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Abstract— This study presents a novel thermal model for
cylindrical lithium-ion batteries using ten Ordinary Differential
Equations (ODEs). The model covers all battery components
and focuses on a simplified assembly with eight parts rolled up
on a central mandrel and gaps filled with liquid electrolyte. One
key input to the thermal model is the thermal power generated
in the battery, calculated using a simplified electrochemical
Single Particle Model (SPM) with two Partial Differential
Equations (PDEs). This leads to a coupled system of 20 ODEs,
where 10 ODEs represent the electrochemical model based
on Padé approximation method, and 10 ODEs represent the
thermal model. Temperature profiles within the battery are
estimated using the Luenberger observer, with feasible sensor
placement strategies discussed. Simulation results validate the
model’s accuracy by demonstrating temperature consistency
between the thermal model and the Luenberger observer.

Index Terms— Lithium-Ion Batteries, Sensors Placement,
Cascaded Electrochemical-Thermal Model, Luenberger Ob-
server, Padé Approximation.

I. INTRODUCTION

Effective monitoring of the internal temperature of
lithium-ion batteries (LiBs) is crucial to ensure their safe
and efficient operation [1]. Precise temperature estimation
within LiBs is a pivotal element in mitigating thermal run-
away, enhancing performance, and extending battery life [2].
Thermal management plays a central role in the design and
operation of LiBs, given the substantial influence of internal
temperature on their performance and safety [3]. Extreme
temperature conditions can lead to catastrophic failures,
including capacity loss, electrolyte degradation, and other
adverse effects when temperatures soar, while efficiency and
power output suffer under colder conditions [4]. Accurate
temperature measurement in LiBs presents challenges due
to their sealed and compact design [5].

In the existing literature, numerous articles address tem-
perature estimation, primarily focusing on the core and/or
surface temperatures. For example, [6] models and estimates
the average temperature, while [7] and [8] estimate temper-
ature for both the core and surface. Unlike previous studies
such as [9] and [10], which considered the entire spiral-
wound structure but did not calculate the temperature in each
internal part of the battery, this study simplifies the spiral
structure to ensure accurate temperature calculations across
different parts within the battery.

The contributions of this study are summarized as follows:
• Compared with [11] which only two ODE were em-

ployed. This study distinguishes itself by employing
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a cascaded system comprising nine ODEs for each
component within the battery, with an additional ODE
dedicated to surface temperature estimation, totaling ten
ODEs.

• Compared with [7], which utilized the Equivalent Cir-
cuit Model (ECM), this study introduces the use of
an electrochemical model for thermal power generation
based on the fundamental principles of the battery’s
electrochemistry.

• Compared to [12], who employed a fourth-order Padé
approximation, this article utilizes a fifth-order Padé
approximation.

• Unlike the approach in [8], which proposes inserting
a sensor internally into the battery, this study explores
safer methods of sensor placement. It considers realistic
strategies aimed at enhancing battery safety.

The subsequent sections of this article are organized as
follows: In Section II, the thermal model is introduced. Sub-
sequently, the article delves into the electrochemical model.
Section III covers the implementation of the Luenberger
observer for temperature estimation. Section IV presents the
simulation results, thereby validating both the thermal model
and the Luenberger observer. In Section V, the conclusion is
provided along with future research directions.

II. CASCADED ELECTROCHEMICAL-THERMAL MODEL

This section explores the cascaded electrochemical-
thermal model, integrating both electrochemical and thermal
aspects to comprehensively understand the battery behavior.

A. Thermal Model

A typical cylindrical lithium-ion battery consists of spi-
ral roll cells, as shown in Fig. 1. Its structure involves
layers rolled around a central mandrel and inserted into
a cylindrical case, with liquid electrolyte filling the gaps
between components [10]. The thermal model, depicted in
Fig. 1, includes temperature and resistance parameters such
as: Te for electrolyte temperature, Tc− and Rc− for negative
collector, Tc+ and Rc+ for positive collector, Ts1, Ts2, Rs1,
and Rs2 for separator, Tp1, Tp2, Rp1, and Rp2 for positive
electrode, and Tn1, Tn2, Rn1, and Rn2 for negative electrode.
Additionally, Tc and Rc represent the case, while Tair and
Rair denote air. Thermal power originates from the battery
center.

