
Carbon-Aware Computing in a Network of Data Centers:
A Hierarchical Game-Theoretic Approach

Enno Breukelman1, Sophie Hall2, Giuseppe Belgioioso2, and Florian Dörfler2

Abstract— Over the past decade, the continuous surge in
cloud computing demand has intensified data center workloads,
leading to significant carbon emissions and driving the need for
improving their efficiency and sustainability. This paper focuses
on the optimal allocation problem of batch compute loads with
temporal and spatial flexibility across a global network of data
centers. We propose a bilevel game-theoretic solution approach
that captures the inherent hierarchical relationship between
supervisory control objectives, such as carbon reduction and
peak shaving, and operational objectives, such as priority-
aware scheduling. Numerical simulations with real carbon
intensity data demonstrate that the proposed approach success-
fully reduces carbon emissions while simultaneously ensuring
operational reliability and priority-aware scheduling.

I. INTRODUCTION

Between 2010 and 2020, the global compute load on data
centers (DCs) has increased more than 9 times [1]. As a
consequence, the number of hyper-scale DCs has doubled
between 2015 and 2021, reaching 700 installed facilities
worldwide [2]. For their operation, DCs require a significant
supply of electricity from the grid, about 1-1.5% of the
global electricity demand in 2022, corresponding to 230-
340 TWh [3]. Unfortunately, the electricity they run on is
still coming from predominantly carbon-intensive sources.
Incorporating more renewable energy into the electricity mix
is challenging due to supply variability, which depends on
both time of day and geographical location. Remarkably, a
large share of the global compute load is not time-sensitive,
allowing a delayed execution, nor bound to a specific DC,
allowing it to be executed at a different DC. Therefore,
various compute-demand management and real-time routing
mechanisms exploit this flexibility to mitigate the carbon
impact and provide ancillary services to the power grid.

Most of the existing work focuses on real-time routing
of temporally inflexible compute jobs [4], such as on-
demand services and search engine requests. Furthermore,
loads with either spatial or temporal flexibility [5], [6] are
considered, but rarely the combination of both. Compute jobs
are also mostly considered part of an aggregate compute
load, which does not differentiate between individual jobs

1Enno Breukelman is with the KTH Royal Institute of Technology,
School of Electrical Engineering and Computer Science, Division of Deci-
sion and Control Systems, Malvinas väg 10, SE-100 44 Stockholm, Sweden.
cebre@kth.se

2Sophie Hall, Giuseppe Belgioioso, and Florian Dörfler are with the Au-
tomatic Control Laboratory, Department of Electrical Engineering and Infor-
mation Technology, ETH Zurich, Physikstrasse 3, 8092 Zürich, Switzerland.
{gbelgioioso, shall, dorfler}@ethz.ch

This work is supported by the SNSF via NCCR Automation (Grant
Number 180545).

[7]. Typical objectives considered by these allocation mecha-
nisms include reducing monetary expenses, carbon taxes [8],
[4], carbon emissions [9], and inducing peak shaving [5],
[10]. Additional modeling features investigated in existing
research include: (i) the interaction with electricity utilities
and generators, [11], [5], (ii) more detailed power modeling
of the DC facilities [12], and (iii) the geographical location
and load migration among a network of DCs [13].

Within this large body of literature, the carbon-aware com-
puting platform proposed in [14] stands out as it is currently
implemented by Google to operate its inter-continental fleet
of DCs. Google uses carbon intensity forecasts, and predicts
future compute demand for their DCs. This information is
used to generate so-called Virtual Capacity Curves (VCCs),
which limit the hourly resource of their DCs in the fleet
such that temporally flexible compute load is pushed to less
carbon-intense hours. Thus, by harnessing the compute load
predictions, they can minimize carbon emissions.

In this paper, we design a novel day-ahead scheduling
mechanism to allocate batch compute jobs over an intercon-
nected fleet of DCs, inspired by Google’s carbon-intelligent
platform in [14]. The approach in [14] is scheduler-agnostic,
meaning VCCs are computed independently of the actual
compute job schedule. In contrast, we co-design the VCCs
and compute job allocation using a hierarchical game-
theoretic approach that distinguishes between separate indi-
vidual compute jobs. Additionally, our mechanism considers
not only temporal shifting but also spatial migration.

