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Abstract— Microreactors are an essential part of modular
chemical systems involved in the on-demand production of
chemicals such as nanomaterials, pharmaceuticals, specialty
chemicals, etc. Model-based nonlinear predictive control of
microreactors is a challenging task due to the high online
computational cost associated with developing and maintaining
high-order first-principles nonlinear models. In this work,
we propose a nonlinear data-driven model predictive control
(NMPC) scheme for nanoparticle production in microreactors.
In this paper, a non-linear Auto Regressive Exogenous Neural
Network model (NARX-NN) is developed with the flow rates of
the reactants as inputs and the peak value of the absorbance
spectra (an indirect measure of the average size of nanoparti-
cles) as output by performing a set of experiments in Corning
Advanced-FlowTM Reactors (AFR). Typically, producing a
new desired average size nanoparticle on-demand is done by
manual changes in the flow rates of reactants. In this work,
a nonlinear model predictive controller using the identified
NARX-NN model is formulated to track a change in the set
point, the peak value of the spectra. The formulated controller
with the identified NARX-NN model is demonstrated via the
simulation studies. It is shown that the proposed NMPC with
the NARX-NN model performs well in different scenarios of
silver nanoparticle production.

I. INTRODUCTION

In the last decade, there was a rapid shift from batch to
continuous processes for large-scale synthesis in specialty
chemicals and pharmaceutical manufacturing. Microreactors
have gained popularity in academia and industries as they
offer advantages such as higher surface-to-volume ratios
and high heat and mass transfer rates [1], [2], [3]. Fur-
thermore, these reactors allow for a high throughput design
by increasing the number of reactors in parallel [2] thereby
facilitating industrial applications as higher throughputs are
essential for commercialization with a small footprint. The
main objective of this work is to develop a data-driven
model-based control approach producing different sizes of
nanoparticles in microreactors.
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Microreactors are often modeled as tubular flow reac-
tors, and the time evolution of concentrations of different
species along the length of reactors is derived in terms of
a set of partial or ordinary differential equations (PDE or
ODEs) under certain assumptions [4], [5]. These coupled
ODEs and PDEs with nonlinear kinetics are computation-
ally expensive for online applications. Furthermore, reaction
kinetics have to be identified using experimental data[6],
[7]. The identification of reaction kinetics from experimental
data is also a time-consuming and costly exercise. Hence,
building first-principle models for real-time optimization and
model-based control is not a favorable option for microre-
actors from a computational viewpoint [8]. On the other
hand, data-driven models such as multivariate linear input-
output models, nonlinear autoregressive-with-exogenous-
inputs (NARX), polynomial nonlinear-autoregressive-with-
exogenous-inputs (PNARX), etc. are widely used in process
control[9], [10]. These data-driven models allow us to predict
the quantities of interest in an online manner with less
computational cost. However, the development of data-driven
models requires a large amount of data.

The control of continuous microreactors leads to the
multivariate and constrained control problem and hence,
traditional PID control techniques will not be effective
in the production of chemicals in microreactors. Recently,
model-based predictive control strategies using simple first-
principles models as well as data-driven models have been
implemented in the literature [11], [10]. In [11], the authors
developed a linear data-driven model predictive scheme for
ether production. Here, the authors developed a measurement
model and a control model using the partial least-squares
(PLS) regression and the output-error modeling approach,
respectively. An artificial neural network (ANN) has been
used in developing a dynamic model for a control purpose
[12]. Similarly, recurrent neural networks (RNN) have been
used for the development of high-fidelity dynamic models
and for designing a control strategy [13]. A successful
implementation of an ANN-MPC on a continuously stirred
tank reactor has been shown in [14].

The main challenge in the on-demand manufacturing of
nanoparticles in microreactors is the production of different
sizes of nanoparticles for various applications in a short
period. Hence, the control of the microreactors is crucial for
obtaining the right size of nanoparticles largely by manipu-
lating the input flow rates and temperature [15]. Typically,
the size of nanoparticles is obtained by performing Trans-
mission electron microscopy (TEM) in an offline manner
by analyzing the outlet stream of microreactors. However,
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TEM analysis is a tedious and time-consuming task, and it
requires a dedicated facility and trained human resources.
Alternatively, UV spectroscopy can be used to measure the
average size of nanoparticles by analyzing the outlet stream
in an online manner. Particularly, the peak of the absorbance
spectra provides an indirect measurement of the average size
of nanoparticles produced. In addition, it is difficult to build
a first-principle model for the production of nanoparticles.
Hence, an effective control strategy with a data-driven model
connecting the input flow rates and/or temperature to the
peak of absorbance spectra is the most suitable option for
obtaining the desired sizes of nanoparticles.