Equation (II.1) is derived from [11], where a thermal
model was developed to analyze core and surface temper-
atures. In this study, Equation (II.1) is used to model the
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Fig. 1: Thermal-electrochemical schematic.

temperature in different components of the battery.

Ṫi(t) =
Qi(t)

ρicp,i
, (II.1)

where Ṫi represents the rate of temperature change over time,
ρi denotes the density, cp,i stands for the heat capacity,
and Qi represents the thermal power generated, for i ∈
{e, c−, n1, s1, p1 , c+, p2, s2, n2 , c , air}.

The thermal power Qi(t) is normalized by dividing it by
the volume vi, resulting in the unit of measurement W/m3,
and is depicted in (II.2).

Qi(t) =
S(t) + qcond,i(t) + qconv,i(t)

vi
. (II.2)

Remark 1. In this paper, Qi(t) is divided into three com-
ponents: electrochemical reactions S(t), conduction inter-
action between components qcond,i(t), and convective heat
transfer of the electrolyte, represented as qconv,i(t), for i ∈
{e, c−, n1, s1, p1 , c+, p2, s2, n2 , c , air}.

Since S(t) is produced as a function of chemical reactions,
it will be discussed in Section II-B. qcond,i(t) is defined as:

qcond,i(t) =
∆Ti(t)

Ri
,

where ∆Ti(t) denotes the temperature difference in inter-
acting components, and Ri represents the thermal resistance
between these components. qconv(t) is based on the Newton
cooling of law and is expressed as follows:

qconv,i(t) = hA∆Ti(t),

where h represents the electrolyte convective heat transfer
coefficient, A is the area where the electrolyte is applied, and
∆Ti(t) is the temperature difference between the electrolyte
and each component in contact with the electrolyte, for i ∈
{e, c−, n1, s1, p1 , c+, p2, s2, n2 , c , air}.

Assumption 1. This article simplifies the structure of spiral
roll cells within a thin layer, considering eight internal
components including the electrolyte and casing, totaling ten
parts.

1) Temperature Model for Each Component of the Bat-
tery: To construct a thermal model capable of determining
the temperature of each of the aforementioned components,
a cascade system consisting of 10 ODEs is developed,
with each equation corresponding to one of the battery’s
components.

Electrolyte temperature Te(t): In the electrolyte, two ther-
mal power components exist: the first one is the electrochem-
ical heat S(t), and the second one is the heat qconv(t). The
temperature of the electrolyte is described by the following
equation:

Ṫe(t) =
hA(Te(t)− Tc−(t))

λe
+

S(t)

λe
,

where λe = veρecpe, with ve representing the volume of
the electrolyte in the battery, ρe denoting the density of the
electrolyte, and cpe as the heat capacity of the electrolyte.

Negative collector temperature Tc− : In the negative col-
lector, all heat generation components are present, including
S(t) due to electrochemical reactions, qcond resulting from
the interaction between the electrolyte and the negative
collector, and qconv due to convective heat generated by
the electrolyte. The temperature of the negative collector is
determined by the following equation:

Ṫc−(t) =
Te(t)− Tc−(t)

λc−Rc−
+

hA(Te(t)− Tc−(t))

λc−
+

S(t)

λc−
,

where λc− = vc−ρc−cpc− , with vc− representing the volume
of the negative collector, ρc− denoting the density of the
negative collector, and cpc− as the heat capacity of the
negative collector.

Similar to the negative collector temperature, equations
for the negative electrode, separator, positive electrode, and
positive collector can also be derived.

Negative electrode temperature Tn1(t) is as follows:

Ṫn1(t) =
Tc−(t)− Tn1(t)

λn1Rn1
+

hA(Te(t)− Tn1(t))

λn1
+

S(t)

λn1
,

where λn1 = vn1ρn1cpn1, with vn1 as the volume of the nega-
tive electrode, ρn1 as the density of the negative electrolyte,
and cpn1 as the heat capacity of the negative electrolyte.

Separator temperature Ts1(t) is described as follows:

Ṫs1(t) =
Tn1(t)− Ts1(t)

λs1Rs1
+

hA(Te(t)− Ts1(t))

λs1
+

S(t)

λs1
,

where λs1 = vs1ρs1cps1, with vs1 representing the volume of
the separator, ρs1 denoting the density of the separator, and
cps1 as the heat capacity of the separator.