The contributions of this paper are threefold. Firstly, we
formalize the optimal allocation problem of compute jobs
with spatial and temporal flexibility, over a network of DCs
as a single-leader multiple-follower Stackelberg game. At
the lower level, the owners of compute jobs compete for
the computational resources in the DC network to process
their jobs as soon as possible. At the upper level, the
DC operator generates the virtual capacities to induce a
competitive allocation that reduces carbon emissions and
induces peak shaving. Thirdly, we derive an efficient ad-
hoc algorithm to solve the resulting large-scale Stackelberg
game by adapting the method proposed in [15], which begs
similarities to the approach of solving a Stackelberg game in
[16]. Finally, we numerically validate the proposed allocation
mechanism using real carbon intensity data for a selection
of Google’s DC locations.

Our numerical findings show that temporally shifting
and spatially migrating flexible compute jobs significantly
reduce carbon emissions. In contrast to scheduler-agnostic
approaches, co-designing the VCCs can improve the homo-

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 798



geneity of waiting times in the job schedule.
Notation: R, R≥0, R>0 denote the set of real, nonnega-

tive real, and positive real numbers, respectively. Given N
scalars a1, . . . , aN , diag(a1, . . . , aN ) denotes the diagonal
matrix with a1, . . . , aN on the main diagonal. Given N
column vectors x1, . . . , xN ∈ Rn, x = col(x1, . . . , xN ) =

[x⊤1 , . . . , x
⊤
N ]

⊤ denotes their vertical concatenation. The Eu-
clidean projection onto the set X is denoted as PX [·]. The
partial derivative of a function f with respect to its i-th ar-

gument is denoted as: ∇if(x1, . . . , xn) =
∂f(x1, . . . , xn)

∂xi
.

II. PROBLEM STATEMENT

We consider a set I := {1, . . . , I} of batch compute jobs
to allocate across a fleet of DCs D := {1, . . . , D}, over a
planning horizon T := {1, . . . , T}. Each batch job i ∈ I is
uploaded by a customer, or team, at an initial location di ∈
D, at which the data required for the computation is assumed
to be physically stored. Each batch job is characterized by
a predicted compute volume vi and a priority parameter
τ i, describing its time urgency. The DCs are physically
interconnected via a fiber network that allows compute jobs
to be transferred across the fleet. This network is modeled via
a weighted graph G := G(D, E), where the vertices are the
DCs, and the edges are the fiber connections ek,ℓ ∈ E directly
connecting neighboring DCs k, ℓ ∈ D. The weights of the
edges encode the price of migrating the data, established by
the internet service providers for using their routers.

A. Team’s allocation game

Each team shall choose the allocation of their batch job
i ∈ I, represented by the vector yi = col(yi1, . . . , y

i
D), whose

entries yid,t ∈ R≥0 describe the share of the compute volume
vi allocated to DC d ∈ D at time t ∈ T . In other words,
yi determines where and when to reserve DC capacities to
execute compute job i. The allocation chosen by each team
must satisfy various operational constraints. Intuitively, it
must cover the total compute volume vi, yielding∑

t∈T

∑
d∈D

yid,t = vi, ∀i ∈ I. (1)

A job i ∈ I may be transferred from its initial DC di, to
any alternative DC j ∈ D via a predetermined shortest path
ωi,j over the fiber-optic network G. This path is uniquely
identified and computed in advance, to ensure minimal transit
time and resource usage, and consists of a sequence of fiber
connections e ∈ E . In Fig. 1, we illustrate an example of the
considered setup, where the path ω1,3 = (e1,2, e2,3) uses the
fiber connections e1,2 and e2,3.

Any migrated share of vi appears in a migration variable
zi = col(zi1, . . . , z

i
D), whose entries zij,t ∈ R≥0 describe how

much predicted load is migrated from di to DC j ∈ D at
time step t ∈ T , over the path ωi,j . The entry zii,t describes
the queue of unprocessed compute volume at this DC. Since
there is no migration before the first time step, there are T−1
migration steps. The share of a predicted compute volume vi

Team 1

Compute facility
(Data Center)

Team 2

Team 3

Optical fiber connection
e4,1 ∈ E

Virtual connection line
w1,3 = (e1,2, e2,3)

d1

d2d3

d4

Fig. 1. DC network featuring 4 DC locations interconnected by physical
connection lines (solid line). A job migration between DC 1 and DC 3 is
realized via a path through the fiber network. Right: Teams are associated
with a DC location, where they initially submit their compute jobs.

