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Abstract— Circadian rhythms strongly influence psychiatric
disorders such as dementia. The stability of circadian rhythms
is of high interest in medical research and practice, yet the
stability in the dynamic sense remains unexplored. In this study
we introduce a set of indicators based on stability analysis.
Actigraphy data collected from persons with dementia over
seven days, four months apart, is filtered, and then frequency-
based model fitting is performed, to which both pole-placement
and damping factor analysis is applied. Concurrently, a method
based on a multi-harmonic sine model is designed in collabora-
tion with clinical experts to obtain an at-a-glance visualization
of circadian rhythms. The method is scalable for multiresolution
applications. Results show the capabilities of dynamic stability
analysis based on actigraphy data.

Index Terms— stability analysis, real-world data, circadian
rhythm, actigraphy, dementia

I. INTRODUCTION

Psychiatric disorders are strongly influenced by circadian
rhythms [1]. Circadian rhythms are oscillations found in
essentially every physiological process in the human body
[2]. The suprachiasmaticus nucleus in the hypothalamus is
the controller that sets the timing of the rhythms by managing
temperature, neuronal and hormonal activity, also including
melatonin (night hormone) production. The rhythms manifest
as synchronized oscillations of activity and sleep-wake cycles
[2] of approximately 24 hours. Circadian rhythms are key
regulators of bodily functions such as thermogenesis, im-
mune function, metabolism, reproduction and cell cycles [3].
Circadian rhythms undergo changes throughout the lifespan:
the phase of the oscillation shifts from early morning during
childhood, to later during adolescence, before returning to
substantially earlier again in older adults [2]. This older
age shift is often accompanied by further weakening of the
circadian rhythms, decreased melatonin production, loss of
rhythmicity, poor entrainment to the solar day, and internal
desynchronization [4].

Dementia is a progressive syndrome most often caused by
neurodegenerative disorders and is characterized by cognitive
impairment interfering with daily living and presence of
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behavioral and psychological symptoms in dementia (BPSD)
such as sleep disturbances, anxiety, depression, delusions,
hallucinations and agitation [5]. In dementia, circadian
rhythms become less robust [6] and their dysregulation
potentiates BPSD, in particular agitation, sleep disturbances
and sundowning [7]. Various treatment approaches, e.g.,
chronotherapy [8], require reliable analysis of the circadian
rhythm for monitoring and to predict treatment effects.

The stability of circadian rhythms is a topic of high interest
in medical research [9], [10], [11], [12]. In this field, the
term stability refers to whether or not some characteristics
or measured biomarkers of circadian rhythms are constant,
most often the phase. Stability in the dynamic systems sense
remains unexplored. Thus, in this interdisciplinary study, we
perform circadian rhythm stability analysis for persons with
dementia using system-related tools to obtain an assessment
of the measured circadian rhythms and investigate a potential
predictor for future behavior.

Paper organization. First, the circadian rhythm problem
statement is discussed in section II, followed by a description
of the real world data and study protocol in section III.
In section IV we present the stability analysis for persons
with dementia using actigraphy data. Results are presented
in section V and conclusions in section VI.

II. CIRCADIAN RHYTHM: PROBLEM STATEMENT

Circadian rhythms are quantified in phase (the timing of
a reference point in the rhythm relative to a fixed event),
period, and magnitude (as the double of amplitude, measured
between the maximum and minimum of the wave), all
of which assume a sustained periodic rhythm [13]. The
gold standard biomarker for circadian phase is the dim-
light melatonin onset, i.e., the timepoint when melatonin
production rises in strict dim light conditions during the
evening [14]. This procedure requires hourly samples of
melatonin in blood, saliva or urine, while complying to a
strict protocol of light exposure, dietary intake and activity
[14]. This is not feasible for people with dementia and proxy
measures for circadian rhythms are employed, one of which
is the assessment of rest-activity rhythms with actigraphy
data [15]. An actigraph is a wrist-worn device which can
quantify movements over several days, usually equipped with
accelerometer, and rarely gyroscope or magnetometer.

Circadian rhythm analysis traditionally reduces the rhythm
to a single cosine wave, for which parameters such as the
mesor (wave vertical bias), amplitude and phase are extracted
(cosinor analysis [16]). Activity data seldom resemble a
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cosine wave, thus non parametric circadian rhythm anal-
ysis (NPCRA) utilizes statistical summaries, for instance:
interdaily stability (IS), intra-daily variability (IV), averages
of the least/most active five/ten hours (L5/L10), relative
amplitude between M10 and L5 (RA) [17], [18]. Our interest
is on IS = N ∑

p
h=1(X̄h − X̄)2(p∑

N
i=1(Xi − X̄)2)−1, which is

a misnomer, as it does not evaluate system stability in
the dynamics sense, and on IV = N ∑

N
i=2(Xi −Xi−1)

2((N −
1)∑

N
i=1(X̄ −Xi)

2)−1 (N number of data points, p data points
per day, X̄ mean of all data, X̄h hourly means, Xi individual
data points). These indicators were originally defined for
p= 24 and while studies attempted to modify them for larger
dataset sizes with varying reliability based on monitoring
period [19], they do not capture the temporal dimension.

Moreover, circadian rhythms are composed of more than
one harmonic (e.g., the sleep-wake cycle). For instance,
nighttime disturbances and daily activities are not accounted
for by the traditional indicators. For persons with dementia,
the ability to track activity changes that happen with shorter
periodicities is paramount for proper care.

