanks plant. The four coupled tanks plant is a well
known benchmark to validate advanced control techniques
due to its high interaction between subsystems [4]. Some
recently methodologies related to our work are [5], where
a DMPC based on fuzzy negotiation has been developed,
and [6], with an extension of the previous DMPC to an
eight tanks plant with control stability guarantees. Another
approach is [7], where negotiation based on RL is applied to
the eight tanks plant, with good results in simulation, using
the Policy Gradient algorithm with discrete time actions.
Some advanced control techniques applied to the real four
tanks plant benchmark are for example [8], [9], [10], but any
of them applies RL to the real plant.

In this work, a novel DRL methodology that uses deep
deterministic policy gradient (DDPG) for training has been
developed for setting up a negotiation agent in a cooperative
DMPC [6], considering continuous action and state spaces
and extending the work of [7]. One of the main advantages
of this new negotiation procedure is that the agent does not
require any prior knowledge of the system to work properly
after some initial training. The proposed negotiation agent
is trained and validated in simulation of an interconnected
eight-coupled water tanks, and also validated in a real plant
located in a laboratory of the University of Salamanca in
Spain.

The deep deterministic policy gradient (DDPG) [11] is an
algorithm for actor-critic RL architectures, which involves
the deep Q-Network (DQN) [12] and the deterministic policy
gradient algorithms (DPG) [13]. Basically, an actor-critic ap-
proach uses the Bellman equation to learn a Q-value function
from DQN algorithm, and in turn, it employs the Q-value
function to learn a policy from the DPG algorithm, where
deep neural networks (DNN) are used as approximations
functions of the Q-value function (critic) and the policy
(actor).

The rest of the paper is structured as follows. Section 2
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presents the general problem statement. Section 3 summa-
rizes the methodology developed, including the DDPG algo-
rithm for training the negotiation agent. Section 4 presents
the case study, which is a system composed of eight inter-
connected water tanks. Section 5 details the application of
the methodology to the current problem. Section 6 shows
some training details of the proposed negotiation agent, and
section 7 shows the simulation and experimental results, to
end with section 8 with some conclusions.

II. PROBLEM STATEMENT

The system consists of subsystems N = {1,2, ...,N}
defined by the following local linear models,

xl(t +1) = Alxl(t)+Bllul(t)+wl(t), (1)

where t ∈ N0+ is the time instant, xl ∈ Rql the state vec-
tor, ul ∈ Rrl the input vector, the subsystem l ∈ N , con-
strained on the convex sets that contain the origin Xl ≜{

xl ∈ Rql : Ax,lxl ≤ bx,l
}

and Ul ≜
{

ul ∈ Rrl : Au,lul ≤ bu,l
}

,
Al ∈ Rql×ql and Bll ∈ Rql×rl are matrices of proper dimen-
sions. The coupling with other subsystems j is defined as
the measurable disturbances vector wl ∈ Rql , where j refers
to the set of neighbors Nl ≜

{
j ∈ N \ l : Bl j ̸= 0

}
, i.e.,

wl(t) = ∑
j∈Nl

Bl ju j(t), (2)

where u j ∈ Rr j is the input vector of subsystem j and the
matrix Bl j ∈ Rql×r j models the input coupling between l
and j. Furthermore, wl is bounded in a convex set Wl ≜⊕

j∈Nl
Bl jU j due to system constraints. The neighborhood

affected by agent l is defined as Ml ≜
{

j ∈ N \ l : B jl ̸= 0
}

.
Hence, from a general perspective, the overall system evo-
lution can be formulated as follows

xN (t +1) = AN xN (t)+BN uN (t). (3)

A multi-agent cooperative distributed MPC approach (Fig. 1)
takes over the control of the subsystems N , where the low-
level control layer includes a fuzzy logic based negotiation
procedure between each pair of local subsystems as detailed
in [6]. The DRL negotiation agent is located in the upper-
level control layer and gets from the low-level layer the
U fm

l (t) control sequences provided by each agent (MPC local
controller) l ∈ N that participates in the negotiation; and
with m ∈ {1,2, ...,Ml}, where Ml is the number of total con-
trol sequences available to agent l because it can belong to
different neighborhoods and the corresponding negotiation in
the low-level layer will provide a different control sequence.
Each control sequence is a vector of control signals with
dimension equal to the prediction horizon Np of local MPC
controllers.