Positive electrode Tp1(t) is defined as follows:

Ṫp1(t) =
Ts1(t)− Tp1(t)

λp1Rp1
+

hA(Te(t)− Tp1(t))

λp1
+

S(t)

λp1
,

where λp1 = vp1ρpcpp1, with vp1 representing the volume of
the positive electrode, ρp1 denoting the density of the positive
electrode, and cpp1 as the heat capacity of the positive
electrode.
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Positive collector Tc+ is described as follows:

Ṫc+(t) =
Tp1(t)− Tc+(t)

λc+Rc+
+

hA(Te(t)− Tc+(t))

λc+
+

S(t)

λc+
,

where λc+ = vc+ρc+cpc+ , with vc+ representing the volume
of the positive collector, ρc+ denoting the density of the
positive collector, and cpc+ as the heat capacity of the
positive collector.

Positive electrode Tp2(t), is defined as follows:

Ṫp2(t) =
Tc+(t)− Tp2(t)

λp2Rp2
+

hA(Te(t)− Tp2(t))

λp2
+

S(t)

λp2
,

where the properties of Tp2 are the same as those of Tp1.
Separator temperature Ts2(t), is described as follows:

Ṫs2(t) =
Tp2(t)− Ts2(t)

λs2Rs2
+

hA(Te(t)− Ts2(t))

λs2
+

S(t)

λs2
,

where the properties of Ts2 are the same as those of Ts1.
Negative electrode Tn2(t) is as follows:

Ṫn2(t) =
Ts2(t)− Tn2(t)

λn2Rn2
+

hA(Te(t)− Tn2(t))

λn2
+

S(t)

λn2
,

where the properties of Tn2 are the same as those of Tn1.
Case surface temperature Tc(t), is defined as follows: The

minus sign in Tc(t) indicates heat extraction from the battery
during the interaction between the inner of the battery and the
case surface. Conversely, when considering the interaction
between the case surface and the air, heat is added to the
surface, as follows:

Ṫc(t) =
Tair(t)− Tc(t)

λairRair
− Tn2(t)− Tc(t)

λairRc
,

where λair = vairρaircpair, with vair as the volume of the air
in contact with the battery, ρair as the density of air, cpair as
the heat capacity of air, and Rc is the thermal resistance of
the case.

2) State-Space System for Thermal Model: The
electrochemical-thermal state-space representation of the
system is:

Ṫ(t) = AT(t) + Bu(t),
y(t) = CT(t),

where T(t) denotes the state vector of the system’s tem-
perature, A, T(t), B are shown in (II.3), (II.4), and (II.5).
The selection of C is discussed in (III-.1). The input u is
described as follows:

u(t) =
[
Tair(t) S(t)

]tr
.

Here, Tair(t) represents the air temperature, and S(t) denotes
the thermal power.

B. Thermal Power S(t) derived from Electrochemical model

The result of multiplying current and voltage informs us
about the number of electrons moving through a system,
along with the energy each electron expends as heat, ul-
timately providing the total heat production [13]. Electro-
chemical thermal power is expressed as:

S(t) = V (t)I(t).

Here, V (t) represents the voltage calculated using the elec-
trochemical model, I(t) is the current applied to the battery.

1) Electrochemical PDE model: This article employs
the Single Particle Model (SPM) in its electrochemical
model. The lithium concentration in the solid phase, and
consequently the concentration of lithium-ions in the active
material, follows Fick’s law of diffusion [14].

∂c±s
∂t

(t, rs) =
1

r2s

∂

∂rs

[
D±

s (T (t))r
2
s

∂c±s
∂rs

(t, rs)

]
,

t > 0, rs ∈ (0, R±
s ),

∂c±s
∂rs

(t, 0) = 0, t > 0,

∂c±s
∂rs

(t, R±
s ) = − 1

D±
s (T (t))

j±(t), t > 0,

c±s (0, rs) = c±s,0(rs), rs ∈ [0, R±
s ],

where the temporal variable is t, the spatial variable is rs.
The solid phase c±s ∈ R. D±

s is the diffusion coefficient of
the solid phase. j± is the molar flux given by:

j+(t) = − I(t)

a+s FL+
, j−(t) =

I(t)

a−s FL− ,

where I(t) represents the current, a±s stands for the inter-
facial surface area, F denotes the Faraday constant, and
L± corresponds to the length of the positive or negative
electrode.