executed at a DC other than the initial di, i.e., d ∈ D\{di},
must be migrated in the time step before

yid,t+1 = zid,t,

∀i ∈ I, ∀d ∈ D \ {di}, ∀t ∈ T \ {T}.
(2)

Any share of a compute job vi, that has not yet been
computed at the initial DC di or migrated to another DC
zij ̸=i,ℓ is stored in the queue for the next time step zii,t

vi −
t∑

ℓ=1

yidi,ℓ +

D∑
j=1,j ̸=i

zij,ℓ

 = zii,t,

∀i ∈ I, ∀t ∈ T \ {T}.

(3)

Finally, the total amount of compute job volume allocable
at each DC d ∈ D is limited by∑

i∈I
yid,t ≤ xd,t, ∀d ∈ D, ∀t ∈ T , (4)

where xd,t is a virtual capacity, set by the DC operator. These
virtual capacities, considered over the complete planning
horizon and all DCs in the network, constitute the VCCs.

Let yi = col(yi, zi) denote the stacked vector of the
local decision variables (namely, allocation and migration)
of team i. All local operational constraints (1)–(4) can be
compactly represented via the set-valued mapping

Yi(x,y−i) :=
{
(yi, zi) | (1)− (4) hold

}
, (5)

which depends on the VCCs x = col(x1, . . . xD) viewed as
parameters, as well as the allocations of the other compute
jobs y−i = col(y1, . . . ,yi−1,yi+1, . . . ,yI).

The objective of each team is to choose an allocation that
minimizes execution time, migration cost, and deviation from
a pre-determined allocation profile ŷi, formulated as

J i(yi) =
∑
t∈T

∑
d∈D

τ ityid,t + zid,t

 ∑
e∈ωi,d

σi
e


+ 1

2ϵ∥yi − ŷi∥2.

(6)

The first term in (6) penalizes allocating compute jobs
incrementally with the time steps and depends on the priority
parameter τ it = τ ilt, where lt = t/T is a time-dependent

799



weight that penalizes delayed allocations. The second term
in (6) penalizes the migration of compute jobs, as transferring
data over the network comes with a time penalty for each
team. Therein, the total price of migration is the sum of all
the prices at each fiber connection σi

e = τ iσe, multiplied by
the priority parameter to further penalize migrations of urgent
compute jobs. The quadratic terms penalize the deviation
from a predefined allocation and migration ŷi = col(ŷi, ẑi).

Overall, each team solves the following optimization prob-
lem to find their optimal allocation

(∀i ∈ I) : min
yi

J i(yi) s.t. yi ∈ Yi(x,y−i). (7)

The collection of these inter-dependent optimization prob-
lems constitutes a generalized game [17], parametric in x,
the VCCs. Note that the other teams’ allocations y−i enter
the local constraints in (7) due to the resource constraint
(4), rendering the game a generalized game. Furthermore,
with the teams’ objectives in (6) being decoupled, this game
structure corresponds to an exact potential game [18].

A meaningful solution concept for (7) is the Generalized
Nash Equilibrium (GNE), which is a set of allocations
ȳ = (ȳ1, . . . , ȳI) that simultaneously solve the optimization
problems in (7). Here, we focus on the special subclass
of variational GNEs (v-GNEs) due to their computational
tractability and economic fairness [17]. This subclass of
equilibria corresponds to the solution set of the parameterised
variational inequality VI(F,Y(x)), namely, the problem of
finding a vector ȳ such that

⟨F (ȳ), (y − ȳ)⟩ ≥ 0, ∀y ∈ Y(x), (8)

where, F (y) := col({∇Ji(yi)}i∈I) is the pseudo-gradient
mapping of the game (7), and Y(x) collects the operational
constraints (5) and depends explicitly on the VCCs x. We
denote by y⋆(·) the parameter-to-solution mapping that,
given the VCCs x, returns the set of solutions y⋆(x) to the VI
in (8), namely, a set of strategically-stable allocations. It can
be shown that y⋆(x) is single-valued for any x that makes
(8) feasible, meaning that the allocation game has a unique
solution for given VCCs, as the pseudo-gradient mapping F
is strongly monotone.

