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Abstract— In this paper, we introduce a hybrid zonotope-
based approach for formally verifying the behavior of au-
tonomous systems operating under Linear Temporal Logic
(LTL) specifications. In particular, we formally verify the
LTL formula by constructing temporal logic trees (TLT)s via
backward reachability analysis (BRA). In previous works, TLTs
are predominantly constructed with either highly general and
computationally intensive level set-based BRA or simplistic and
computationally efficient polytope-based BRA. In this work,
we instead propose the construction of TLTs using hybrid
zonotope-based BRA. By using hybrid zonotopes, we show
that we are able to formally verify LTL specifications in
a computationally efficient manner while still being able to
represent complex geometries that are often present when
deploying autonomous systems, such as non-convex, disjoint
sets. Moreover, we evaluate our approach on a parking example,
providing preliminary indications of how hybrid zonotopes
facilitate computationally efficient formal verification of LTL
specifications in environments that naturally lead to non-convex,
disjoint geometries.

I. INTRODUCTION
Advancements in fields like computer science, hybrid

systems, and cyber-physical systems have ushered in a new
era of complexity. As we extend the limits of what’s possible,
ensuring the safety of ever more complex systems becomes
crucial. This endeavor requires adept methods for describing
and analyzing their complexity. A promising approach is to
leverage temporal logic formalisms [1] to capture system
objectives and then use reachability analysis [2] to study its
behaviour.

A significant body of literature employing this approach,
focuses on automata-based methods [1], [3]. While powerful,
automata tend to suffer from computational and expressive
limitations when applied to continuous state-space systems
with time-varying specifications or environments [4]. In this
work, we further explore an alternative to automata first
proposed in [4], based on a tree structure called Temporal
Logic Tree to encode information about the satisfaction of
an LTL specification. Unlike automata, they are abstraction-
free for continuous state-space systems, support the full LTL
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Fig. 1: We illustrate an overview of our approach.

language, and are more modular, enabling online adaption to
time-varying specifications or environments.

The computational complexity of constructing a TLT
depends largely on the chosen BRA technique. In [5],
Hamilton-Jacobi reachability analysis is used to build a
TLT, ensuring safety in vehicle parking tasks. This method
facilitates the construction of a TLT for systems with
nonlinear dynamics, and through a level-set representation,
for environments with intricate geometries. While powerful
and general, Hamilton-Jacobi reachability analysis’ computa-
tional complexity grows exponentially with the system’s state
space [6]. More computationally efficient tools for reach-
ability analysis do exist, such as polytope, zonotope (Z),
constrained zonotope (CZ), sparse polynomial zonotope
(SPZ), and constrained polynomial zonotope (CPZ)-based
methods [7], [8], [9], [10], [11]. While these approaches can
represent geometries of varying complexity, to the extent
of our knowledge, they can not efficiently handle disjoint
sets, which is often crucial for autonomous systems. A
recent work proposed a new set representation called hybrid
zonotope (HZ) that, among other benefits, can efficiently
handle disjoint sets [12]. By leveraging HZ-based BRA in
this work, we aim to efficiently verify LTL specifications
that include disjunction operators in, for example, a parking
lot environment where the reachable sets naturally become
disjoint [5].

The main contribution of this work is a verification ap-
proach that uses HZ-based BRA to construct TLTs in a
computationally efficient-manner. This allows for the effi-
cient verification of the feasibility of any LTL formula in
environments with relatively challenging geometries. More
specifically, the contributions are outlined as follows: (1)
detailing the construction of TLTs using HZ-based BRA,
(2) implementing the proposed method, which is publicly
available at 1, and (3) evaluating the implemented approach
on a practical example with an LTL specification containing

1https://github.com/loizoshad/zonopy
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disjunction operators and disjoint reachable sets.
The remainder of this paper is structured as follows: We

introduce preliminary material on reachability analysis, LTL,
and TLTs in Section II. Section III formally introduces the
problem solved in this work as well as provides a motivation
for choosing HZs. Section IV lays out our approach for
constructing a TLT using HZs. In Section V, we formulate
a parking case study. Section VI analyzes the results from
our simulations and finally, Section VII, concludes our work
and discusses some future work that can be done in this area.