Assumption 2. The diffusion coefficients D±
s are assumed

constant.

The voltage is the difference between solid electric poten-
tials at the positive and negative electrodes, given by:

V (t) = ϕ+
s (t)− ϕ−

s (t),

where the solid electric potentials are given as follows:

ϕ±
s (t) = η±(t) + U± (

c±ss(t), T (t)
)
+ FR±

f (T (t))j
±(t).

In this context, η±(t) represents the overpotential,
U± (c±ss(t), T (t)) is the equilibrium potential, specific to the
battery in question and discussed in the simulation results
section, F denotes the Faraday constant, and R±

f (T (t))
signifies the resistance.

The reaction overpotential η± is defined as:

η±(t) =
RT (t)

αF
sinh−1

(
F

2i±0 (t)
j±(t)

)
,

where R represents the gas constant, T denotes the tempera-
ture, α signifies the transfer coefficient, and i±0 is expressed
as [15]:

i±0 (t) = k±
[
c±ss(t)

]αc
[
ce,0

(
c±,max
s − c±ss(t)

)]αa
,

where k is the kinetic reaction rate c±ss ≜ c±s represents
the boundary concentration in the positive and negative elec-
trodes, and ce,0 is the equilibrium electrolyte concentration.
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A =



hA
λe

−hA
λe

0 0 0 0 0 0 0 0
hARc−−1

λc−Rc−
−hARc−+1

λc−Rc−
0 0 0 0 0 0 0 0

hA
λn1

1
λn1Rn1

−hARn1−1
λn1Rn1

0 0 0 0 0 0 0
hA
λs1

0 1
λs1Rs1

−hARs1−1
λs1Rs1

0 0 0 0 0 0
hA
λp1

0 0 1
λp1Rp1

−hARp1−1

λp1Rp1
0 0 0 0 0

hA
λc+

0 0 0 1
λc+Rc+

−hARc+−1

λc+Rc+
0 0 0 0

hA
λp2

0 0 0 0 1
λp2Rp2

−hARp2−1

λp2Rp2
0 0 0

hA
λs2

0 0 0 0 0 1
λs2Rs2

−hARs2−1
λs2Rs2

0 0
hA
λn2

0 0 0 0 0 0 1
λn2Rn2

−hARn2−1
λn2Rn2

0

0 0 0 0 0 0 0 0 1
λairRair

−Rair−Rc
λairRc



,

(II.3)

T(t) =
[
Te(t) Tc−(t) Tn1(t) Ts1(t) Tp1(t) Tc+(t) Tp2(t) Ts2(t) Tn2(t) Tc(t)

]tr
, (II.4)

B =

[
0 0 0 0 0 0 0 0 0 −1

λairRair
1
λe

1
λc−

1
λn1

1
λs1

1
λp1

1
λc+

1
λp2

1
λs2

1
λn2

0

]tr

, (II.5)

2) Reduced-Order Electrochemical Model: The article
applies the Padé approximation method to linearize the
model, calculated using the code pade on Wolfram Alpha.
The transcendental transfer functions for the electrodes are:

C±
s (s)

I(s)
=

R±
s −R±

s e
2R±

s

√
s/D±

s

D±
s AFL

(
R±

s

√
s

D±
s
+ e2R

√
s/D±

s

(
R±

s

√
s

D±
s
− 1

)
+ 1

) .

The transcendental transfer functions are extended to the 5th
order using the Padé approximation method to estimate the
concentration in the solid electrode, expressed as follows:

C±
s (s)

I(s)
=

N5(s)

D5(s)
,

where

N5(s) = ± R±
s
7s4

3968055D±
s

4AFL
± 4R±

s
5s3

33915D±
s

3AFL

± 21R±
s
3s2

1615D±
s

2AFL
± 8R±

s s

19D±
s AFL

± 3

R±
s AFL

,

D5(s) =
R±

s
8s5

218243025D±
s

4
+

2R±
s
6s4

305235D±
s

3
+

3R±
s
4s3

2261D±
s

2

+
7R±

s
2s2

95D±
s

+ s.