B. Supervisory Objectives

The DC operator can influence the outcome of the al-
location game (7) by manipulating the virtual capacities
xd,t ∈ R≥0, limiting the total load at each DC and in each
time step. As for the allocations, also the VCCs must satisfy
a series of operational constraints. Firstly, the total available
capacity defined by the VCCs must accommodate the total
compute demand, yielding∑

d∈D

∑
t∈T

xd,t ≥
∑
i∈I

vi. (9)

Additionally, the VCCs cannot exceed the physical compu-
tational capacity of the DCs, yielding

0 ≤ xd,t ≤ xmax
d,t , ∀d ∈ D, t ∈ T , (10)

1 2 3 4 5
Time steps

C
ap

ac
it

y

xmax
d

xd,t

inflexible load

xmax
d,t

job 1

job 2

Fig. 2. An example of sequential allocation of two compute jobs y1 and
y2 on a data center d ∈ D, where job 1 is of higher priority than job
2. The virtual capacity curve (red dashed line) limits the allocable load at
each time slot. The maximum capacity of the DC xmax

d,t (solid black line)
is obtained by subtracting the inflexible load from the maximum capacity
of that DC xmax

d (dashed black line).

where the maximum capacity is denoted by xmax
d,t . This value

is obtained by subtracting the inflexible demand, which we
cannot shift or migrate but assume to be forecast perfectly,
from the physical capacity xmax

d . Fig. 2 displays an exem-
plary job schedule for two jobs y1 and y2, with the VCC
xd,t as their upper bound and physical constraint xmax

d . The
operational constraints on the DC operator’s decision are
compactly represented via

X :=
{
x | (9), (10) hold

}
. (11)

The DC operator utilizes its influence on the teams’
allocations to reduce the carbon impact and peak usage of the
DCs. This goal is modeled by the multi-objective function

ϕ(x,y) = ϕcarb(y) + ϕpeak(y) + ξϕmigr(y). (12)

The term ϕcarb penalizes carbon emissions and is defined as

ϕcarb(y) =
∑
d∈D

∑
t∈T

ρcarb
d,t

(∑
i∈I

yid,t

)
, (13)

where ρcarb
d,t is the carbon intensity of the supplied power at

DC d and time step t, modeling the carbon impact of utilizing
computing power in a linear relationship, as it is done in [7],
[19]. The second term ϕpeak penalizes peak usage of DCs
computational resources per time step and is defined as

ϕpeak(y) =
∑
d∈D

(∑
t∈T

(∑
i∈I

yid,t

)p)1/p

, (14)

for some p ∈ N large enough to approximate the infinity
norm. The third term penalizes the aggregate migration of
compute jobs and is defined as

ϕmigr(y) =
∑
i∈I

∑
t∈T

∑
d∈D

zid,t

 ∑
e∈ωi,d

σi
e

 . (15)

This last term is necessary to reduce network traffic from the
DC operator’s perspective, as the DC operator is responsible
for paying network routing fees to internet service providers.
Finally, the parameter ξ ≥ 0 in (12) regulates the impact of
migration on the final allocation. In contrast to an exclusively

800



monetary objective, the multi-objective in (12) addresses
sustainability aspects directly.

Overall, the DC operator aims to solve the following
single-leader multiple-follower Stackelberg game

min
x,y

ϕ(x,y) (16a)

s.t. x ∈ X (16b)
⟨F (y), (y′ − y)⟩ ≥ 0, ∀y′ ∈ Y(x). (16c)

III. BILEVEL GAME SOLUTION APPROACH

We solve (16) using a customized version of a first-order
algorithm named BIG Hype, recently proposed in [15].

A. A Hyper-gradient based algorithm

The first-order algorithm in [15] is based on the idea of
substituting the equilibrium constraints (16c) into the objec-
tive function (16a), by exploiting the solution mapping y⋆(·)
and the fact that solutions to (8) are unique. The resulting
non-convex non-smooth optimization problem reads as

min
x

ϕ(x,y⋆(x)) =: ϕe(x)

s.t. x ∈ X .
(17)

Then, a local solution to (17) is obtained by relying on pro-
jected “gradient” descent. Whenever y⋆(x) is differentiable
at x, one can obtain a gradient by applying the chain rule1

∇ϕe(x) = ∇1ϕ(x,y⋆(x)) + Jy⋆(x)
⊤∇2ϕ(x,y⋆(x)),

(18)

where Jy⋆(x) is the Jacobian of the solution mapping y⋆(·)
at x, commonly known as the sensitivity.