II. PRELIMINARIES

A. Notation

We denote the set of real numbers as R, vectors as bold
lowercase letters (e.g., x ∈ Rn), the identity matrix by I ,
while matrices filled with elements 1 and 0 are represented
by 1,0, respectively. We extract a submatrix from G by
selecting its first n rows as G[1 : n, :] and express the
horizontal concatenation of matrices A and B as [A B]. A
diagonal matrix is denoted by diag(v), with v being the
vector with the diagonal elements. The n-dimensional and
constrained n-dimensional unit hypercubes are denoted by
Bn
∞ = {ξ ∈ Rn| ||ξ||∞ ≤ 1} and Bn

∞(A, b) = {ξ ∈
Rn| ||ξ||∞ ≤ 1, Aξ = b}, respectively, while the power set
of an n-dimensional vector of binary variables as {−1, 1}n.

B. Plant Model

Consider the discrete-time system

xt+1 = Axt +But, (1)

where xt ∈ Rnx represents the state vector, ut ∈ Rnu

the control input, and the matrices A ∈ Rnx×nx , B ∈
Rnx×nu , are the state transition and control input matrices,
respectively. For each time instant t, ut ∈ U ⊂ Rnu , where
U is the compact control input constraint. We assume the
system is well-defined such that xt+1 is uniquely determined
by xt and ut. Let µ = u0, u1, . . . be a control policy and
M be the set of all control policies. Then, given initial state
x0, we denote a trajectory of system (1) as ζ(·;x0, µ) where
ζ(t;x0, µ) is the state of system (1) at time t when starting
from x0 and implementing control policy µ. For simplicity,
we will sometimes refer to trajectories with ζ(·).

C. Reachability Analysis

Reachability analysis is a common approach to formally
provide guarantees about the behavior of a system. In this
subsection, we provide the relevant reachability definition
that will later be used for the construction of TLTs.

Definition 2.1: Consider the plant (1), then the infinite
horizon backward reachable set (BRS) from the target set
T ⊆ Rnx in state space S ⊆ Rnx is given as

R(S, T ) = {x ∈ S|∃µ ∈ M,∃t > 0, ζ(t;x, µ) ∈ T }. (2)
Intuitively, the infinite horizon BRS answers the question of
where the system can begin and eventually reach the target
set T . This definition is in accordance with the controlled
reachable set definition in [4]. As it will become apparent

later, it allows us to construct the controlled TLT, which for
the sake of brevity, we generally refer to as TLT in this work.

In practice, to compute the infinite horizon BRS, one
needs to compute the union of all N-step BRSs for N =
[0,∞), N ∈ Z, where the N-step BRS from the target set
T ⊆ Rnx in S ⊆ Rnx is the set of all states for which
system (1) can reach the target set in exactly N time steps.
The N-step BRS is equivalent to computing the predecessor
set N times, (e.g., R(S, T , 3) = P(S,P(S,P(S, T )))) which
in turn is defined as

P(S, T ) = {x ∈ S|∃u ∈ U, Ax+Bu ∈ T }. (3)

D. Linear Temporal Logic

In the context of this work, LTL plays a pivotal role
in modeling complex temporal tasks to study the temporal
and time-invariance properties of autonomous systems. At its
core, an LTL formula consists of three components: a finite
set of atomic propositions (P), a set of temporal (until : U),
and logical (negation := ¬, and := ∧) operators. In this
work, we consider the following LTL syntax:

φ ::= true | p ∈ P | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1Uϕ2 | ⃝ ϕ. (4)

Definition 2.2: For an LTL formula φ, a labeling function
l(·), a trajectory ζ(·), and a time instant t ≥ 0, the satisfaction
relation (ζ(·), t) ⊨ φ is defined as