In this work, we develop a nonlinear auto-regressive Exo-
geneous Neural Network model for the production of silver
nanoparticles using experimental data involving two inputs
and a single output. We further develop an MPC around it
to achieve our desired setpoint tracking capabilities required
for on-demand production of different sizes of nanoparticles.
This paper further demonstrates the data-driven nonlinear
MPC for tracking the peaks of absorbance spectra (a proxy
for the average size of nanoparticles produced) for the
production of silver nanoparticles.

The structure of the paper is as follows. Section II de-
scribes the development of NARX-Neural Network (NARX-
NN) models for predicting the peak of absorbance spectra
using two manipulated flow rates. The developed NARX-NN
model is then used for formulating a model predictive control
problem for the set-point tracking problem in Section II.
Section III develops an NARX-NN model to describe the
production of silver nanoparticles from the experimental
data obtained in the laboratory. Section IV investigates the
effectiveness of the formulated NARX-NN model predictive
control for tracking a set-point change in nanoparticle pro-
duction and presents the results. Finally, Section V concludes
the paper and discusses the future directions.

II. MODEL DEVELOPMENT AND CONTROL
FORMULATION

This section presents the development of a data-driven
model and the formulation of model predictive control.

A. Non-Linear Auto Regressive Exogenous Neural Network
Model (NARX-NN)

In this section, we develop a non-linear Auto-regressive
exogenous model (NARX) with one output (y) and nu

inputs (u ∈ Rnu ) in the system 1. This NARX model is
integrated with neural network layers to model the desired
non-linearity in the plant model. This leads to nonlinear auto-
regressive exogenous Neural Network (NARX-NN) models.
In the production of nanoparticles using microreactors, the
main goal is to develop a NARX-NN model between the
manipulated flow rates and the peak of absorbance spectra
(a proxy for the average size of the nanoparticles). Hence,
in the formulated model, the inputs and outputs are modeled
as the deviations of outputs and inputs from the reactor’s

1Note that the methodology can be extended to multiple inputs and
outputs straightforwardly.

desired steady-state, ŷ = y−yss and û = u−uss. Then, the
NARX-NN can be expressed in Eqn. 1 as follows:

ẑ[k] = NARX-NN





û[k −Hw]
û[k −Hw − 1]

...
û[k −Hw − nu]

ŷ[k − 1]
ŷ[k − 2]

...
ŷ[k − ny]




(1)

where ẑ is the controlled output that is predicted based the
past nu manipulated inputs û applied to the system, and
the previous ny measured outputs ŷ, and Hw is the input-
output delay associated with the system. The architecture
neural network model is modified to exhibit the properties
of chemical processes in microreactors such as zero-output
response for a zero-input vector. To ensure this, we remove
the biases from fully-connected linear layers of the neural
network. Furthermore, steady-state data are used along with
time-series perturbed data in the training set. For training
the models, the custom loss functions that impose a high
penalty on non-zero output for a zero-input vector can also be
used. Section III describes building an NARX-NN Model for
the production of silver nanoparticles using the experimental
data obtained in microreactors.

B. Model Predictive Control Structure
A simplified architecture of the proposed model predictive

control (MPC) structure is shown in Fig. 1. The optimizer
and the prediction blocks collectively make an MPC. To
identify the optimal inputs to track the programmed set-point,
the MPC utilizes the NARX-NN model to predict the outputs
over the prediction horizon. In the case of nanoparticle
production, the MPC manipulates the flow rates of reactants
to track the peak of absorbance spectra obtained at the outlet
of a microreactor.

The optimizer’s objective is to minimize the deviation
from the setpoint, denoted by r̂[k], while ensuring constraints
on the system. The objective function or loss function is
formulated in Eqn. 2 as follows:

V [k] =

Hp−1∑
j=Hw

∥∥r̂[k+j]−ẑ[k+j]
∥∥2
Q(j)

+

Hu−1∑
j=0

∥∥∆û
∥∥2
R(j)

(2)

where ∥a∥2W = aTWa, Hp is the prediction horizon, Hu

is the control horizon and Q and R are the weight matrices
associated with the objectives of deviation from the set-point
and movement suppression, respectively. The loss function
in the vector form can be rewritten by defining the controlled
output Ẑ, reference trajectory vector τ̂ , and input vector Û
as follows:

V [k] =
(
τ̂ − Ẑ

)T

Q
(
τ̂ − Ẑ

)
+∆UTR∆U (3)

with

Ẑ =
[
ẑ[k +Hw] ẑ[k +Hw + 1] . . . ẑ[k +Hp − 1]