The proposed algorithm is summarized in Algorithm 1
and consists of three main steps. In step 1, the DC operator
uses the current estimates of the equilibrium and sensitiv-
ity to compute a hypergradient (18), and runs a projected
hypergradient descent step. Based on the new VCCs xk+1,
in step 2, the teams compute the resulting optimal allocation
y⋆(x

k+1) and subsequently, in step 3, its sensitivity Jy⋆(x).

Algorithm 1: Customized BIG Hype

Initialize x0 ∈ X , y0 ∈ Rny

≥0, s0 = 0 ∈ Rny×nx ,
k = 1, and {αk}k∈N

repeat until convergence
1. DC operator’s projected hypergradient step:
∇ϕke ← ∇1ϕ(x

k,yk) + (sk)⊤∇2ϕ(x
k,yk)

xk+1 ← PX [xk − αk∇ϕke ]
2. Equilibrium seeking step:

yk+1 ← y⋆(x
k+1)

3. Sensitivity computation step:
sk+1 ← Jy⋆(x

k+1)

Under the considered problem setup, the convergence of
Algorithm 1 to critical points of (17) follows by Theorem 2
in [15]. We omit the details here for the sake of brevity. In

1If not differentiable, the standard Jacobians are replaced by elements of
the conservative Jacobians. For detailed explanations and proofs, see [15].

the following subsections, we describe how to perform steps
2 and 3 of Algorithm 1 for the specific game setup in (7) in
a computationally efficient manner.

B. Equilibrium Seeking Step

To efficiently find a solution of the allocation game (7),
we consider the surrogate optimization problem

min
y

∑
i∈I

J i(yi) (19a)

s.t. y ∈ Y(x), (19b)

whose minimizer corresponds to the v-GNE of (7). The
individual objective functions (6) are decoupled, such that the
sum of all teams’ objectives constitutes the potential function
[18, p. 243], allowing us to rewrite (7) as (19). A formal
proof can also be obtained by comparing the Karush-Khun-
Tucker (KKT) conditions [20, Th. 4.8], but is omitted here
due to space limitations. The sum in (19a) can be written as

J(y) =
∑
i∈I

J i(yi) = q⊤y +
1

2
ϵ(y − ŷ)⊤(y − ŷ), (20)

while the collection of constraints (19b) can be expressed as

Y(x) = {y ∈ Rny |Ay = b,Gy ≤ h+Hx} . (21)

To improve the computational efficiency, we reduce the
problem size by eliminating variables, as outlined in [21,
Sec. 10.1.2]. We substitute y = FT ỹ+ y† into J(y), where
the transformation matrix FT consists of basis vectors of
the nullspace of A and y† is any solution to Ay† = b.
By choosing ŷ = y†, the objective reduces to J(ỹ) =
(FT q)

⊤ỹ + 1
2ϵỹ

⊤F⊤
T FT ỹ. The new optimization variable

ỹ is reduced in dimension by the number of rows in A, i.e.,
the number of equality constraints. Finally, the optimization
problem reads as follows

min
ỹ

∥FT ỹ + q/ϵ∥22
s.t. G̃ỹ ≤ h̃+Hx,

(22)

where q, G̃ = GFT , h̃ = h−Gy†, H depend on the problem
data. Problem (22) is an inequality-constrained quadratic
program (QP) with a convex objective, that can be efficiently
solved using off-the-shelf solvers.

C. Sensitivity Computation

The equilibrium sensitivity Jy⋆(x) corresponds to the
sensitivity of the solutions to the QP (22) with respect to
changes in x, which we compute using the approach in [22].
First, we find the total differentials of the KKT conditions
of (22), more specifically of the stationarity condition and
complementarity slackness at the optimal point

0 = G̃⊤dλ+ dỹ, (23)

0 = diag(dλ)(G̃ỹ⋆ − h̃−Hx) + diag(λ⋆)(G̃dỹ −Hdx),
(24)

with the Lagrange multipliers λ for the inequality constraints
and the differentials dλ, dỹ and dx. The columns of the
sensitivity matrix Jy⋆(x) are the solutions of dỹ when