(ζ(·), t) ⊨ p ∈ P ⇔ ζ(t) ∈ l(p),

(ζ(·), t) ⊨ ¬φ ⇔ (ζ(·), t) ⊭ φ,

(ζ(·), t) ⊨ φ1 ∧ φ2 ⇔ (ζ(·), t) ⊨ φ1 ∧ (ζ(·), t) ⊨ φ2,

(ζ(·), t) ⊨ φ1 ∨ φ2 ⇔ (ζ(·), t) ⊨ φ1 ∨ (ζ(·), t) ⊨ φ2,

(ζ(·), t) ⊨ ♢φ ⇔ ∃t1 ∈ [t,∞) : (ζ(·), t1) ⊨ φ,

(ζ(·), t) ⊨ □φ ⇔ ∀t1 ∈ [t,∞) : (ζ(·), t1) ⊨ φ,

(ζ(·), t) ⊨ φ1Uφ2 ⇔ ∃ t1 ∈ [t,∞) : (ζ(·), t1) ⊨ φ2,

∀t2 ∈ [t, t1), (ζ(·), t2) ⊨ φ1,

(ζ(·), t) ⊨ ⃝φ ⇔ (ζ(·), t+ 1) ⊨ φ.

(5)

E. Temporal Logic Tree

A TLT is a hierarchical structure that describes the satis-
faction relationship between the system’s state space and LTL
specification. This structure serves as an alternative approach
for model checking and control synthesis, which provides
high modularity. Another significant characteristic of the TLT
is that it enables the synthesis of a controller with multiple
control policies, which is useful for applications with mixed
levels of autonomy, such as autonomous vehicles.

Definition 2.3: A TLT is a tree for which
• each node is either a set node within Rnx or an operator

node from the LTL syntax defined in (4);
• the root and leaf nodes are set nodes;
• a set node that is not a leaf node has as a unique child

an operator node;
• all operator nodes have set nodes are their children.
Example 2.1: Given the dynamic model of an autonomous

vehicle described by (1), study the eligibility of all states to
allow the vehicle to eventually reach one of the available

580



parking spots (P1,P2, ...,P5). Given this description, we can
formulate the following LTL to capture this goal.

φ = (♢p1) ∨ (♢p2) ∨ (♢p3) ∨ (♢p4) ∨ (♢p5),

pi = {x ∈ S|x ∈ Pi}, i = {1, 2, ..., 5}.
(6)

• Step 1: Obtain weak-until positive normal form (PNF)
[1]. The PNF for LTL permits negation only on the level
of atomic propositions. To ensure the full expressiveness
of LTL, in addition to the LTL fragment in (4) it
includes the Boolean Or ∨ operator as well us the Weak-
Until W operator, where φ1Wφ2 ≡ φ1Uφ2 ∨□φ1.

φN = (trueU p1) ∨ · · · ∨ (trueU p5). (7)

• Step 2: Compute the TLT for each atomic proposition.
The TLT for any atomic proposition is simply a set
node consisting of all states that satisfy it. In this
example, these nodes are the set nodes, each containing
the equivalent parking area Pi for every parking spot i.
These are the leaf nodes of the TLT in Figure 2.

• Step 3: Inductively construct the TLT for each compo-
nent of the formula. Each branch in Figure 2 represents
the TLT for each component (trueU pi). Every branch
consists of two set nodes and one operator node. The
node at the bottom is the target i the vehicle needs to
reach, while the top set node is the set of all states
that could eventually take the vehicle to target i, hence
the backward reachable set of the target Pi. These two
nodes are connected by the Until temporal operator.
Intuitively, each branch asks that the vehicle is within
the BRS of each target until it reaches the target itself.
After combining all the branches’ backward reachable
sets through set unions, the root node consists of all the
states for which we can guarantee satisfaction of the
LTL specification.

This example hints that the effectiveness of TLTs in
formally verifying LTL specifications relies on the set rep-
resentation’s support for different operators.

III. PROBLEM STATEMENT

Constructing a TLT for any LTL problem involves com-
putations such as BRSs, intersections, and unions. In many
cases, this results in non-convex, disjoint sets. While level-set
Hamilton Jacobi reachability can handle such complexities,

Fig. 2: TLT to check if the vehicle can eventually park.

