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Abstract— In this paper, we contribute the Parallel Ensem-
ble foreCAst coNtrol (PECAN) algorithm to enhance multi-
objective water systems control through the integration of
Ensemble Forecast and data-driven control techniques. This
integration allows evolving parallel system simulations for each
forecast ensemble member to maximize the benefit provided by
the probabilistic forecasts. To avoid potential overfitting and
ensure the generalization capabilities of the designed solutions,
we also implement a Blocked K-Fold cross-validation. Testing
on the Lake Como water reservoir system shows that PECAN
improves the controller performance by 8.2% with respect
to traditional methods relying solely on forecast ensemble
averages and by 26.8% over approaches that do not use any
forecast. These results highlight the benefits of ensemble-based
techniques for controlling water systems under highly variable
hydroclimatic conditions.

I. INTRODUCTION

Climate change has accelerated the hydrological cycle,
leading to increased frequency and intensity of flooding and
prolonged droughts [1]. In water system control, the primary
approaches to address these challenges require expanding
the capacity of the system or improving the flexibility and
adaptability of control policies [2]. Lately, the latter solution
is gaining prominence in the literature because of its cost-
effectiveness. This strategy avoids excessive investment costs
and takes advantage of the opportunities presented by the
steady improvement in hydrological forecasting over the past
decades, particularly over longer time frames [3]. Ensemble
Forecasts (EF) have proven to be a valuable approach to
assessing uncertainties in weather predictions, particularly
for highly variable parameters such as precipitation [4]. Yet,
it is still unclear how to maximize the benefit of these
forecast products when controlling water reservoir systems.

Traditionally, water reservoir control was based on
Stochastic Dynamic Programming (SDP) [5]. However,
SDP’s requirement to model exogenous signals can become
impractical when dealing with EF. Real-time control meth-
ods like Model Predictive Control [6] allow for the use
of forecasts, but their performance degrades significantly
with longer lead times as forecasts become more biased
and less accurate and they are directly used to solve the
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modeled mass-balance equation. Moreover, these methods
require scalarization of the objective space to handle multiple
objectives. An alternative approach is found in Reinforce-
ment Learning methods that involve Approximation in Policy
Space, such as Direct Policy Search (DPS) [7]. DPS is a
simulation-based learning method that seeks to identify a
policy that optimizes a specific objective function. It works
by parameterizing the policy within a class of functions and
performing the optimization directly in the policy parameter
space. For the uncontrolled component of this partially data-
driven approach, a model of the disturbance realizations is
substituted with historical time series of observed or fore-
casted hydrometeorological variables. The parameterization
allows DPS to accommodate a large number of time series
as policy inputs, making it well-suited for effectively incor-
porating EF over extended lead times. However, the control
policy is usually informed with deterministic forecasts or
pre-defined statistics of the EF without taking full advantage
of its probabilistic information.

Being a simulation-based approach, DPS relies on long
simulations to approximate the expected value of the objec-
tive function over the probability distribution of disturbances
using the average value from a sufficiently long time series
of disturbance realizations. In contrast, the availability of
skillful forecasts is restricted to recent years, limiting the
essential validation of newly developed algorithms to a short
time frame. Adopting DPS to design forecast-informed con-
trol policies in systems with limited forecast data is prone to
the risk of overfitting, where policies are excessively tailored
to training data, yielding favorable results but proving less
effective when applied to different datasets.

In our study, we introduce a novel algorithm with the
twofold goal of (i) making use of the full information
provided by EF without reducing it to simpler statistics of
the ensemble by simulating in parallel virtual systems for
each ensemble member and (ii) implementing the Blocked
K-Fold cross-validation [8] technique to reduce the risk of
overfitting the designed control policies in order to ensure
their generalization to unseen conditions. Our method is
demonstrated using the real-world case study of the Lake
Como system in Northern Italy, a multipurpose regulated lake
operated for water supply and flood and drought control.

II. DATA AND MODELS
A. Case study

Lake Como, located in Northern Italy, is a regulated lake
within the Adda River basin. It has a surface area of 145 km2

and an active storage capacity of 246.5 Mm3 that is operated
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Fig. 1. Map of the Lake Como basin. (Reprinted, with permission, from
[9] @ Author(s) 2020 under CC BY 4.0)

under the management of the Italian regional authority
‘Consorzio dell’Adda.’ The lake’s basin covers a catchment
area of 4552 km2 and exhibits a characteristic subalpine
hydrological flow pattern of glacial origin, featuring two
distinct peaks, one resulting from spring snowmelt and the
other from autumn precipitation.

