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Abstract— A social planner who wishes to influence human
decision-making must shape incentives to account for non-
rational decision-making biases among the population to be
influenced. However, the planner does not operate in a vacuum;
societies are comprised of many heterogeneous economic actors
whose self-interested behavior may hamper the social planner’s
ability to achieve their goals. For instance, in a transportation
network which is subject to road tolls, a 3rd-party economic
agent (whom we call the arbitrageur) may launch a service to
provide users with information which helps them optimize their
toll pricing and congestion experiences. What are the effects of
such an arbitrageur on the social planner’s incentive design
problem? Do there still exist behavior-optimizing incentive
schemes in the presence of an arbitrageur? In this work,
our contributions are a formal model of this scenario and
analytical derivations of game-theoretic equilibria for a simple
transportation network.

I. INTRODUCTION

In today’s world of smart infrastructure, social media, and
misinformation, large-scale attempts to influence behavior in
society are ubiquitous [1]. Many entities attempt to wield
influence over social behavior using diverse tools such as tax
policy, misinformation-for-hire hacker groups, and nudge-
theoretic techniques [2]. How effective can these behavior-
change approaches truly be in a society comprising tens of
thousands of influencers and billions of influencees?

A first challenge in modeling social influence schemes is
that human social behavior is widely understood to be sub-
rational. That is, human decisionmakers (such as drivers in a
transportation network) are not expected-utility maximizers,
but rather are subject to behavioral biases which shape their
decisions [3]. Hence, a social planner wishing to influence
behavior may need to shape the offered incentives to account
for the behavioral biases of the human population.

A second complicating factor in deploying social influence
schemes is that models must take into account the potential
role of 3rd-party economic actors. The social planner and the
population to be influenced do not operate in a vacuum, and
some types of incentive schemes may provide self-interested
3rd parties with opportunities to profitably interfere, poten-
tially undermining the effectiveness of the applied incentives.

Congestion control via road tolls in highway networks is a
common testbed application area for studies in this domain.
In isolation, the incentive (pricing) problem in transportation
networks is well studied; the main goal is to assign prices to
roads in a transportation network in such a way that when all
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drivers choose network routes in a self-interested way (i.e.,
minimizing a sum of delay and monetary cost), the overall
congestion on the network is minimized [4]–[6]. In addition,
much is known about population behavior in transportation
networks in which the driver population makes selfish biased
decisions of various kinds [7]–[9].

However, to our knowledge, all existing research on the
transportation problem has treated the social planner and
the drivers as the only agents in the system. What effects
can 3rd-party economic actors have when a social planner
attempts to shape an incentive mechanism to a particular set
of behavioral biases? For example, suppose the driver pop-
ulation is known to irrationally over-weight the importance
of tolls, and the social planner deploys a monetary incentive
scheme which optimizes network routing given these biases.
If the driver population reacts to the incentive scheme in
accordance with their usual behavioral biases, then the social
state which results is

• socially optimal,
• a biased Nash equilibrium (i.e., the drivers are individ-

ually satisfied in light of their behavior biases), but
• not a Nash equilibrium from the standpoint of expected

utility maximization theory (i.e., some drivers could
switch strategies and realize a real gain, despite their
biases telling them otherwise).

In this scenario, there is “money left on the table,” potentially
presenting a clever 3rd-party with an arbitrage opportunity:
Some system users could gain by switching strategies, so
an arbitrageur could conceivably find a way to capture
some of the utility surplus (for instance, by selling users
a subscription to an “incentive optimization service”), which
would effectively shift the social state to some heterogeneous
Nash equilibrium that is not a social optimum.

In this paper, we formally pose a general model of this
type of interaction, and we fully characterize the equilibria
resulting from an arbitrageur’s actions for fixed tolls on a
2-link Pigou network.