Polytope Z CZ SPZ CPZ HZ Level
Set

Linear
Transformation ✓ ✓ ✓ ✓ ✓ ✓ ✓

Minkowski
Sum ✓ ✓ ✓ ✓ ✓ ✓ ✓

Intersection ✓ ✗ ✓ ✗ ✓ ✓ ✓
Union ✗ ✗ ✗ ✗ ✓ ✓ ✓

Non-Convex NO NO NO YES YES YES YES
Disjoint NO NO NO NO NO YES YES

TABLE I: Properties of set representation tools2

it comes with increased computational expense. Conversely,
more computationally efficient methods can construct TLTs
in relatively simple scenarios but to the best of our knowl-
edge, can not efficiently handle the full LTL language
requirements. Table I provides an overview of common set
representations for reachability analysis and their suitability
for addressing these requirements, among which, only level
sets and HZs can effectively handle the full LTL language.
Due to the computational complexity of level-set solutions,
we explore the use of HZs in this work and define the
following problem statement.

Problem 3.1: For an autonomous system with the dy-
namics (1) and an LTL specification φ, formally study
the satisfiability of φ by (1) in a computationally efficient
manner for environments that naturally form non-convex,
disjoint sets.

IV. CONSTRUCTING TLTS USING HYBRID ZONOTOPES

In this section, we introduce and formulate our approach
for constructing TLTs using hybrid zonotopes.

A. Hybrid Zonotopes

To understand the HZ , let’s start by defining its prede-
cessor, the zonotope which is a centrally symmetric convex
polytope, defined as the affine image of a unit hypercube.

Definition 4.1: A set Z ⊂ Rnx is a zonotope if there exist
a matrix G ∈ Rnx×ng and a vector c ∈ Rnx , where ng the
number of generators, such that Z = {c+Gξ | ||ξ||∞ ≤ 1}.

The constrained zonotope is an immediate extension of
the zonotope, which allows linear equality constraints to be
imposed on its coefficients ξ. This results in a non-centrally
symmetric convex polytope.

Definition 4.2: A set CZ ⊂ Rnx is a constrained zonotope
if there exist matrices G ∈ Rnx×ng , A ∈ Rnc×ng and vectors
c ∈ Rnx , b ∈ Rnc , where nc is the number of linear equality
constraints, such that CZ = {c+Gξ | ||ξ||∞ ≤ 1, Aξ = b}.

The constrained zonotope is represented in its constrained
generator form and, in short, denoted as CZ = {c, G,A, b}.

The hybrid zonotope extends the notion of the constrained
zonotope by restricting the coefficients of some generators to
lie only on the edges of the unit hypercube. These generators
are called the binary generators of the HZ . This can create
gaps in the set due to the absence of entries from the

2✓: Set representation closed under the operation, ✗: Set representation
not closed under the operation
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TABLE II: Corresponding operation for the LTL syntax

LTL Set Operation for TLT Construction
p ∈ P HZp∈P = {s ∈ P}
true HZ = {s ∈ S}
¬ϕ HZ = compl(CZ), [13, eq. (16)]

ϕ1 ∧ ϕ2 HZϕ1∧ϕ2 = inters(HZϕ1 ,HZϕ2 ), [12, eq. (8)]
ϕ1 ∨ ϕ2 HZϕ1∨ϕ2

= union(HZϕ1
,HZϕ2

), [13, eq. (4)]
ϕ1Uϕ2 HZϕ1Uϕ2

= R(HZϕ1
,HZϕ2

)
ϕ1Wϕ2 HZϕ1Wϕ2

= union(RCI(HZϕ1
),HZϕ2

)
♢ϕ = trueUϕ HZ trueUϕ = R(S,HZϕ)
□ϕ = ϕWfalse HZϕWfalse = RCI(HZϕ)

⃝ϕ HZ⃝ϕ = P(S,HZϕ)

remaining coefficients in the range (−1, 1). Intuitively, a HZ
is equivalent to the union of 2nb constrained zonotopes [12],
where nb is the number of binary generators of the HZ .