]T
(4)
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Fig. 1. Control structure depicting the information flow inside the MPC and in between the MPC and reactor

τ̂ =
[
r̂[k +Hw] r̂[k +Hw + 1] . . . r̂[k +Hp − 1]

]T
(5)

Û =
[
û[k] û[k + 1] . . . û[k +Hu − 1]

]T
(6)

Here, ∆U is the change between consecutive inputs. Further-
more, the following lower and upper bounds on the inputs
and change in the inputs are formulated as constraints:

Ûmin ≤ Ûopt ≤ Ûmax (7)
∆Umin ≤ ∆Uopt ≤ ∆Umax (8)

As the NARX neural network model is built to predict
only one step in the future, the computation of a larger
horizon requires the backtracking of the previous optimal
inputs. The optimizer’s objective function repeatedly calls
the prediction model to determine the intermediate variables.
We have used scipy.optimize.minimize function in
Python to minimize this loss function. Given the function’s
properties, we use the ’Powell’ method to solve the constraint
optimization problem formulated in Eqn. (3) with constraints
in Eqns. (7), and (8).

III. NARX-NN MODEL DEVELOPMENT FOR
NANOPARTICLE PRODUCTION IN MICROREACTORS

In this work, the production of silver nanoparticles in
Corning Advanced-FlowTM Reactors (AFR) is considered.
The aim is to produce silver nanoparticles (AgNPs) with
predetermined specifications in the Corning AFR. The size
of silver nanoparticles is provided in terms of the peak of
the predetermined absorbance spectra of the nanoparticles.
The materials used are Silver Nitrate (AgNO3), Sodium
Borohydride (NaBH4), and Tri-sodium citrate (TSC) are
mixed in a Corning AFR to produce silver nanoparticles. The
experimental setup incorporates a UV spectrophotometer to
measure the absorption spectra of the nanoparticles produced
at the exit of the microreactors, and the peak value of

absorbance spectra is used as the proxy for an average size
of nanoparticles.

In this experiment, the manipulated variables are the flow
rates of silver nitrate and sodium borohydride, while the
controlled variable is the peak values of the absorption
spectra of silver nanoparticles. Initially, we fix the inputs and
let the reactor reach its steady state, after which we apply
perturbations in the inputs (pseudorandom binary sequence
(PRBS)) and measure the response of the system (peak
values of absorbance spectra at the exit of microreactors) for
obtaining experimental data. Fig. 2 shows the experimental
measurements obtained after applying perturbations in the
flow rates of both reactants for an experiment. The sampling
time for measuring the inputs and outputs is 60 seconds.

Fig. 2. Perturbation data generated through the silver nanoparticle synthesis
experiment. The first subplot 1 shows the absorption spectra peak values
across the time horizon. Following subplots 2 and 3 show the corresponding
input flow rates over the time horizon
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For training the NARX-NN model, the perturbation data is
split into training and validation datasets, with the ratio being
85%-15%. Additionally, the steady-state flow rates and the
steady-sate peak values of absorbance spectra are subtracted
from the inputs and output, respectively, to obtain the data
in the deviation form.

The implemented NARX-NN model assumes that the
output is dependent upon the current input and the past two
outputs. This configuration was chosen as it demonstrated
a high R2-value on 10-fold cross-validation in comparison
to other configurations considering multiple past inputs and
more outputs. It was observed that an enhanced model fit al-
lowed superior MPC performance. This relation is exhibited
in Fig. 3. The delay associated is less than the sampling time
and hence, it is ignored.

Fig. 3. Performance of various input-output configuration with respect
to R2-value in 10-fold cross-validation test. The model was trained for 20
epochs

ẑ[k] = NARX-NN



ûAgNO3 [k]
ûNaBH4 [k]
ŷ[k − 1]
ŷ[k − 2]


 (9)

The model architecture comprises one hidden layer con-
structed using three neurons, with a rectified linear unit
activation function to incorporate the desired non-linearity.
The model is trained using the ’ADAM’ optimization al-
gorithm with the mean-squared prediction error as the loss
function for training the NARX-NN model. For the termi-
nation criteria, we train the model until the R2-a value of at
least 0.95 is achieved. The trained model is independently
validated through 10-fold cross-validation. The R2-value of
the validated model is 0.9561. This value indicates that
the model between the peak value of absorbance and the
flow rates of reactants is a good fit. The developed NARX-
NN model performance on independent experimental data is
shown in Fig. 4.

Additionally, we perform the residual analysis to under-
stand how the model describes the system. The residuals
are differences between the one-step-ahead predicted output
from the model and the measured output from the validation

Fig. 4. Performance of NARX neural network against the validation data.
The model displayed has an R2-value of 0.9672

data set. The residual analysis plots are shown in Fig. 5 and
Fig. 6 and it indicates that the performance of the model is
satisfactory.