II. CONTRIBUTION:
AN ECONOMICALLY-EMBEDDED ROUTING PROBLEM

Our first contribution is to formally pose a complete
model of influence by a 3rd-party informational arbitrageur
in transportation networks. This model allows for the driver
population to have very general behavioral biases and for the
arbitrageur to shift traffic flow arbitrarily. In Section III, we
instantiate this model on a simple network for a specific type
of behavioral bias and derive preliminary results.
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A. Network Routing Problem

Consider a network routing problem in which a unit mass
of traffic needs to be routed across a network (V,E), which
consists of a vertex set V and edge set E ⊆ (V ×V ) with a
given source s ∈ V and destination t ∈ V . We write P ⊂ 2E

to denote the set of paths available to traffic, where each path
p ∈ P consists of a set of edges connecting s to t. We write
fp ≥ 0 to denote the mass of traffic using path p. A feasible
flow f ∈ R|P| is an assignment of traffic to various paths
such that

∑
p∈P fp = r.

Given a flow f , the flow on edge e is given by fe =∑
p:e∈p fp. To characterize transit delay as a function of

traffic flow, each edge e ∈ E is associated with a specific
latency function ℓe : [0, 1] → [0,∞). We adopt the standard
assumptions that latency functions are nondecreasing, con-
tinuously differentiable, and convex. The system-level cost
of a flow f is measured by the total latency, given by

L(f) =
∑
e∈E

fe · ℓe(fe) =
∑
p∈P

fp · ℓp(f), (1)

where ℓp(f) =
∑

e∈p ℓe(fe) denotes the latency on path p.
Our core goal is to understand the extent to which it

is possible to influence social behavior using monetary in-
centives in an economically-embedded routing problem; that
is, when other economic entities exist to capture surpluses
potentially generated by the incentive schemes. Accordingly,
we introduce the following game formulation to allow for
modeling a wide variety of individual user biases in decision-
making. We use a non-atomic game in which the traffic
models a large population of drivers; note that we view
each driver as infinitesimally small and having a negligible
individual impact on traffic congestion. In order to influence
driver behavior, the social planner assigns each edge e ∈ E
a (possibly flow-dependent) tolling function τe : [0, 1] →
R+. We assume that drivers generally wish to avoid some
combination of delay and tolls, but we do not prescribe the
specific biases which drive behavior.

B. Behavioral Biases

Much prior work has assumed that users are quasilinear
in their preferences; that is, individual user costs are a
convex combination of latency and tax [10]. However, in
this project, we place few specific restrictions on how tax-
and latency-aversion may manifest. To model a wide variety
of heterogeneous behavioral biases, we model the users as
the interval [0, 1]; each user x ∈ [0, 1] has a cost function
cx(l, t) which models the subjective cost experienced by user
x when considering an edge with latency l and tax t. To
model cost aversion, we assume that for every x, cx(l, t) is
nondecreasing in both l and t. One special bias function that
we frequently consider is the neutral bias function cn(l, t) =
l+t; we take cn to represent the cost function employed by a
completely rational cost-minimizer. As a reference point, we
consider the neutral bias function to be an objective measure
of drivers’ experienced costs.

Given a flow f , the cost that user x ∈ [0, 1] experiences
for using path p̃ ∈ P is of the form

Jx(f ; τ) =
∑
e∈p̃

cx (ℓe(fe), τe(fe)) . (2)

To denote the neutral cost on path p, we write

Jn
p (f ; τ) =

∑
e∈p

cn (ℓe(fe), τe(fe)) . (3)

This is a sufficiently general framework to allow for a gen-
eralization of many previously-considered behavioral biases,
including heterogeneous tax sensitivity [11] and prospect
theory [12], [13]. We assume that each driver prefers the
lowest-cost path from the available source-destination paths;
despite the fact that drivers may not make their decision
based solely on a sum of time and money, they still act in a
“selfish” manner in light of their individual behavioral biases.

Let F : [0, 1] → P be a function which describes the
specific path choices of each driver x ∈ [0, 1]. Note that
each F uniquely determines a network flow in which fp :=
{x ∈ [0, 1] : F (x) = p}. In the remainder of the paper, when
a network flow f and action specification F appear together,
we take f to be the network flow uniquely determined by
F . We call F a Nash equilibrium if every driver x ∈ [0, 1]
is using a minimum-cost path:

F (x) ∈ argmin
p∈P

Jx(f ; τ). (4)

It is well-known that a Nash equilibrium exists for any non-
atomic game of the above form [14]. Note that it will often be
convenient to refer to a network flow f as a Nash flow; when
we do so, it is to be understood that f is the network flow
which is uniquely determined by some Nash equilibrium F .