The regulation of Lake Como serves three primary and
competing objectives: it provides flood protection to the city
center of Como; it supplies downstream water to support
the 1400 km2 irrigation district and nine run-of-river power
plants; and it plays a crucial role in drought control, with
implications for navigation, environmental considerations,
and tourism. Additionally, the regulation must adhere to the
preservation of a Minimum Environmental Flow (MEF) to
safeguard the downstream ecosystem and environment.

B. Model, objectives, and problem formulation

The Lake Como system dynamics is modeled by a con-
ventional mass balance equation of the lake water volume:

st+1 = st +qt+1− rt+1 (1)

In this equation, st represents the lake storage at time t, qt+1
denotes the net inflow observed over a 24-hour period, and
rt+1 represents the actual outflow obtained by a nonlinear
and stochastic function, R(·), of the control decision ut ,
i.e. rt+1 = R(st ,ut ,qt+1). The actual release may not be
equal to the decision due to legal and physical constraints
on the level and release of the reservoir, including spills
when the reservoir exceeds the maximum capacity [10]. The
control decision ut is determined by the policy π following
the control rule ut = π(t,st , q̂t+1), where q̂t+1 represents the
inflow prediction.

The objectives are modeled as follows:

• flood control: annual average excess of lake level above

a flooding threshold h f lo = 1.1m:

J f lo =
1

H/T

H−1

∑
t=0

max(0,ht+1−h f lo) (2)

• water supply: daily average deficit of water release com-
pared to a cyclostationary daily downstream demand wτ :

Jde f =
1
H

H−1

∑
t=0

(max(0,wτ − rt+1))
βτ (3)

βτ represents a time-varying exponent designed to in-
crease the penalty during the summer period (April 1st

to October 10th), emulating dam operators’ behavior.
• low-level control: annual average lake level scarcity

compared to low-level threshold hlow =−0.2m:

Jlow =− 1
H/T

H−1

∑
t=0

min(0,ht+1−hlow) (4)

In these equations, the symbols represent the following: h,
the lake level; H, the simulated horizon; T , the hydrological
year; t, the day of the simulation, ranging from 0 to H; τ ,
the day of the year, with values between 1 and 365.

The problem of designing the optimal control policies
for Lake Como can be formulated as a multi-objective,
stochastic, periodic, non-linear, closed-loop control problem
[11] defined as follows:

π
∗ = argmin

π

J(π) (5)

where J(π) =
∣∣J f lo(π),Jde f (π),Jlow(π)

∣∣ is the vector of the
expected returns under policy π . The optimization problem
is subject to the dynamics of the system (Eq. 1).

C. Data

Observational data for the lake have been provided by
Consorzio dell’Adda and are available from 1946 at a daily
resolution. The calculation of the total net inflow is derived
from the inversion of the mass balance equation (1), using
time series data for storage and release, which consider
various tributaries and lake evaporation.

The ensemble inflow forecasts used in this study are
sourced from the European Flood Awareness System (EFAS)
[12], [13], a component of the Copernicus Emergency
Management Service (CEMS) of the European Union. The
hydrological forecasts generated by EFAS are produced by
the European Center for Medium-range Weather Forecasts
(ECMWF). Archived real-time forecasts are available from
2018 onward. However, due to the need for a longer historical
context, we use reforecast products at both medium [12]
and seasonal scales [13]. These re-forecasts span the period
from 1999 to 2018 and are categorized into sub-seasonal and
seasonal variants. The sub-seasonal re-forecasts have a maxi-
mum lead time of 46 days, consist of 11 ensemble members,
and are initialized twice weekly. In contrast, seasonal re-
forecasts offer a maximum lead time of 215 days, comprise
25 members, and are initialized monthly.

We consider three specific lead times: 5 days, 21 days, and
180 days (equivalent to six months). This lead time selection
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was based on previous research on Lake Como conducted
by Zanutto et al. [14]. In their study, these lead times
were determined using the Input Selection and Assessment
framework [15]. The selected inputs involve the aggregation
of forecast averages up to the specified lead time. In our
work, we employ three different combinations of lead times:
• 21d: a single-input experiment utilizing only the 21-day

aggregated forecast;
• 5d-21d: a two-input experiment incorporating both the

5-day and the 21-day aggregated forecast;
• 5d-21d-180d: a three-input experiment integrating all

three aggregated forecasts.
In addition to using real forecasts, we consider aggregated
perfect forecasts for all three combinations of lead times to
determine the maximum achievable results for the optimiza-
tion in each scenario.