Fig. 1. Control architecture

A. Control objectives

The objective of the negotiation agent is to provide
weighting coefficients for the consensus among the control
sequences U fm

l (t)∈
{

U f1
l (t),U f2

l (t), ...,U
fMl

l (t)
}

, in order to

obtain the final control sequence U f
l to be applied in the

plant. The consensus seeks to achieve the global control
objectives of the DMPC based architecture, minimizing
the overall system cost function JN

(
xN (t) ,U f

N (t)
)

and

satisfying the constraints, where xN = (xl)l∈N and U f
N =(

U f
l

)
l∈N

. The cost function JN is computed at each time
instant t based on the prediction errors of xN and uN

concerning their references xrN and urN , respectively, over
a future window of the prediction horizon length Np, as it
is typically selected for MPC control. Mathematically, it is
stated as follows:

JN

(
xN (t) ,U f

N (t)
)
=

=
Np−1

∑
k=0

(
xN (t + k)− xrN (t + k)

)⊺ QN(
xN (t + k)− xrN (t + k)

)
+

+
Np−1

∑
k=0

(
uN (t + k)−urN (t + k)

)⊺ RN(
uN (t + k)−urN (t + k)

)
(4)

were QN and RN matrix weights are detailed in [6].

III. METHODOLOGY

This section summarizes the algorithm used to train the
negotiation agent for consensus, where the agent is approxi-
mated by a DNN with parameters θ that represents the actor
in the DDPG algorithm. At the beginning of training, the
critic DNN with Q-value function Q(s,a;φ) and the target
critic DNN with Q-value function Qt(s,a;φt) are initialized
with the same random values φt = φ ; in the same way, the
actor π(s;θ) and the target actor πt(s;θt) are also initialized
with the same random parameters θt = θ . Training is made
up of sequential episodes, each one comprising a number
of time steps, until some convergence is achieved. A time
step t represents the interaction st -at -rt (current state, action
given by the agent, and reward obtained). In the methodology
proposed, the state is selected as a vector including all the
current available control sequences for all local agents, where
t dependence has been omitted for brevity,
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st = [U f1
1 ,U f2

1 , ...,U
fM1

1 , ...,U f1
l ,U f2

l , ...,U
fMl

l ]

Next, the action at = π(st ;θ) + ξ is calculated using the
current policy, where ξ is a noise value from the Ornstein-
Uhlenbeck noise model. The action at is composed of the
set of all negotiation coefficients,

at = [a f1
1 ,a f2

1 , ...,a
fM1
1 , ...,a f1

l ,a f2
l , ...,a

fMl
l ]

to give a specific weight to the available control sequences of
each local agent. Therefore, the final sequences are obtained
as:

U f
l (t) = ∑

Ml
m=1 U fm

l (t) ·a fm
l

where l ∈{1, ...,N}. Then, the first control signals of each se-
quence U f

l (as usual in MPC control) are implemented in the
environment, composed of the system and the DMPC based
control architecture with fuzzy negotiation, which generates
the reward rt and the next state st+1. From the experience
buffer that contains the stored experiences (st ,at ,rt ,st+1)
a random mini-batch of Z experiences (sE

t ,a
E
t ,r

E
t ,s

E
t+1) is

sampled. Then, the value function target yt is computed as the
sum of the experience reward and discounted future reward:

yE
t = rE

t + γQt(sE
t+1,πt(sE

t+1);φt). (5)

The cumulative reward is calculated as follows. Firstly, the
target actor selects the next action based on observation sE

t+1
of the sampled experience. Secondly, the cumulative reward
is obtained from sE

t+1 and the action given by the target
actor. Next, the critic parameters are updated minimizing the
following function over all sampled Z experiences,

L =
1

2Z

Z

∑
E=1

(yE
t −Q(sE ,aE ;φ))2 (6)

On the other hand, the parameters θ of the actor are updated
through the sampled policy gradient applying the chain rule
to the expected discounted reward to maximize its value,
giving the following expression [11],

1
Z

Z

∑
E=1

∇aQ(sE ,a;φ)∇θ π(sE ;θ) (7)

which includes the product of gradient of the critic output
with respect to the action computed by the actor network
and the gradient of the actor output with respect to the
actor parameters, both gradients evaluated for sE . Finally, a
smoothing method at every time step with smoothing factor
τ updates the target actor parameters θt = τθ +(1−τ)θt and
the target critic parameters φt = τφ +(1− τ)φt .