C. Arbitrage

In a real socio-technical system, the economic context in-
volves many ancillary decision-makers other than the system
users and the infrastructure manager. In particular, in this
paper we focus on the role played by a profit-seeking 3rd-
party called an arbitrageur which develops a way to profit
from the sub-rationality of drivers by informing them of
lower-cost alternatives (of which the users were previously
unaware due to their behavioral biases).

The high-level setup is this: in a biased Nash equilibrium
F b
τ under the influence of tolls τ , some users will generally

be selecting routes with a relatively high neutral cost as
measured by the neutral bias function cn(l, t) = l + t. The
arbitrageur creates an information service that offers a subset
of these inefficiently-routing users a route recommendation
which would lower their neutral cost. If a user subscribes
to the information service, the arbitrageur recommends a
new route with a lower neutral cost; we assume that the
user adopts this recommendation and switches to the recom-
mended route.

In the biased Nash equilibrium F b
τ (with associated net-

work flow fb), suppose that the arbitrageur informs a subset
of the users of path p of the existence of lower-cost path q.
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Formally, the arbitrageur informs a subset of {x ∈ [0, 1] :
F b
τ (x) = p} of mass Mpq ≥ 0 and recommends they

switch to path q; we write M := (Mpq)(p,q)∈P×P . Once
all of the informed users have switched paths, the remaining
mass of uninformed users re-routes in a new informed Nash
equilibrium F i

M,τ .
An F i

M,τ as described always exists, since it can be viewed
as a Nash equilibrium for a population in which every
informed user xi has fixed actions, and every uninformed
user’s bias is unchanged from the original problem.

The arbitrageur devises a way to capture a proportion of
the neutral cost savings obtained by the informed traffic
(e.g., by selling the information for a subscription fee or
by monetizing the information using sponsored search); for
simplicity, we use this cost savings as a proxy for the
arbitrageur’s profits. Denote the cost savings experienced by
informed drivers who have switched from path p to path q
by

∆pq(M, τ) := Jn
p

(
f i; τ

)
− Jn

q

(
f i; τ

)
. (5)

The arbitrageur’s revenue (i.e., the sum of all driver individ-
ual cost savings) is thus given by

R(M ; τ) =
∑

(p,q)∈P×P

Mpq∆pq(M, τ). (6)

D. The Infrastructure Manager’s Problem
Now, the infrastructure manager wishes to levy tolls τ

on the network to minimize the total latency (1); that is,
the infrastructure manager’s objective is to minimize a cost
function of the form

L(M, τ) := L(f i(M ; τ)). (7)

If the infrastructure manager is aware of the presence of the
arbitrageur, this cost function induces a Stackelberg game;
the arbitrageur’s optimal (contingent) choice is

M∗(τ) := argmax
M

R(M ; τ), (8)

and the infrastructure manager wishes to solve the problem

τ∗ = argmin
τ

L(M∗(τ), τ). (9)

Note that in general, τ∗ may be quite a complex object
due to the fact that it is a Stackelberg strategy of a two-layer
game: first the infrastructure manager (Stackelberg leader)
selects a set of tolls τ , then the arbitrageur (Stackelberg
follower) selects a set of users M to inform, and finally the
uninformed user population establishes a Nash equilibrium
given the higher-level choices of τ and M .

III. ARBITRAGE ON A SIMPLE NETWORK

To provide initial insights into the effects of arbitrage as
described in Section II, we study an instance of the model
on a simple network:

• Section III-A describes the specific network,
• Section III-B presents fixed and marginal-cost tolls,
• Section III-C derives the Nash flows without arbitrage,
• Section III-D derives the effects of arbitrage with fixed

tolls, and
• Section III-E does the same with marginal-cost tolls.

A. Network

To illustrate an instance of this model and show that an ar-
bitrageur may significantly change the strategic environment,
consider the simple 2-link network depicted in Figure 1 (this
is the classic Pigou network used to show many salient facts
about selfish routing problems [15]).

Our network has two parallel links; ℓ1(f1) = f1 and
ℓ2(f2) = 1. The total latency (1) is minimized when the
traffic is split evenly between the two links, which we
denote f∗ = (1/2, 1/2), giving an optimal total latency of
L(f∗) = 3/4. However, the un-influenced (zero-toll) Nash
flows have f1 = 1 and f2 = 0, with a total latency of 1.
To improve network congestion, the infrastructure manager
levies a tolling function τ1(f1) on the congestible upper link,
hoping to cause some drivers to deviate to the constant-
latency lower link.