Fig. 5. Autocorrelation of the NARX-NN model residuals

The model also retains the defined steady state by predict-
ing no change in the output (peak value) for the zero-input
vector in the deviation form. In other words, the constant
values of the flow rates of reactants do not change the peak
value of the measured spectra. Hence, the developed NARX-
NN Model also provides physically meaningful predictions.
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Fig. 6. Cross correlation of the NARX-NN model residuals with the inputs

IV. NARX-NN MODEL PREDICTIVE CONTROL (MPC)
FOR THE PRODUCTION OF SILVER NANOPARTICLES OF

DESIRED SIZES

After obtaining satisfactory performance of the developed
NARX-NN model, we use this model for a one-step predictor
in the model predictive controller formulated in Section IIB.
In this section, we perform simulation studies to analyze the
set-point tracking capabilities of the proposed MPC using the
NARX-NN model in the production of silver nanoparticles of
different sizes. The applications of nanoparticles depend on
the average size of nanoparticles. For example, nanoparticles
with a size of less than 5 nm are used for catalysis-related
applications. Hence, obtaining nanoparticles of a particular
size is an important objective of the control of the production
of silver nanoparticles. Since the peak values of absorbance
spectra are used to measure the average size of particles
indirectly, the set point for the lambda max (maximum
absorbance) must be tracked by manipulating the flow rates
of AgNO3 + TSC stream and NABH4 stream independently.
Hence, in this simulation study, we first investigate the set
point tracking problem.

It is important to track the peak values of the absorbance
spectra of the nanoparticles obtained at the exit of the
microreactors. For the first simulation scenario, we have set
the values of prediction horizon Hp = 6 and control horizon
Hu = 3. The weights Q = 100 and R = 500 are taken. The
performance of the MPC for the following configuration is
shown in Fig. 7.

As observed, the NARX-NN MPC successfully tracks the
reference trajectory provided and changes in the setpoints.
However, the observed settling time is longer than desired
in practice. The situation can be enhanced by decreasing the
weight R to allow greater movement between consecutive
input vectors. Then, maintaining all the other parameters,
the weight R is reduced to 0.5.

The performance of the MPC for the following configura-
tion is shown in Fig. 8. As observed, the model has become
more aggressive, and convergence to the setpoint is approx-
imately 15 minutes. However, the changes in consecutive

Fig. 7. Case 1: MPC set-point tracking simulation. Lambda Max is the peak
value of absorbance spectra at the exit of the microreactor. The flowrates are
in milliliters per minute, while the iterations are in line with the sampling
time of 1 minute

Fig. 8. Case 2: MPC set-point tracking simulation

inputs are significant.
To further improve the settling time, we now increase the

prediction and control horizon from 6 and 3 to 8 and 5,
respectively. We maintain the weights Q and R at 100 and
0.5, respectively, in this simulation. The performance of the
MPC for the following configuration is shown in Fig. 9.

As observed, the response is further enhanced with the
now approximate settling time of around 10 minutes, which
is fine in practice.

V. CONCLUSIONS AND FUTURE WORKS

In this work, a non-linear auto-regressive exogenous model
with Neural Networks (NARX-NN) has been developed for
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Fig. 9. Case 3: MPC set-point tracking simulation

the production of nanoparticles in microreactors. It is shown
that the developed NARX-NN model allows for predicting
the peak of absorbance spectra at the exit of microreactors
using the flow rates of reactants. The developed NARX-
NN model is then used to formulate a nonlinear model
predictive control strategy for tracking set point changes in
the production of nanoparticles. A NARX-NN model has
been developed using experimental data obtained from the
production of silver nanoparticles in the Corning Advanced-
FlowTM reactors. The developed NARX-NN model for the
production of silver nanoparticles has been used in the
NMPC formulation for tracking the change of the average
size of nanoparticles via tracking in the peak values of
absorbance spectra at the exit of the microreactors via a
set of simulation studies. The simulation to identify the
optimal tuning of the MPC has revealed that the controller is
effectively settling to the desired setpoint in approximately
10 minutes.

In the future, the proposed NARX-NN model-based pre-
dictive control will be integrated into the experimental setup
for the production of silver nanoparticles of different sizes
using the Corning reactors, and the size of silver nanoparti-
cles will be validated using the TEM analysis. Furthermore,
the framework will be extended to reject unknown distur-
bances that affect the average size of nanoparticles. We will
also develop control strategies for obtaining narrow particle
size distributions using the absorbance spectra.
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