IV. CASE STUDY

The plant is composed of eight interconnected water tanks
(Fig. 2), where the upper tanks are the #3/4/7/8 tanks,
which discharge into the lower tanks #1/2/5/6, which in turn
discharge into large sinks that feed the pumps. The plant
works by means of four pumps whose flows are distributed
through the system with six three-way manual valves γv with
v ∈ {1,2, ...,6}.

The four subsystems that compose the plant are grouped
as shown in Fig. 2: #1/3 as subsystem 1; #2/4 as subsystem
2; #5/7 as subsystem 3; and #6/8 as subsystem 4. The water
level of the tank n ∈ {1,2, ...,8} is expressed as hn. The
levels of the lower tanks are the controlled variables, h1,
h2, h5 and h6, by the agents 1, 2, 3 and 4, respectively.
The manipulated variables q1, q2, q3 and q4 are the pump
flows for each subsystem. On the other hand, the operation
point hp

n is hp
1 = 0.10, hp

2 = 0.15, hp
5 = 0.10, hp

6 = 0.15 for
the controlled levels and hp

3 = 0.07, hp
4 = 0.03, hp

7 = 0.025,
hp

8 = 0.10 for the upper levels, all expressed in meters. The
operating point qp

l for the pumps flow rates are qp
1 = 0.142,

qp
2 = 0.421, qp

3 = 0.421, qp
4 = 0.140, expressed in m3/h.

Fig. 2. Graphic representation of the system composed of eight intercon-
nected water tanks divided into four subsystems [6].

The objective as a control tracking problem is to drive
the state vector, x̃N =

[
hn (t)−hp

n
]⊺, to the reference state

vector, T̃N =
[
hT

n (t)−hp
n
]⊺, where hT

n is the references
vector. The input vector is defined as ũN =

[
ql (t)−qp

l

]⊺,
where ql is the first value of the sequence U f

l (t). Moreover,
the constraints on the state and input vectors are:

−hp
n < x̃n (t)≤ 0.08, −qp

l < ũl (t)≤ 0.04,
∀n ∈ {1,2, ...,8}, ∀l ∈ {1,2,3,4}.

V. DEEP NEURAL NETWORK NEGOTIATION FRAMEWORK

This section defines the environment and the state-action-
reward for the RL method implemented as the negotiation
agent in the distributed MPC framework. The environment
is made up of the eight interconnected water tanks plant
and the low-level control layer with the architecture based
on cooperative DMPC. The DDPG agent will interact with
this environment until the parameters of the actor DNN
maximize the expected long-term reward. In order to simplify
the negotiation procedure, the state st is formed only by the
first value of the control sequences to be negotiated in the
upper-level control layer. In particular, for the subsystems 2
and 3, two values are available for each subsystem, denoted
as follows:

st = [u f1
2 (t),u f2

2 (t),u f1
3 (t),u f2

3 (t)].
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The negotiation in the upper control layer will provide a
specific weight to each of them in order to obtain the final
control sequences for subsystems 2 and 3. Therefore, the
actor DNN outputs at (actions), are two weighing coefficients

at = [a f1
2 (t),a f1

3 (t)] where at ∈ [0,1].

The weighting coefficients for the other control sequences
are calculated as follows because their total sum is 1:

a f2
2 (t) = 1−a f1

2 (t)

a f2
3 (t) = 1−a f1

3 (t)
(8)

The negotiation process to obtain the final control sequences,
U f

2 (t) and U f
3 (t), employs the coefficients previously ob-

tained:

U f
2 (t) =U f1

2 (t) .a f1
2 (t)+U f2

2 (t) .a f2
2 (t)

U f
3 (t) =U f1

3 (t) .a f1
3 (t)+U f2

3 (t) .a f2
3 (t)

(9)

Note that no negotiation is required for subsystems #1 and
#4 because they only have one neighbor, so M1 = M4 = 1.
The objective of training any RL agent is to maximize the
expected long-term reward, and taking into account that in
our tracking control context the objective is to minimize the
overall cost function Eq. 4, the reward rt is defined as:

rt =−(JN (t))2 (10)

VI. NEGOTIATION AGENT TRAINING

A. Deep neural networks: Critic-Actor

The critic DNN provides the Q-value that indicates the re-
ward expectations based on a state and the subsequent action.
Consequently, the input of the critic DNN is divided into two
paths: one for the state and one for the action. Both entries
converge on a main path, resulting in a DNN specified as
follows: The state path is composed of a Feature input layer
(4 neurons), three Fully Connected Layer (FCL) as hidden
layers; and the action path composed of a Feature input layer
(2 neurons), one FCL; and the main path composed of two
FCL, a ReLu function as activation function of the hidden
layers and a FCL as output layer (1 neuron).