B. Tolls

Two classical tolling approaches are fixed tolls [10] which
are simply constant functions of flow, and marginal-cost
tolls [16] which take the form τmc

i (fi) = fiℓ
′
i(fi). In

selecting between the two, an infrastructure manager must
choose between the simplicity and predictability of fixed tolls
and the robustness of marginal-cost tolls [4]. In this paper,
we perform a preliminary comparison of the performance
of these two classes of tolls in the presence of a 3rd-party
arbitrageur. Note that in all cases, the infrastructure manager
levies a toll only on link 1; i.e., τ2(f2) = 0.

C. Nash Flows Without Arbitrage

In this paper, we consider populations which are broadly
biased toward toll-aversion; each driver x ∈ [0, 1] has a bias
function of cx(l, t) = l + Sxt for some fixed S > 0. Note
that if S > 1, the population contains some drivers who
underestimate the true cost of tolls (i.e., for some x ∈ [0, 1],
it holds that Sx < 1), and some who overestimate the cost of
tolls. When S > 2, the population is toll-averse “on average”:
the median driver x = 1/2 over-weights the cost of tolls by
a factor of S/2 > 1. On the other hand, when S < 2, the
population is latency-averse “on average,” since the median
driver x = 1/2 under-weights the cost of tolls by a factor of
S/2 < 1.

Under this particular bias function, it is possible to com-
pute drivers’ equilibrium responses to tolls:

Proposition 3.1: When no arbitrageur is present, the bi-
ased Nash flow for the considered user population with
S > 0 is (fb(τ) := (fb

1 , 1− fb
1 ) where

fb
1 := max {0, ϕ} (10)

and ϕ is the unique positive solution to:

ϕ+ Sϕτ1(ϕ) = 1. (11)

Proof: Let fb
1 be an arbitrary Nash flow. If user x is

on link 1 with respect to fb
1 , then fb

1 + Sxτ1 ≤ 1, that is,
x ≤ 1−fb

1

Sτ1
. Similarly, if user x is on link 2, with respect to

fb
1 , then x ≥ 1−fb

1

Sτ1
. Hence, lower-sensitivity users will go
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Fig. 1: An example of the problems that arise in the presence of an arbitrageur in a simple Pigou traffic network. Here, S = 4, τfixed
1 = 1/4,

and an arbitrageur informs revenue-maximizing mass M∗(τ) = 1/4 of traffic to move from link 1 to link 2. If an infrastructure manager
decides to assess no tolls to a traffic network (the left network), the resulting congestion can be far from optimal. Hence, the planner may
choose to charge tolls to certain roads in the network in order to obtain improved (optimal) total latency (the middle network). However,
a self-interested third party may seek to gain revenue by informing drivers of less costly roads—often at the expense of once-again
suboptimal total latency.

on link 1, while higher-sensitivity users will occupy link 2.
Now, there is at least one user on link 1, otherwise, for user
0, fb

1 + S0τ1 = fb
1 > 1, contradicting fb

1 ≤ 1. Likewise,
there is at least one user on link 2, otherwise, for user 1,
fb
1 + Sτ1 < 1, i.e. Sτ1 < 0, a contradiction since S > 0

and τ ≥ 0. Thus, we have that at least one user is on link 1,
and the most sensitive user on link 1 is indifferent between
link 1 and link 2. Now, since all users are represented as
a continuum in [0, 1], the most sensitive user on link one
(say, x̄) is indifferent, and equal to the flow on link 1.
Hence, there is a unique indifferent user x̄ = fb

1 ; that is,
fb
1 + Sfb

1 τ1 = 1, i.e. fb
1 = 1

1+Sτ1
. Finally, we know the

Nash flow fb
1 = 1

1+Sτ1
is unique since the cost on link 1 is

increasing, and the cost on link 2 is constant.
Given this characterization of toll-influenced flows, we can

now present the tolls which an infrastructure manager would
charge in the absence of an arbitrageur:

Proposition 3.2: When no arbitrageur is present, the fixed
and marginal-cost toll designs for link 1 which minimize total
latency for the considered user population with parameter
S > 0 are

τfixed1 (f1) =
1

S
, (12)

and

τmc
1 (f1) =

2f1
S

, (13)

respectively.
Proof: Since the congestion-optimal network flow is

f∗ := (1/2, 1/2), the proof is obtained by substituting the
tolling functions (12) and (13) into the expressions given
in Proposition 3.1 and verifying that tolls satisfying (12)
and (13) result in fb

1 = 1/2.