III. METHODS

A. Evolutionary Multi-Objective Direct Policy Search

PECAN is based on Evolutionary Multi-Objective Direct
Policy Search (EMODPS) [16]. EMODPS is a Reinforce-
ment Learning, Direct Policy Search approach known for
its partially data-driven nature and effectiveness in address-
ing multiple competing objectives. Specifically, we adopted
Gaussian Radial Basis Functions (RBF, [17]) for the param-
eterization of the control policy as a universal nonlinear ap-
proximating network. The policy is parameterized as a single
hidden layer comprising N basis functions (i = 1, . . . ,N), M
inputs ( j = 1, . . . ,M), and K outputs (k = 1, . . . ,K), repre-
senting the control decision uk

t at time t in the vector ut .
We incorporate three fixed inputs: two for the day of the
year dt , represented as sin(2πdt/T ) and cos(2πdt/T ) to
capture the problem’s periodicity and one for the current
lake level representing the system’s state. Additionally, we
integrate one to three further inputs for the forecasted inflow
values. We use N = M+2 for the number of nodes in the
hidden layer. Following the parameterization introduced in
[17], the control rule determining the control decision is thus
expressed as

uk
t = ok +

N

∑
i=1

wi,kφi(χt) (6)

Here, ok is a linear parameter associated with each output,
wi,k are non-negative weights (wi,k ≥ 0,∀i,k) for the i-th RBF.
The function φi(χt) is the value of the i-th RBF, defined as:

φi(χt) = exp

[
−

M

∑
j=1

((χt) j− ci, j)
2

b2
i, j

]
(7)

In this equation, χt represents the tuple of inputs at time
t, ci, j signifies the center of the RBF, and bi, j denotes its
positive radius. The entire RBF parameter combination has
a cardinality of nθ = K +N(2M+K). In the case of the Lake
Como system, there is a single control action (i.e. K=1).

Multi-Objective Evolutionary Algorithms (MOEAs) are
optimization algorithms that evolve an entire set of Pareto-
approximate solutions, mirroring the principles of natural

genetic evolution. They are particularly well-suited for ad-
dressing the challenges posed by multi-objective problems
[18]. Within the framework of EMODPS, the element in the
population is the set of policy parameters denoted as θ . These
parameters are evaluated based on the three objective func-
tions (2,3,4) following the model evolution in (1). The search
to identify the approximate Pareto front is performed by
employing Borg MOEA [19]. This framework is chosen for
its capacity to evade local minima and consistently promote
progress and diversity during the optimization process [20].
In alignment with previous studies [21][22], we conducted 20
randomized optimization runs, each simulated over 2 million
NFE (Number of Function Evaluations) with the Borg ε-box
set to [5,50,10].

B. Cross-validation

In the design of the EMODPS policy, optimization is
carried out using a designated data set as training data.
When policy parameters are trained and evaluated on this
same dataset, it can lead to overfitting. In such cases, the
optimized policies perform well on the training data, but fail
to generalize effectively to unseen data. This limitation is
increasingly critical in the control of water systems due to
the non-stationary effects of climate change.

Emerging approaches verify possible overfitting by split-
ting the available data into training and test sets, with the
latter often artificially generated [23]. However, this approach
can produce skewed results due to possible differences
in training and test data. To address this, we propose to
extend this approach by performing a Blocked K-Fold cross-
validation.

In Blocked K-Fold cross-validation, the dataset is parti-
tioned into K blocks of continuous observations, known as
folds. Each fold is selected iteratively as the test set, while
the remaining K−1 folds serve as the training set. After the
training phase, the set of Pareto-efficient policies is evaluated
on the test set, and the results of each iteration are averaged.
This method optimizes the utilization of the limited dataset,
as every data point can be included in the test set at some
point. This approach helps mitigate the skewed results caused
by variations in climatic conditions across different time
periods.

Our dataset spans 20 years, from 1999 to 2018. We divided
our data set into five folds, each covering four years, each
fold beginning in January and concluding at the end of
December of the fourth year. We opted to group multiple
years together to prevent the need to calibrate a penalty at
the end of each year. This approach allows us to leverage
the water carryover from year to year, acting as a mitigating
factor, thus eliminating the necessity for year-end penalties
in the simulation.