On the other hand, the DNN of the actor will determine
the action that is given depending on the state. Hence, it
is composed of a Feature input layer (4 neurons), three
FCL as hidden layer, a ReLu function as activation func-
tion of the hidden layers, a FCL as output (2 neurons), a
sigmoid function as activation function and an scaling layer
(Scale=[0.8;0.8], Bias=[0.05;0.05]).

B. Hyper-parameters

One of the challenges of RL framework when faced with
large spaces of continuous actions in complex non-linear
environments is to find the adequate values for the training
hyper-parameters in the search of convergence towards the
optimal policy. The critic learning rate = 10−4, actor learning
rate = 10−5, variance exploration noise = [0.01 0.01] under
Ornstein-Uhlenbeck noise values were obtained after multi-
ple tuning iterations; the gradient threshold for the actor and
critic is equal to 1, and the mini-batch training size Z = 100.

On the other hand, the training consisted of 1000 episodes of
200 time steps in MATLAB with the Reinforcement Learning
Toolbox. Due to difficulties for achieving convergence, each
episode consists on a simulation keeping the same starting
state and reference, provided that operation is around this
state. Fig. 3 displays the evolution of the training with the
average reward and the Q-value until policy convergence.

Fig. 3. Training of the negotiation agent: Average reward and Q-value for
1000 training episodes.

VII. VALIDATION IN SIMULATION AND APPLICATION TO
A REAL PLANT

The validation has been carried out under a reference
tracking objective during T = 600 time steps in simulation
and T = 700 time steps in the real plant, where there is a first
reference step T̃N = x̃N +0.2 (meters) applied at t = 1 and
a second reference step is T̃N = x̃N +0.1 (meters) applied
at t = 400. All control sequences given by the DMPC are
obtained with prediction horizon Np = 20. This section also
includes for comparison the results of a fuzzy logic based
upper negotiation layer (FL), as detailed in [6].

The following metrics are defined for comparison: the sum
of the integral squared errors, ISE = ∑ ISEn where ISEn =∫ T

0 (hT
n −hn)

2dt, for n∈ {1,2,5,6} concerning the controlled
levels, and the total global cost function (Eq. 4) along the
evaluation period, J = ∑

T
0 JN

(
xN (t) ,U f

N (t)
)

.

A. Validation in simulation

According to Fig. 4, the difference between the water
levels obtained with the upper-layer negotiation based on
fuzzy logic (FL) and the proposed negotiation of this work
(RL) is small, both showing good tracking behavior, with
ISERL = 0.0340 and ISEFL = 0.0317. For the corresponding
first value of the final control sequences (Fig. 5), a certain
difference is observed between those obtained with FL and
RL negotiation. The values of the total global cost function
(Eq. 4) are JRL = 1.5993 and JFL = 1.3656.

The final control sequences U f
2 (t) and U f

3 (t) are a con-
sequence of the consensus between the first value of the
control sequences shown in Fig. 6, in which a big difference
is observed in transients between the sequences that have to
negotiate; U f 1

2 (t) with U f 2
2 (t), and U f 1

3 (t) with U f 2
3 (t).
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Fig. 4. Levels of controlled tanks #1-2-5-6, under fuzzy logic based
negotiation (FL) and reinforcement learning based negotiation (RL).

Fig. 5. Evolution of the first value of the final control sequences U f
1 (t),

U f
2 (t), U f

3 (t) and U f
4 (t), after FL and RL negotiation.

Fig. 6. Evolution of the first value of the control sequences for consensus,
which form the state st for RL negotiation: u f 1

2 (t), u f 2
2 (t), u f 1

3 (t) and u f 2
3 (t)

Fig. 7. Evolution of the negotiation coefficients provided by the DNN,
at =

{
a f 1

2 ,a f 1
3

}

Fig. 7 shows the negotiation coefficients given by the
actor DNN output at =

{
a f 1

2 ,a f 1
3

}
, that will be used to

calculate the other two weighting coefficients using Eq.
8, and with all of them the final control sequences. The
coefficients vary over time depending on the discrepancy
between the negotiation control values (Fig. 6), showing
constant behavior when there is no conflict between the
control values involved in the negotiation.