When calculating C+, all numerator terms are negative,
while for C−, all numerator terms are positive.

This results in a coupled system of 20 ODEs: 10 for the
electrochemical model and 10 for the thermal model.

III. LUENBERGER OBSERVER

The Luenberger observer takes the available output mea-
surements and uses them to estimate the internal states of the
actual system. The Luenberger observer is given by [16]:

˙̂
T(t) = AT̂(t) + Bu(t) + L[CT(t)− CT̂(t)], (III.1)

where A, B, and C are model parameters, and L is the
observer gain. The error between the estimated state and the
actual state is defined as T̃(t) = T(t) − T̂(t). In terms of
this definition, the error dynamics ˙̃T(t) is derived as follows:

˙̃T(t) = (A− LC)T̃(t). (III.2)

1) Observability Analysis and Realistic Sensor Place-
ment: A Matlab code was developed to simulate all possible
observability configurations for placing two sensors on the
battery. Since there are 2 sensors, and for each sensor, there
are 10 choices for sensor placement for each measurement,
there are a total of C2

10 = 45 combinations of C matrices,
each with a size of 2 × 10. However, upon checking the
observability Grammian of these combinations, only 6 of
them are observable.

In the context of the matrices given by equations (III.3),
(III.4), (III.5), (III.6), (III.7), and (III.8), each matrix repre-
sents the placement of a sensor within a specific region of a
larger system.

In (III.3), sensors are placed in the negative electrode and
outside the case. However, it is worth noting that installing
sensors in the negative electrode is quite challenging; for this
reason, this matrix configuration was disregarded:

C([3; 10]) =
[
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

]
. (III.3)

In (III.4) and (III.5), the sensors are situated in the
separator and positioned outside the case. Similar to the
previous case, it is worth noting that placing sensors in the
separator presents a challenging task, which resulted in the
exclusion of these matrix configurations:

C([4; 10]) =
[
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

]
, (III.4)

C([8; 10]) =
[
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1

]
. (III.5)

In (III.6) and (III.7), the sensors are located in the positive
electrode and positioned outside the case. Once more, it is
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emphasized that installing sensors in the positive electrode
is a complex undertaking, leading to the rejection of these
matrix configurations:

C([5; 10]) =
[
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

]
, (III.6)

C([7; 10]) =
[
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1

]
. (III.7)

In contrast, (III.8) represents a matrix with sensors positioned
outside on the tab of the positive collector and case. This
configuration is considered a more feasible and practical
choice due to the simple installation process:

C([6; 10]) =
[
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1

]
. (III.8)

2) Observer design: This section explores observer design
for a specific system, with a focus on selecting the observer
gain matrix to ensure convergence.

Theorem 1. Consider the system (II.3)-(II.5), the observer
(III.1), and the matrix C (III.8). Choose the observer gain
matrix L ∈ R10×2 such that A − LC is Hurwitz. For any
initial conditions T(0) and T̂(0), and any input u(t), the
error between the observer’s estimated state T̂(t) and the
actual system state T(t) converges exponentially to zero in
the sense that:

∥T̃ (t)∥ ≤ ∥T̃ (0)∥e−
λmin(Q)
2λmax(P )

t

√
λmax(P )

λmin(P )
.

Proof. Choose the Lyapunov function as follows:

V (T̃(t)) = T̃(t)trP T̃(t), (III.9)

where P is the solution of the equation:

(A− LC)trP + P (A− LC) = −Q,

for a positive definite matrix Q. Based on Lyapunov theorem,
P is positive definite. Based on (III.9), we have:

λmin(P )∥T̃ (t)∥22 ≤ V (T̃ (t)) ≤ λmax (P )∥T̃ (t)∥22. (III.10)

The time derivative of V (T̃(t)) is:

V̇ (T̃(t)) =
d

dt
(T̃(t)trP T̃(t))

= ˙̃T(t)trP T̃(t) + T̃(t)trP ˙̃T(t). (III.11)

By substituting the error dynamics (III.2), and using
(III.10), the Equation (III.11) becomes:

V̇ (T̃(t)) = T̃(t)tr(A− LC)trP T̃(t)

+ T̃(t)trP (A− LC)T̃(t)

= −T̃(t)trQT̃(t) ≤ −λmin(Q)∥T̃(t)∥22

≤ −λmin(Q)

λmax(P )
V (T̃(t)).