C. Parallel Ensemble foreCAst coNtrol

In this section, we introduce the proposed PECAN (Par-
allel Ensemble foreCAst coNtrol) algorithm (see Alg. 1).
PECAN leverages EF data to compute control decisions and
incorporates constraint models into the system’s regulation.
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Algorithm 1: Parallel Ensemble foreCAst coNtrol
input : t day of the simulation; HH number of

integration steps during the day; st state of the
system at the beginning of day t; V number of
ensemble members; q̂v

t estimated lake inflow
at time t for ensemble member v;
qt = {qt,1, . . . ,qt,HH} set of observed inflows
at each integration step.

output: New state of the system st,HH ≡ st+1,0
1 for v ∈ [1,V ] do
2 uv

t = π(t,st , q̂v
t )

3 sv
t,0 = st

4 end
5 for h ∈ [0,HH−1] do
6 for v ∈ [1,V ] do
7 rv

t,h+1 = R(sv
t,h,u

v
t ,qt,h+1)

8 sv
t,h+1 = sv

t,h +qt,h+1− rv
t,h+1

9 end
10 ut,h =

1
V ∑

V
v=1 rv

t,h+1
11 rt,h+1 = R(st,h,ut,h,qt,h+1)
12 st,h+1 = st,h +qt,h+1− rt,h+1
13 end
14 return st,HH

The algorithm operates at each daily time step t of the
simulation, divided into HH = 24 hourly integration steps
to emulate the actions of dam operators at 1-hour intervals.

The novelty of our approach lies in the central role of the
forecasts’ ensemble nature, integrated into our algorithm in
their entirety. In previous studies [14], forecasts were either
a single deterministic value or derived from statistical mea-
sures of the ensemble (such as average, minimum, maximum,
quantile, etc.). These statistical measures were treated as
deterministic inputs to the policy, which computed a single
control decision and applied it to the system.

In contrast, at each time step, PECAN computes an
independent control decision for each member of the En-
semble Forecasts. It then initializes a virtual system for each
ensemble member based on the current state and applies each
release decision to the respective virtual system. Keeping
the virtual systems independent, PECAN simulates each
system’s transition for the integration step duration. This
results in an ensemble of actual releases incorporating both
the system and the constraint models. Finally, it applies the
average of these releases to the original system, repeating
this process for each integration step while maintaining the
separation of the virtual systems throughout the day.

PECAN begins by computing the control decision uv
t for

each member of the EF, following the policy π . This results
in a set of control decisions denoted as ut = {u1

t , . . . ,u
V
t },

where V represents the number of ensemble members. Then,
the system state st at time t is replicated for each control
decision, creating the set of virtual lakes st,0 = {s1

t,0, . . . ,s
V
t,0}

where (t,0) represents time t at the integration step 0
and sv

t,0 = st ∀v ∈ [1,V ]. Then, the algorithm performs the

hourly integration of the state transition function (eq. 1)
independently for each ensemble member by calculating the
constrained release volume for each control decision uv

t , i.e.,
rv

t,h+1 = R(sv
t,h,u

v
t ,qt,h+1).

After performing these operations for all members of
the ensemble, the algorithm generates V hourly releases
and updates the state of the system accordingly, resulting
in potentially diverse states depending on the member of
the considered ensemble. The constrained releases are fi-
nally averaged into ut,h and, after a final check against
the system constraints, we obtain the hourly actual release
rt,h+1 = R(st,h,ut,h,qt,h+1). The actual release is then applied
to the system state st,h resulting in the new state of the actual
lake st,h+1 = st,h +qt,h+1− rt,h+1. This process is iterated for
each subsequent integration step until the end of the day,
ensuring that the set of virtual lakes remains independently
updated. This approach results in the application of con-
straints in various ways in different integration steps based on
the diverse forecasts within the ensemble. These differences
are preserved thanks to averaging all decisions, ultimately
impacting the controlled system dynamics.

D. Benchmarking framework

We employ two distinct sets of policies to facilitate a
comparative analysis of the different methods: the Basic
Operating Policy (BOP) and the Perfect Operating Policy
(POP). The BOP serves as the foundational framework for
the current system, covering policies derived using EMODPS
with solely the fixed inputs, without consideration of any
forecasts for future inflows. In contrast, the POP consists
of optimal policies achieved through Deterministic Dynamic
Programming, employing the weighting method [5]. This
approach assumes perfect knowledge of inflows for the entire
operational horizon.

We employ the Hypervolume indicator (HV) [24] to
evaluate the Pareto solutions obtained with Borg. This metric
is commonly used in multi-objective optimization and quan-
tifies the volume dominated by the Pareto front within the Q-
dimensional space of the objectives. As the reference point
for the HV, we chose a combination within the objective
space representing the worst result among the BOP policies.
The Hypervolume is calculated relative to the optimal Pareto
front of the POP, with HV POP = 1.