Definition 4.3: A set HZ ⊂ Rnx is a hybrid zonotope
if there exist matrices Gc ∈ Rnx×ng , Gb ∈ Rnx×nb , Ac ∈
Rnc×ng , Ab ∈ Rnc×nb and vectors c ∈ Rnx , b ∈ Rnc such
that

HZ =

ß [
Gc Gb

] ïξc
ξb

ò
+ c

∣∣∣∣ ïξcξbò ∈ Bng
∞ × {−1, 1}nb ,

[
Ac Ab

] ïξc
ξb

ò
= b

™
.

(8)
The hybrid zonotope is represented in its hybrid con-
strained generator form and is, in short, denoted as HZ =
{c, Gc, Gb, Ac, Ab, b}.

B. TLT Construction

Now, it is time to show how one can use the HZ to
verify whether an LTL specification can be satisfied. We
start by defining an LTL formula whose feasibility we want
to verify. Then we obtain its PNF and define an HZ for
each of its atomic propositions such that it consists all the
states that satisfy that particular atomic proposition. Then,
we inductively construct each sub-TLT corresponding to
a temporal or logical operation. Starting with the logical
Or and And operations, the construction of their TLTs
requires the computation of the union and the intersection
of two HZs respectively. Meanwhile, the construction of
a TLT for the Until and Weak-Until operators requires the
computation of unions, backward reachable sets, as well as
robust controlled invariant (RCI) sets for the latter operation.
As shown in [2], the computation of an RCI is a series
of predecessor and intersection set operations. Following
Table II, the TLT for any LTL formula can be constructed. In
Table II, HZϕ is the computed set for satisfying sub-formula
ϕ and RCI(ϕ) = ∩∞

i=0R(S,HZϕ).
To compute the operations for Table II, we need to

compute the BRS for system (1) using HZs. Since we
are dealing with discrete-time linear dynamics, we can use
the following formula the formula developed in [14] for
computing the predecessor set (3):

The predecessor set from a target set T =
{ct, Gc

t , G
b
t , A

c
t , A

b
t , bt} ⊆ Rnx from the augmented

Algorithm 1 Constructing TLT using HZ
1: Input: φN ▷ LTL specification
2: Ŝ = {cs, Gc

s, G
b
s, A

c
s, A

b
s, bs}, ▷ Augm. State Space

3: P1 = {ct, Gc
t , G

b
t , A

c
t , A

b
t , bt}, ▷ Target Space

4: D = [A B], ▷ System Dynamics
5: Output: R(Ŝ,P1) ▷ Root Set Node
6: Process:
7: R(Ŝ,P1)← P1 ▷ Init BRS
8: Pre← P1 ▷ Init Predecessor Set
9: while True do

10: Pre← P(Ŝ, P re) ▷ Predecessor Set
11: if Pre ⊆ R(Ŝ,P1) then
12: break
13: end if
14: R(Ŝ,P1)←R(Ŝ,P1) ∪ Pre
15: end while

state space Ŝ = {cs, Gc
s, G

b
s, A

c
s, A

b
s, bs} ⊆ Rnx+nu is

defined as B = {cb, Gc
b, G

b
b, A

c
b, A

b
b, bb}, where

Gc
b =

[
Gc

s[1 : nx, :] 0
]
, Ac

b =

 Ac
s 0
0 Ac

t

[A B]Gc
s −Gc

t

 ,

Gb
b =

[
Gb

s[1 : nx, :] 0
]
, Ab

b =

 Ab
s 0
0 Ab

t

[A B]Gb
s −Gb

t

 ,

cb = cs[1 : nx, :], bb =

 bs
bt

ct − [A B]cs

 .

(9)

While a linear model oversimplifies a system’s dynamics,
it can be avoided in practice. To do so, we define the state
space as an HZ , which allows us to set boundaries, as the
HZ is the collection of multiple constrained zonotopes that
are, by definition, bounded. Therefore, if we consider for
example a vehicle, its velocity can be restricted as needed in
different regions. This will allow us to emulate the behaviour
of a piecewise-linear model.