801



replacing dx by the columns of the identity matrix. Math-
ematically, for each single constraint, the optimal solution
ỹ⋆ and the differential dλ do not influence dỹ and dx,
because either G̃ỹ⋆ − h̃ − Hx = 0 (active constraint), or
λ⋆ = 0 (inactive constraint), or both are zero. Intuitively,
since the DC operator’s decisions only influence the lower
level through the constraints, the sensitivity does not depend
on the teams’ objectives. Therefore, we only consider the
rows of G̃ and H which correspond to the active inequality
constraints and solve the following system of linear equations

G̃k,· dỹ −Hk,· dx = 0, ∀k with λ⋆,k > 0. (25)

IV. SIMULATION RESULTS
A. Simulation Setup

We consider a network of 12 DCs distributed over 4
continents, whose locations we source from Google’s fleet
of DCs [23]. We use real carbon intensity data for those
locations, obtained from Electricity Maps [24], which covers
24 hours with a sampling rate of 5 hours, starting on February
22nd, 2023, at 10 o’clock. The maximum computational
capacities xmax

d,t of the DCs vary due to inflexible loads that
fluctuate in a sinusoidal shape, similar to [25]. We set the
parameter for the quadratic penalty in the team’s objective
to a small value ϵ = 2 × 10−8, which means that teams
virtually have no preferred allocation, but only care about the
processing time and migration cost. The p-norm parameter
for the peak shaving cost in (14) is set to p = 6, a value
approximating the infinity norm while retaining numerical
stability. To improve the conditioning of the DC operator’s
cost function (12), we include the uniform term 1

21
⊤
nx
x, that

ensures that ∇1ϕ(x,y⋆(x)) is nonzero. Moreover, to ensure
the feasibility of the parametrized allocation game (7), at
each step of Algorithm 1, we impose the following: In the
first time step, the VCCs at each DC shall not exceed the
cumulative predicted load of all teams, that have their data
uploaded at this DC, i.e., xd,1 ≤

∑
{i∈I | d=di} v

i, for all
d ∈ D.

B. The Impact of Temporal Shifting & Spatial Migration
To analyze the impact of temporal shifting, we compare

our allocation mechanism with a naı̈ve algorithm that allo-
cates the compute jobs according to their priority, always
using the full available capacity xmax

d,t . We consider three
load scenarios, each characterized by different compute job
volumes: (a) large compute jobs that typically require more
than one time step at a DC location; (b) multiple small
compute jobs that can be processed during a single time step;
and (c) a mixture of large and small compute jobs. As shown
in Fig. 3, temporally shifting compute loads significantly
reduces carbon emissions, depending on the load scenario.

To investigate the impact of spatial migration on carbon
emissions, we modify the migration price ξ in the DC
operator’s objective function. A very large ξ corresponds to
disabling the migration of compute jobs. As shown in Fig. 4,
increasing ξ increases carbon emissions. This demonstrates
the potential to save carbon emissions that comes with
enabling spatial migration.

5

10

15

%
n

o
rm

a
li

ze
d

ca
rb

o
n

sa
v
in

g
s large vi small vi mixed vi

Fig. 3. Carbon emission savings
normalized by compute volume due
to time-shifting. Bilevel game vs,
naı̈ve approach (full capacity utiliza-
tion) in three scenarios.

migration weight ξ

0.5

0.6

0.7

n
o
rm

a
li
ze

d
ca

rb
o
n

em
is

si
o
n
s

large vi small vi mixed vi

Fig. 4. Carbon emissions, nor-
malized by compute volume, vs mi-
gration price ξ, for three scenarios.
The growth demonstrates a positive
impact of spatial migration.

C. Co-design vs. Sequential Optimization

In this case study, we compare our bilevel approach for
co-designing VCCs and allocations with a sequential opti-
mization approach, similar to the scheduler-agnostic scheme
used by Google [14]. The latter consists of two sequential
steps: In the first step, optimal VCCs are computed by solely
using a forecast of the compute load and carbon intensity.
In the second step, the teams find the optimal allocation
given the previously computed VCCs. In this sequential
approach, the DC operator must optimize over the worst-
case allocation scenarios, namely, the VCCs, rather than the
actual allocations. The sequential approach does not take the
migration of compute loads into account. Thus, the resulting
cost function of the DC operator reads as

ϕ̂(x) =
∑
d∈D

∑
t∈T

ρcarb
d,t xd,t +

∑
d∈D

(∑
t∈T

(xd,t)
p

)1/p

, (26)

where the actual
∑

i∈I y
i
d,t have been replaced by the VCCs

xd,t. Overall, this sequential optimization scheme reads as

Step 1: x̄ = argmin
x

ϕ̂(x), (27)