D. Arbitrage With Fixed Tolls

Since most drivers in the network have a bias function
other than the neutral bias function, some drivers are not
behaving optimally from an objective “neutral” point of view.
Since τ2(f2) = 0, it always holds that Jn

2 (f
∗; τ) = 1. For

arbitrary fixed tolls τ f1 levied on link 1, and for S > 0,
Proposition 3.1 admits the neutral cost of link 1 at the biased

Nash flow is

Jn
1 (f

b
1 ; τ

f
1) =

1

1 + Sτ f1
+ τ f1, (14)

which is less than 1 (the neutral cost of link 2) when
τ f1 < 1− 1

S , and is greater than 1 when τ f1 > 1− 1
S .

Thus, when τ f1 < 1 − 1
S , an arbitrageur could inform

users of link 2 (i.e., high-toll-sensitivity users experiencing
a neutral cost of 1) that they could experience a cost savings
by switching to link 1, whose neutral cost is (14). It happens
that as informed users switch to link 1, the latency of link
1 rises — so in turn, some uninformed users deviate from
link 1 to link 2. Likewise, when τ f1 > 1− 1

S , an arbitrageur
can then inform users of link 1 (i.e., low-toll-sensitivity users
experiencing a neutral cost of 1

1+Sτ f
1
+τ f1 > 1) that they could

experience cost savings by switching to link 2, whose neutral
cost is 1. As informed users switch to link 2, the latency of
link 1 decreases, leading uninformed users to deviate from
link 2 to link 1.

Our next proposition demonstrates this formally: if low-
enough fixed tolls τ f1 are applied to link 1, the arbitrageur
can recommend that at least some drivers profitably switch
from link 2 to link 1, and if high-enough fixed tolls τ f1 are
applied to link 1, the arbitrageur can recommend that at least
some drivers profitably switch from link 1 to link 2. Note that
in this and following sections, we abuse notation and write
M > 0 to denote the mass of drivers that the arbitrageur
recommends switch from link 2 to link 1 or vice versa—
which will always be made clear from context. Finally, we
write x̄i to denote a threshold value of x; in informed Nash
flow f i, if a driver has index x < x̄i, then that driver strictly
prefers link 1; if a driver has index x > x̄i, then that driver
strictly prefers link 2.

Proposition 3.3: Suppose the network has fixed tolls τ f1
levied on link 1, and let S > 0. Then ∆(M ; τ f1) > 0 if and
only if M is in the interval

M ∈
(
0, M̄

)
, (15)

where M̄ = min
{
1,
∣∣1− 1

S − τ f1
∣∣}. If τ f1 < 1 − 1

S , then
M̄ = 1− 1

S−τ f1, so that if M satisfies (15), then the following
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hold:

f i
1 =

1 +MSτ f1
1 + Sτ f1

, and (16)

x̄i =
1−M

1 + Sτ f1
. (17)

If τ f1 > 1 − 1
S , then M̄ = 1 or M̄ = τ f1 +

1
S − 1, so that if

M satisfies (15), then the following hold:

f i
1 =

1−MSτ f1
1 + Sτ f1

, and (18)

x̄i =
1 +M

1 + Sτ f1
. (19)

Proof: Let S > 0. We first assume τ f1 < 1 − 1
S .