A notable characteristic of this approach is how it restricts
the BRS within the state space. Typically, the computation of
reachable sets utilizing the commonly known formulas in [2,
Chapter 11] for the successor and predecessor sets includes
computing all possible combinations of next or previous
states and then intersect those with the state space to ensure
that the reachable set is always contained within the state
space. Formula (9), directly integrates this behavior within
it, and there is no need for any additional computations to
achieve that.

Example 4.1: For a more intuitive understanding consider
the portion φN = (trueU p1) of the LTL (7). A high-level
description of using this approach to construct this specific
TLT is laid out in Algorithm 1.

The algorithm takes as input the LTL, the augmented
state space, the target space, as well as the linear system’s
dynamics and outputs the root set node of the TLT, which in
this case is the infinite horizon BRS. The hybrid zonotopes Ŝ
and P1 in this case correspond to the set of states satisfying
the true and p1 atomic propositions respectively. The core of
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the algorithm involves the computation of this infinite hori-
zon BRS starting from the target set. The process involves
computing and combining predecessor sets of predecessor
sets originating from the target P1 until it finally converges
(no new states are added), which means the infinite horizon
BRS has been computed. Finally, as shown in [4], the
successful construction of the TLT tells which states can
satisfy the specification.

V. SIMULATED PARKING SCENARIO

A parking mission typically entails the navigation of
vehicles within non-trivial environments, often resulting in
non-convex and disjoint sets. Since our work focuses on
demonstrating the method’s capability to effectively address
such spatial complexities, the parking scenario is a fitting
case study to demonstrate this work.

A. Vehicle Model

We define the following a discrete-time linear dynamics
model to describe the behavior of a vehicle

xt+1 =


1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

A


x
y
vx
vy


︸ ︷︷ ︸

xt

+


0 0
0 0
dt 0
0 dt


︸ ︷︷ ︸

B

ï
ax
ay

ò
︸︷︷︸
ut

.
(10)

The state vector describes the vehicle’s position and veloc-
ity in the x−y plane, while the input vector is its acceleration.
For this work we use a sampling time of dt = 0.1s.

B. Parking Environment

All simulations in this work are conducted within the
environment in Figure 3. The linear model in (10) does not
capture the the vehicle’s orientation and velocity constraints.
To compensate for that, one can encode such information
within the state and input spaces themselves.

Consider, for example, the top and bottom horizontal
lanes in a sub-figure of Figure 3; the velocity and accel-
eration constraints, as well as the traffic direction rules,
can be described by augmenting the state space with
the input space as x̂k =

[
xT

k uT
k

]T
and then using

the following HZ = {0, Gc, Gb,0,0,0}, where Gc =
diag(1.4, 0.05, 0.5, 1, 0.1, 0.1), Gb = [0 0.9 0.5 0 0 0]T .

The continuous generators of the HZ form a hyperrectan-
gle whose size in each dimension is double the corresponding
diagonal element. In other words, a road lane with a size of
(2.8 × 0.1)m2 is formed. In that road section the velocities
vx, vy are constrained in ([−0.5, 0.5], [−1.0, 1.0]) m/s
respectively, and the acceleration in [−0.1, 0.1] m/s2. To
duplicate this road as well as adjust its position and velocity
parameters we use its binary generators. Since there is one
binary generator, the HZ is equivalent to the union of these
two constrained zonotopes CZ1 = {Gb, Gc,0,0}, CZ2 =
{−Gb, G2,0,0}.

Each constrained zonotope represents one of the two
horizontal lanes and forces the vehicle to abide by the
traffic direction rules. Following similar reasoning, the rest

of the augmented state space can be defined and collectively
described using a single HZ and is denoted as Ŝ.

C. Constructing the TLTs

The case study considered in this work is to provide
guarantees for an autonomous vehicle parking task. This
mission was introduced in Example 2.1. Following that
example, the resulting LTL specification is restated here.