IV. RESULTS

A. Improvements comparison

Figure 2 provides a comparative analysis of the qual-
ity of the Pareto approximate sets for different solution
methods evaluated over the test set. When incorporating
Blocked K-Fold cross-validation, PECAN achieves a signifi-
cant +26.75% improvement over the Basic Operating Policy
(BOP), which does not use forecasts. By leveraging ensemble
information, PECAN consistently outperforms policies de-
signed using the average of the EF across all experiments, as
used in previous works [9], showing an average improvement
of +8.23% compared to relying solely on the ensemble
average. Furthermore, using perfect information at the same
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maximum achievable results given the specified lead times.

lead times presents an average improvement of +76.84%
over the BOP. These results underscore the complexity of
the problem and the potential for improvement of novel
methods, like PECAN, that harness the uncertainty of the
entire EF, achieving better results than using only a statistic
of the ensemble.

B. Cross-validation analysis

The results highlight the superior generalization capabil-
ities of PECAN, which become particularly evident when
comparing the outcomes with and without cross-validation.
Figure 3 illustrates the HV progression over the number
of function evaluations (NFE) for policies evaluated on
both the training set and the test sets using Blocked K-
Fold cross-validation. This analysis clearly demonstrates the
presence of overfitting in existing methods and PECAN,
underscoring the substantial impact of overfitting on the
results and highlighting the importance of cross-validation.
When policies are evaluated on the training set, both the
ensemble average and PECAN exhibit similar performance
after 2 million NFE. Interestingly, PECAN performs slightly
worse when using the 21-day or 5-day and 21-day forecast
inputs. A more in-depth examination of the training set
results reveals that policies continue to learn beyond 2
million NFE, although the rate of improvement significantly
diminishes after exceeding 1 million NFE. On the contrary,
when policies are evaluated on the test set, the learning
process stops after approximately 150,000 NFE, on aver-
age. Notably, this stopping point occurs later when more
forecast inputs are included, reflecting the added complexity
of optimizing policies with additional parameters. Beyond
this stage, the HV starts to decline, with occasional spikes
that have minimal impact on the set of solutions. This
analysis highlights the value of cross-validation, as it not
only evaluates the generalization capabilities of solutions but
also does so without increasing the computational resources
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Fig. 3. Evolution of HV for the different methods evaluated, both on the
training and test sets.

required. Without cross-validation, the NFE required to reach
stable solutions is approximately one order of magnitude
higher than the NFE needed to reach the stopping point when
using cross-validation. Despite the additional optimization
runs, cross-validation results in an earlier stopping point and
reduces the overall computational time.

C. Pareto front distributions

The application of cross-validation with multiple folds
enabled us to conduct an in-depth analysis of policy behavior
under diverse validation scenarios and assess the effective-
ness and distribution of their outcomes within the three-
dimensional objective space. Figure 4 presents the Pareto
front results across the five folds for both PECAN and
average methods, considering only the 21-day input. Notably,
the coverage of the objective space is most prominent in folds
3 and 5, indicating PECAN’s ability to provide a wide range
of high-quality solutions. However, specific challenges arise,
as demonstrated by the limited solutions obtained in fold
2, characterized by an extended period of exceptionally low
water availability. The observed variations across different
folds emphasize the importance of employing Blocked K-
Fold cross-validation. This approach ensures unbiased and
reliable assessments, especially when dealing with varying
climatological conditions.

V. CONCLUSIONS

In this study, we introduced the novel algorithm PECAN
(Parallel Ensemble foreCAst coNtrol) to enhance the perfor-
mance of multi-objective policy optimization for reservoir
control. PECAN leverages the full information of Ensemble
Forecasts (EF) and incorporates system and constraint mod-
els, aiming to improve the quality and robustness of policy
solutions. Our findings demonstrate that PECAN consistently
outperforms using the average of the EF, with an average
improvement of 8.23% in our case study, signifying its
promise for enhanced water resource management. We also
highlighted the importance of cross-validation in assessing
the generalization capabilities of the policies, particularly
under varying climatic conditions, to ensure unbiased results.

Future work in this field could explore the optimal selec-
tion of lead times based on ensemble uncertainty and the
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development of fold-specific parameters to ensure compre-
hensive coverage of solutions in the objective space across
all folds. Additionally, given the room for improvement
demonstrated by the results obtained with perfect future
information, we conclude that there is ample scope for ad-
vancements in harnessing forecast ensemble data effectively.
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