To obtain the proof in this case, we treat the arbitrageur’s
recommendation as mandatory and directly transfer M units
of traffic from link 2 to link 1. Since link 1 is congestible,
this transfer increases the link’s cost, causing some drivers
who used link 1 in fb to deviate to link 2 in f i. Note that the
drivers who make this switch will in general be the most toll-
sensitive drivers on the link, leaving x̄i as the most-sensitive
driver who remains on link 1 in f i. Thus, it must hold that

f i
1 = M + x̄i (20)

drivers are selecting link 1 in f i. If x̄i > 0, it must be that

f i
1 + Sx̄iτ = 1 (21)

in order to ensure that Proposition 3.1 holds. Thus, it can be
verified that (16) and (17) are consistent with (20) and (21). It
remains to show that it is a profitable deviation for informed
drivers to switch from link 2 to link 1. That is, show that
∆21(M, τ f1) > 0. Now,

∆21(M, τ f1) = 1− τ f1 −
1 +MSτ f1
1 + Sτ f1

. (22)

Notice that (22) is decreasing in M . Since τ f1 < 1 − 1/S,
we have that the upper bound in (15) is M̄ = 1− 1

S − τ f1, so

∆21(M̄, τ f1) = 1− τ f1 −
1 + M̄Sτ f1
1 + Sτ f1

= 0.

Since ∆21(M, τ f1) is decreasing in M , and M < M̄ , we
have that 0 = ∆21(M̄, τ f1) < ∆21(M, τ f1).

Next, assume τ f1 > 1− 1
S . We again treat the arbitrageur’s

recommendation as mandatory and directly transfer M mass
of traffic from link 1 to link 2. Since link 1 is congestible,
the transfer decreases the link’s cost, causing uninformed
drivers who used link 2 in fb to deviate to link 1 in f i. The
uninformed drivers that make this switch will, in general, be
the least toll-sensitive drivers on the link, leaving x̄i as the
least sensitive driver on link 1 in f i. Thus, it holds that

f i
1 = x̄i −M (23)

drivers are selecting link 1 in f i. Once again, if x̄i > 0, it
must be that (21) holds so that Proposition 3.1 is ensured.
Hence, it can be verified that (18) and (19) are consistent
with (23) and (21). We now need to show that it is profitable

for informed drivers to switch from link 1 to link 2. Hence,
we need ∆12(M, τ f1) > 0, where

∆12(M, τ f1) =
1−MSτ f1
1 + Sτ f1

+ τ f1 − 1. (24)

Notice that ∆12(M, τ f1) is decreasing in M . Since τ f1 > 1−
1/S, the upper bound in (15) is M̄ = τ f1 +

1
S − 1 or M̄ = 1.

Assume first that M̄ = τ f1 +
1
S − 1, so

∆12(M̄, τ f1) =
1− M̄Sτ f1
1 + Sτ f1

+ τ f1 − 1 = 0.

Since ∆12(M, τ f1) is decreasing in M , and since M < M̄ , it
follows that 0 = ∆12(M̄, τ f1) < ∆12(M, τ f1). Next, assume
M̄ = 1. To see that ∆12(M, τ f1) > 0 in this case, notice that
by (24), ∆12(M, τ f1) is still decreasing in M . It is also the
case that M̄ ≤ τ f1 +

1
S − 1. Hence, the following holds:

0 = ∆(M×, τ f1) ≤ ∆(M̄, τ f1) < ∆(M, τ f1), (25)

where M× = τ f1 +
1
S − 1.

The following proposition characterizes the total la-
tency (1) that an infrastructure manager would be concerned
with minimizing in the presence of an arbitrageur, and the
revenue (6) that an arbitrageur would be concerned with
maximizing.

Proposition 3.4: Suppose the network has fixed tolls τ f1
levied on link 1, and let S > 0. Then, if τ f1 < 1 − 1

S , the
total latency and revenue are:

L(M, τ f1) =

(
M2−M+1

)(
Sτ f1

)2
+(M+1)Sτ f1+1(

1 + Sτ f1
)2 (26)

and

R(M ; τ f1) =
Mτ f1(S −MS − Sτ f1 − 1)

1 + Sτ f1
, (27)

and if τ f1 > 1− 1
S , the total latency and revenue are:

L(M, τ f1) =

(
M2+M+1

)(
Sτ f1

)2
+(1−M)Sτ f1+1(

1 + Sτ f1
)2 , (28)

and

R(M ; τ f1) =
Mτ f1(Sτ

f
1 −MS − S + 1)

1 + Sτ f1
. (29)

Proof: Let S > 0, and let f i
1 be an informed Nash flow.