φ = (♢p1) ∨ (♢p2) ∨ (♢p3) ∨ (♢p4) ∨ (♢p5),

pi = {x ∈ S|x ∈ Pi}, i = {1, 2, ..., 5}.
(11)

An equivalent TLT capturing the formula (11) is shown in
Figure 2. The construction of this TLT requires the compu-
tation of BRSs, as well as their union. Starting with a single
branch for parking spot Pi, R(S,Pi) needs to be computed
in order to find all (x, y, vx, vy) states for which the vehicle
can reach that parking spot. Using equation (9), we need to
augment the state space to include the car’s acceleration and
thus use the augmented state space Ŝ instead.

Given that the environment is static, the state space can
be directly defined such that it only contains the roads
and excludes any obstacles. In addition, to account for the
vehicle’s dimensionality, the state space is conservatively
shrunk towards the center of each lane, as the reachable set
computations assume a point mass object.

VI. RESULTS

To assess the effectiveness of the combination of HZ
reachability analysis and temporal logic, we now proceed
to compute one by one all the set nodes of Figure 2.

Starting with the set nodes P1−5 := {P1,P2, ...,P5},
these represent the targets of our LTL; that is
the five available parking spots. The set nodes
R(S,P1),R(S,P2), ...,R(S,P5) correspond to the BRS
for each available parking spot and can be computed
independently from each other in parallel to immediately
generate the root set node of the tree.

The evolution of the computation of the root node is shown
in Figure 3. There, we see its evolution in increments of
30 steps starting from the original target sets in Figure 3a
until the set finally converges after 150 steps to the one
shown in Figure 3f. For visualization purposes, the blue curve
designates all positions (x, y) for which there is at least one
velocity state that can satisfy the goal.

Right from the first time instance, we see how the HZ
is capable of handling the five disjoint target sets simultane-
ously. The ability of the HZ to handle complex geometric
representations is further verified during the next instances,
where, for example, Figure 3b shows how the BRS, starting
from the fourth parking spot, splits into two distinct paths.
Then, we see how they all merge and grow together to cover
the rest of the space. As expected, the final BRS covers the
entire state space, aside the two exits of the parking lot, as a
car is not allowed to move opposite to the traffic direction.

Earlier, we claimed that the simplicity of the dynamics
model is not necessarily of great significance in describing
complex tasks because the computation of BRSs using

583



(a) R(S,P1−5, t = 0) (b) R(S,P1−5, t = 30) (c) R(S,P1−5, t = 60)

(d) R(S,P1−5, t = 90) (e) R(S,P1−5, t = 120) (f) R(S,P1−5, t = 150)

Fig. 3: Evolution of BRS from parking spots

HZs allows us to capture the input space information by
augmenting the state space and thus enforcing the speed limit
and traffic direction rules. This claim is indeed supported
by the results since the evolution of the BRS always goes
against the traffic direction, which is expected since we are
computing a BRS and propagating backwards in time.

Sample computational times for the construction of the
TLT both for the 4D and also for a simplified 2D version are
in the range of 8.56s and 3.94s, respectively. These results
serve as a preliminary indication of the efficiency potential
of HZs.

VII. CONCLUSION
Ensuring the safety of autonomous vehicles throughout

their entire operation poses a challenging yet vital task that
requires our attention. In this work, we have shown how
LTL can be used to formally specify parking and navigation
missions in dynamic environments and how one might use
HZ reachability analysis to guarantee safety during these
missions.

Although most works employing zonotope reachability
analysis use them for their notable computational efficiency,
few works address non-trivial spaces. This higher level of
complexity in the problem is enabled through the use of
temporal logic formalism, and the use of HZs allows us to
accelerate the computation of the reachable sets.

Extensions of this work include applying this method to
more abstract goals, such as high-level planning in smart
cities, and exploiting the hybrid nature of this work through
distributed system problems. Other interesting avenues are
the extension of this approach to deal with dynamic environ-
ments and temporal tasks utilizing the potential of HZs for
an online solution. Finally, it is important to perform formal
control synthesis using the computed TLT in this work.
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