Step 2: y = y⋆(x̄). (28)

Further, we introduce the following two metrics to evaluate
the performance of the allocations:

1) allocation fairness: ψ
({
τ time,i(yi)/vi

}
i∈I

)
,

2) total waiting time:
∑

i∈I τ
time,i(yi),

where ψ(·) is the empirical standard deviation and τ time,i(yi)
denotes the time cost, i.e., the first linear term in (6). The
fairness criterion represents the heterogeneity of the waiting
times among the teams. In contrast, the second criterion is
the total wait time for all jobs, weighted by their time priority
parameter τ i.

In Fig. 5, we show the outcome of simulations with
varying migration prices to showcase the differences between
the bilevel game (16) and the sequential approach (28).
Generally, fairness and waiting time are improved when
co-designing VCCs and the compute job schedule. The
difference becomes even more apparent with higher values
of ξ, as this directly addresses the shortcoming of not
featuring migration in the sequential approach. However,
as demonstrated by the results in Fig. 6, the sequential

802



0 0.02 0.1 0.5 1 2

migration price ξ

0

20

40

%
(S

Q
-B

L
)/

B
L

allocation fairness

large vi

small vi

mixed vi

0 0.02 0.1 0.5 1 2

migration price ξ

0

10

total waiting time

Fig. 5. Fairness and total waiting time in a direct comparison between our
approach (BL) and sequential optimization (SQ). Sequential optimization
scores higher (worse) values in both, and the difference grows with
increasing migration price.

0 0.02 0.1 0.5 1 2

migration price ξ

−20

−10

0

%
(S

Q
-B

L
)/

B
L

carbon price

large vi

small vi

mixed vi

0 0.02 0.1 0.5 1 2

migration price ξ

−20

−10

0

peak price

Fig. 6. Carbon emissions and peak price in a direct comparison between our
approach (BL) and sequential optimization (SQ). SQ scores lower (better)
values in both for high migration prices in all three scenarios.

optimization approach scores lower carbon emissions and
better peak-shaving performance for large migration prices.

In summary, if we enable spatial shifting, the co-design
of VCCs and allocations allows us to perform similarly to
the sequential approach regarding decarbonization and peak-
shaving. Yet, co-design can lead to reduced and fairer waiting
times for the teams. This may incentivize users to participate
in the proposed coordination mechanism.

V. CONCLUSIONS

We modeled the problem of co-designing the allocation
of flexible batch compute jobs and virtual capacity curves
of DCs as a bilevel game. This formulation promotes the
supervisory control objectives of the DC operator and models
each team as a player competing for the computational
resources in the DCs. A local solution of the resulting
game is found by deploying the recently developed algorithm
[15], with some ad-hoc modifications that improve efficiency.
Simulation results show that allowing for spatial migration
and temporal shifting of compute jobs has a high potential to
reduce carbon emissions in the operation of DCs. Moreover,
compared with standard sequential optimization, our hierar-
chical approach can reduce the total waiting time of compute
jobs and improve the fairness of their allocation.

REFERENCES

[1] International Energy Agency, “Global trends in internet traffic, data
centres workloads and data centre energy use, 2010-2020, iea, paris,”
2020. [Online]. Available: https://t.ly/R5Gy

[2] Synergy Research Group, “Number of hyperscale data centers world-
wide from 2015 to 2021,” 2021.

[3] International Energy Agency, “Data centres and data transmission
networks,” 2023. [Online]. Available: https://t.ly/bmyWg

[4] A. Khosravi, L. L. H. Andrew, and R. Buyya, “Dynamic vm placement
method for minimizing energy and carbon cost in geographically
distributed cloud data centers,” IEEE Transactions on Sustainable
Computing, vol. 2, no. 2, pp. 183–196, 2017.

[5] Z. Liu, A. Wierman, Y. Chen, B. Razon, and N. Chen, “Data center
demand response: Avoiding the coincident peak via workload shifting
and local generation,” Performance Evaluation, vol. 70, no. 10, pp.
770–791, 2013.

[6] R. Rahmani, I. Moser, and A. L. Cricenti, “Inter-continental data
centre power load balancing for renewable energy maximisation,”
Electronics, vol. 11, no. 10, p. 1564, 2022.