B. Application to a real plant
In this section, some results of the methodology applied to

a real eight-coupled tanks lab plant are shown, considering
the same cooperative DMPC-based control architecture in
the lower layer, and the same tracking problem used for
simulation results, except for the evaluation time T = 700
steps. The evolution of the levels in the controlled tanks (Fig.
8), shows that both negotiation upper layers perform a good
reference tracking, with ISERL = 0.0544 and ISEFL = 0.0511,
where ISEn =

∫ T
t=5(h

T
n − hn)

2dt. As for the first value of
the final control sequences (Fig. 9), some differences can
be observed between FL and RL, which are larger than
in simulation results. The values of the total global cost
function (Eq. 4) are JRL = 1.3913 and JFL = 0.9576, being
J =∑

T
t=5 JN . Regarding the first value of the sequences to be

agreed upon (Fig. 10), discrepancies are observed between
the pairs involved in negotiation. The DNN outputs of the
negotiation agent (Fig. 11) change over time depending on
the variations in the sequences to be negotiated, as expected.

Fig. 8. Levels of controlled tanks #1-2-5-6, under fuzzy logic based
negotiation (FL) and reinforcement learning negotiation (RL).

Fig. 9. Evolution of the first value of the final control sequences U f
1 (t),

U f
2 (t), U f

3 (t) and U f
4 (t), after FL and RL negotiation
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Fig. 10. Evolution of the first value of the control sequences for consensus,
which form the state st : u f 1

2 (t), u f 2
2 (t), u f 1

3 (t) and u f 2
3 (t).

Fig. 11. Evolution of the negotiation coefficients provided by the DNN,
at =

{
a f 1

2 ,a f 1
3

}
.

VIII. CONCLUSION

In this work, we have successfully applied a negotiation
agent trained by DRL methodology in a real plant made up
of eight interconnected water tanks. The agent participates
in the upper control layer of a cooperative DMPC with
fuzzy logic negotiation among local agents. It should be
noted that the similarity between the simulation model and
the real plant means that the sequences to be negotiated
during training are similar to the sequences to be negotiated
during application in the real process. This is important
because the agent’s actions during the real application must
be governed by the same objective imposed during training.
The tracking validation in the real plant shows good results
despite relevant plant model mismatch due to unmodeled
issues, noisy measurements and other unmeasured distur-
bances. This plant model mismatch is also responsible for
the existing differences between simulation and experimental
results.

On the other hand, the big challenge of tuning the hyper-
parameters for training the negotiation agent has motivated
the consideration of environment simulations with fixed
conditions to ease the training convergence. The results for
negotiation are good despite of the mentioned issue because
the operating conditions are in the region chosen for training.

The proposed RL negotiation methodology has been com-
pared to FL negotiation, showing no significant improvement
in the current operating conditions, but further work in

other situations involving more transients would increase
the benefits. Anyway, the employed negotiation agent has
the advantage of not requiring any prior knowledge of the
system and no more communication steps than receiving the
sequences to be negotiated from the DMPC local agents.
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[8] I. Alvarado, D. Limon, D. Muñoz de la Peña, J. M. Maestre, M. A.
Ridao, H. Scheu, W. Marquardt, R. R. Negenborn, B. De Schutter,
F. Valencia, and J. Espinosa, “A comparative analysis of distributed
MPC techniques applied to the HD-MPC four-tank benchmark,”
vol. 21, no. 5, 2011, pp. 800–815, journal of Process Control.

[9] L. Orihuela, P. Millán, C. Vivas, and F. R. Rubio, “Suboptimal
distributed control and estimation: application to a four coupled tanks
system,” vol. 47, no. 8, pp. 1755–1771, international Journal of
Systems Science.

[10] X. Meng, H. Yu, J. Zhang, T. Xu, and H. Wu, “Liquid level control
of four-tank system based on active disturbance rejection technology,”
vol. 175, p. 109146, 2021, measurement.

[11] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” 2015, arXiv preprint. arXiv:1509.02971.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” vol. 518, no. 7540, pp. 529–533, 2015,
nature.

[13] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” in Proceedings of
the 31st International Conference on Machine Learning. PMLR,
2014, pp. 387–395.

1620