Then the total latency defined by (1) becomes

L(M, τ f1) = f i
1

2
+
(
1− f i

1

)
, (30)

and the revenue defined by (6) is

R(M ; τ f1) = ℓp(f) + τ fp −
(
ℓp(f) + τ fp

)
, (31)

where p is the link informed users are leaving, and p is the
link they are changing on to. Recall τ f2 = 0. If τ f1 < 1−1/S,
then an arbitrageur can inform users to move from link 2 to
link 1. Hence, p = 2 and p = 1 and

f i
1 =

1 +MSτ f1
1 + Sτ f1

, (32)
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by Proposition 3.3. So, (26) and (27) are obtained by sub-
stituting (32) into (30) and (31). Similarly, if τ f1 > 1− 1/S,
then an arbitrageur can inform users to move from link 1
to link 2. Hence, p = 1 and p = 2 and (28) and (29) are
obtained similarly.

E. Arbitrage with marginal-cost tolls

Now, we consider the case of arbitrage in the presence of
Marginal-cost tolls. Here, to present initial results comparing
the performance of marginal-cost tolls with that of fixed
tolls, we focus specifically on the case that the marginal-cost
toll scalar K is sufficiently low that the arbitrageur always
recommends that some mass of drivers switch from link 2
to link 1.

Accordingly, suppose that the social planner levies tolls
on link 1 of the form

τmc
1 (f1) = Kf1, (33)

where K ∈ (0, S − 1).
It might be hoped that these flow-varying tolls would

adaptively increase the toll on link 1, acting as a deterrent to
the arbitrageur. However, numerical experiments can show
that this need not be the case.

The following proposition provides the form of influ-
enced Nash flows under the influence of an arbitrageur and
marginal-cost tolls.

Proposition 3.5: Let K < S − 1 and τmc
1 (f1) = Kf1.

The following hold for any M ∈ [0, 1] mass of users which
the arbitrageur recommends switch from link 2 to link 1:

x̄i =
−1− SKM +

√
(1− SKM)2 + 4SK

2SK
, and (34)

f i
1 = M +

−1− SKM +
√

(1− SKM)2 + 4SK

2SK
. (35)

Proof: A Nash flow for the neutral population has fn
1 =

1/(1+K). It can be verified from Proposition 3.1 that when
K < S−1, the arbitrage-free Nash flow has fb

1 < 1/(1+K),
and thus that cn1(·) < cn2(·). That is, when K < S − 1, the
arbitrageur can profitably recommend that some mass M of
drivers deviate from link 2 to link 1.

Accordingly, let the arbitrageur recommend that mass
M ∈ [0, 1] drivers deviate from link 2 to link 1. The resulting
flow (35) can be computed by solving the following equation
for x̄i:

M + x̄i + Sx̄iK(M + x̄i) = 1. (36)

If M + x̄i drivers use link 1, then the most-sensitive of them
(with tax sensitivity Sx̄i) is precisely indifferent between
links 1 and 2. Any user x < x̄i strictly prefers link 1, and any
user x > x̄i strictly prefers link 2. Provided that M+ x̄i ≤ 1,
it holds that f i

1 = M + x̄i is a Nash flow.
To show this, note that (36) describes a convex quadratic

equation P (x) = 0 with at most one positive root x̄i given
by (34). If P (1−M) > 0, then because P is convex, it must

hold that x̄i ≤ 1−M . This is easily verified:

P (x) = SKx2 + (1 + SKM)x− (1−M)

=

∣∣∣∣
x=1−M

SK(1−M)2 + (1 + SKM)(1−M)− (1−M)

= (1−M)(SK(1−M) + SKM) ≥ 0,

since M ≤ 1. Thus, M + x̄i ≤ 1 for any admissible M ,
obtaining the proof.

The expressions for arbitrageur revenue and total latency
are thus possible to compute directly from Proposition 3.5,
but we believe the closed-form expressions offer little insight
and for reasons of space we do not reproduce them here.

IV. CONCLUSIONS

This paper has formally posed a model of 3rd-party
informational arbitrage in transportation networks under the
influence of monetary tolls, and analyzed an instance of the
problem on a simple transportation network. Our work sug-
gests research opportunities in several directions, including
analysis for more complex networks, more complex forms
of tolling function, and the deterrence effects of large tolls.
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