[7] M. Xu and R. Buyya, “Managing renewable energy and carbon
footprint in multi-cloud computing environments,” Journal of Parallel
and Distributed Computing, vol. 135, pp. 191–202, 2020.

[8] N. Buchbinder, N. Jain, and I. Menache, “Online job-migration for
reducing the electricity bill in the cloud,” in Networking, 2011,
Conference Proceedings.

[9] J. Shuja, A. Gani, S. Shamshirband, R. W. Ahmad, and K. Bilal,
“Sustainable cloud data centers: A survey of enabling techniques and
technologies,” Renewable and Sustainable Energy Reviews, vol. 62,
pp. 195–214, 2016.

[10] M. Dabbagh, B. Hamdaoui, A. Rayes, and M. Guizani, “Shaving data
center power demand peaks through energy storage and workload
shifting control,” IEEE Transactions on Cloud Computing, vol. 7,
no. 4, pp. 1095–1108, 2019.

[11] M. T. Takcı, T. Gözel, and M. H. Hocaoğlu, “Quantitative evaluation of
data centers’ participation in demand side management,” IEEE Access,
vol. 9, pp. 14 883–14 896, 2021.

[12] A. Radovanovic, B. Chen, S. Talukdar, B. Roy, A. Duarte, and
M. Shahbazi, “Power modeling for effective datacenter planning and
compute management,” IEEE Transactions on Smart Grid, vol. 13,
no. 2, pp. 1611–1621, 2022.

[13] J. Doyle, R. Shorten, and D. O. Mahony, “Stratus: Load balancing
the cloud for carbon emissions control,” IEEE Transactions on Cloud
Computing, vol. 1, no. 1, pp. 1–1, 2013.

[14] A. Radovanović, R. Koningstein, I. Schneider, B. Chen, A. Duarte,
B. Roy, D. Xiao, M. Haridasan, P. Hung, N. Care, S. Talukdar,
E. Mullen, K. Smith, M. Cottman, and W. Cirne, “Carbon-Aware
Computing for Datacenters,” IEEE Transactions on Power Systems,
vol. 38, no. 2, pp. 1270–1280, Mar. 2023. [Online]. Available:
https://ieeexplore.ieee.org/document/9770383/

[15] P. D. Grontas, G. Belgioioso, C. Cenedese, M. Fochesato, J. Lygeros,
and F. Dörfler, “Big hype: Best intervention in games via distributed
hypergradient descent,” arXiv preprint arXiv:2303.01101, 2023.

[16] M. Maljkovic, G. Nilsson, and N. Geroliminis, “On finding the leader’s
strategy in quadratic aggregative stackelberg pricing games,” in 2023
European Control Conference (ECC), 2023, pp. 1–6.

[17] G. Belgioioso, P. Yi, S. Grammatico, and L. Pavel, “Distributed gen-
eralized Nash equilibrium seeking: An operator-theoretic perspective,”
IEEE Control Systems, vol. 42, no. 4, pp. 87–102, 2022.

[18] F. Facchinei, V. Piccialli, and M. Sciandrone, “Decomposition algo-
rithms for generalized potential games,” Computational Optimization
and Applications, vol. 50, no. 2, pp. 237–262, 2011.

[19] N. H. Tran, D. H. Tran, S. Ren, Z. Han, E. N. Huh, and C. S. Hong,
“How geo-distributed data centers do demand response: A game-
theoretic approach,” IEEE Transactions on Smart Grid, vol. 7, no. 2,
pp. 937–947, 2016.

[20] F. Facchinei and C. Kanzow, “Generalized Nash equilibrium prob-
lems,” Annals of Operations Research, vol. 175, no. 1, pp. 177–211,
2010.

[21] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[22] B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a
layer in neural networks,” in International Conference on Machine
Learning. PMLR, 2021, Conference Proceedings, pp. 136–145.

[23] Google, “Data center locations,” 2023. [Online]. Available: https:
//www.google.com/about/datacenters/locations/

[24] Electricity Maps, “Organising the world’s electricity data,” 2023.
[Online]. Available: https://www.electricitymaps.com

[25] N. Hogade, S. Pasricha, and H. J. Siegel, “Energy and network aware
workload management for geographically distributed data centers,”
IEEE Transactions on Sustainable Computing, vol. 7, no. 2, pp. 400–
413, 2022.

803