Applying the comparison principle, the following equation
was obtained:

V (T̃(t)) ≤ V (T̃(0))e−
λmin(Q)

λmax(P )
t,

which completes the proof.

IV. SIMULATION RESULTS

The simulation was performed using MATLAB on a
personal computer from Samsung equipped with an Intel i5-
10210U 1.6 GHz CPU and 31.8 GB of RAM.

The equilibrium potential of the active materials in the
positive and negative electrodes is denoted as U+ and U−,
respectively. The equilibrium potential for the positive and
negative electrodes has the following expressions [17]:

U+(θ+) = 0.6379 + 0.5416e−305.5309θ+

+ 0.044 tanh

(
− θ+ − 0.1958

0.1088

)
− 0.1978 tanh

(
θ+ − 1.0571

0.0854

)
− 0.6875 tanh

(
θ+ − 0.0117

0.0529

)
− 0.0175 tanh

(
θ+ − 0.5692

0.0875

)
,

U−(θ−) = 3.4323− 0.4828e−80.2493(1−θ−)1.3108

− 3.2474× 10−6e20.2645(1−θ−)3.8003

+ 3.2482× 10−6e20.2645(1−θ−)3.7005 ,

where θ± = cs±(R±,t)
csmax × 100%. The thermal resistances for

the collector, electrode, separator, and case are calculated
using the formula: Rcond = ln(r2/r1)

2πkL , where r2 and r1
represent the external and internal radius, L is the length,
and k is the thermal conductivity. For the electrolyte and
air, the thermal resistance is determined by: Rconv = 1

2πrhL ,
where r, h, and L denote the radius, convective heat transfer
coefficient, and length, respectively [18, Chapter 3].

The battery, a LiFePO4 26650 with a capacity of
2560mAh, was initially set to 25◦C for both internal and
external temperatures to begin with a resting start. The Ur-
ban Dynamometer Driving Schedule current profile (UDDS)
shown in Fig. 2 is utilized in the electrochemical model,
following a C-rate of 1, as recommended for this battery.
Detailed electrochemical and thermal properties can be found
in [17] and [19].

Fig. 2: UDDS current profile.

In Fig. 3, the internal temperatures of the battery and
the case temperature are presented. The highest internal
temperature, specifically at the negative electrode (Tn2), was
recorded at 57.96°C, occurring after 938 seconds of mon-
itoring. Beyond this point, internal temperatures remained
relatively consistent. After 1300 seconds (the dashed line in
Fig. 3), the electrolyte temperature started to increase and
reached a peak of 55.48°C at exactly 1770 seconds. This
notable increase in electrolyte temperature may indicate the
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beginning of a thermal runaway event. The case temperature
was measured at 42.97°C.

Fig. 3: Battery temperatures.

In all simulation scenarios, the Luenberger observer was
initialized at 0°C, and the poles were set to -1.1, -0.00391,
-0.00904, -0.02, -0.4599, -0.01, -0.004, -0.004, -0.0000009,
and -0.0005. Fig. 4 illustrates the error dynamics between the
thermal model and the Luenberger observer, demonstrating
the accuracy of the observer’s estimations compared to the
thermal model.

Fig. 4: Error dynamics.

Fig. 5 shows the 2-norm of the observer error approaches
zero within 600 seconds.

Fig. 5: ∥T(t)− T̂(t)∥2.

V. CONCLUSION AND FUTURE WORK

In this article, a new thermal model is presented for accu-
rate temperature estimation of internal components in cylin-
drical batteries. The model integrates conduction, convection,
and electrochemical reactions for heat generation efficiently.
Simulations validate its effectiveness, and comparing it with
the Luenberger observer improves reliability. Future work in-
volves developing PDE-based models. Additionally, multiple
windings within the spiral will be taken into consideration
within the battery, and adaptive observers will be developed
to deal with model uncertainties.

ACKNOWLEDGMENTS

The authors acknowledge Mark Sewkarran for his prelimi-
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