Indicators with predictive properties are needed in demen-
tia research, and thus the dynamic properties of the system
(human body) must be considered, especially acknowledg-
ing that multiple dynamics can be involved in driving the
observable outcomes of circadian rhythms.

Thus, in this study, we explore the stability of the human
body as a system in a closed care loop, with day and
night movement levels as output, and for unknown inputs.
We therefore must consider an analysis based on frequency
response. At the same time, this method should produce indi-
cators that are easily understandable by clinicians and care-
givers with no or little systems and mathematics background;
thus, stability quantifiers must carry real-world significance
that can be described through lay terminology.

III. STUDY PROTOCOL: REAL WORLD DATA

Participants. In this analysis we use data collected during
the COSMOS study, a cluster-randomized controlled trial
(2014 to 2015) aiming to improve the quality of life of
nursing home (NH) patients. The study included 723 patients
from 67 NHs in Norway, with a median Mini-Mental State
Examination (MMSE) score of 11 points. The MMSE scale
assesses cognitive function impairment [20] on a 30-point
scale, with 0− 11 severe, 12− 17 moderate, 18− 23 mild,
and 24 − 30 none. Inclusion criteria: participants of ≥ 65
years living in the NH for at least 2 weeks. Patients with a
life-expectancy of < 4 weeks were excluded [21].

Ethics. The trial was approved by the Regional Com-
mittee for Medical and Health Research Ethics, West Nor-
way (REK 2013/1765) and registered at clinicaltrials.gov
(NCT02238652). Data availability statement: the data used
in this study is subject to restrictions and is available from
BSH upon reasonable request.

System structure. The COSMOS study implemented the
multicomponent complex intervention over 4 months, con-
sisting of communication, systematic assessment and treat-
ment of pain, medication review, organization of activities,

Fig. 1. System interpretation of the COSMOS intervention.

and safety. The control group received care as usual during
this time, while the intervention group received the COS-
MOS complex intervention as treatment. Both are systems
in closed loop (figure 1), where the COSMOS and the As-
Usual controllers are represented by the formal caregivers
deciding on the course of treatment or provided care; the two
controllers work on different time samples: daily-weekly-
monthly for the COSMOS treatment (depending on the
intervention component), while As-Usual might not change
the care command during the 4 months.

Measurements were collected twice, at the beginning of
the period (baseline) and at the end: clinical assessment
measures (full list in [22]) and 1-week continuous actigraphy.

Pain was assessed with the MOBID-2 Pain Scale [23]. The
scale has two parts: a) musculoskeletal pain via 5 actively
guided movements; b) another 5 items on pain from head,
skin, and internal organs. Each item is rated on a 1−10 point
scale, with 0 no pain and 10 the worst pain possible, which
are then combined by the rater into a total 1−10 pain score.
A total score ≥ 3 is considered clinically significant pain.

The Cohen-Mansfield Agitation Inventory (CMAI) is a
29-item instrument (range 29−203) rating the frequency of
manifested agitation and other behavioral disturbances [24].
CMAI items are defined on a 1− 7 point scale (1 never,
2 < 1/week, 3 1− 2 times/week, 4 several times/week, 5
1− 2 times/day, 6 several times/day, 7 several times/hour).
From the CMAI, we use the cumulative score on items 1−
5,7,9− 12,14,20− 21 representing: hitting, kicking, grab-
bing people, throwing things, scratching, hurting self/others,
tearing/destroying things, making physical sexual advances,
pacing and aimless wandering, trying to get to a different
place, repetitious mannerisms, and general restlessness.

Nighttime disturbances were assessed by the Neuropsy-
chiatric Inventory – Nursing Home version (NPI-NH) [25],
which measures the frequency and severity of 12 symptoms
defined over natural sets: frequency F ∈ {0, . . . ,4} (0 symp-
tom not present, 4 present daily); severity S ∈ {1,2,3} (1
mild symptom, 3 severe). The score for each symptom is
given by F×S ∈ {0, . . . ,12}. Scores F×S ≥ 4 are associated
with clinically significant symptoms.

Actigraphy data was collected using a Philips Actiwatch
Spectrum [26], which a wrist device equipped with a 3-
axis accelerometer. The measured acceleration is then scaled
into so-called “activity counts”, quantifying the amount of
movement of the wrist per minute via the sum of scaled
peak accelerations measured every 15 seconds.
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Fig. 2. Concept for stability analysis of circadian rhythms for persons with dementia using actigraphy data with at-a-glance-visualization design.

IV. STABILITY ANALYSIS FROM ACTIGRAPHY DATA

The analysis in this section concerns the stability of cir-
cadian rhythms for the person with dementia as described in
figure 1. From a systems point of view, the body of the person
with dementia as it responds to treatment, care, or other
social inputs, is a nonlinear system for which one single com-
prehensive model does not exist. However, the manifestation
of circadian rhythms as observable movement (measured
in this case by actigraphy) is, or can be approximated by,
a multi-harmonic sine wave. This behavior is particular to
second-order systems with complex conjugate poles. Thus,
we propose that the circadian rhythms of a person (dominant
cycle of 24 hour, or secondary cycles with periods smaller
than 24 hours) can be described by the position of conjugate
pole pairs: on the imaginary axis for optimal behavior of
periodicity at the so-called stability limit, shifted toward
the left-hand side plane for damping behavior, or toward
the right-hand side plane for driving behavior. Moreover, in
the bodies of persons with dementia changes are slow, with
dynamics spanning months, therefore it is plausible that 1-
week observations can be locally approximated with linear
system representations, which will describe the status of the
person during that period.

With these considerations, we propose that the 1-week
snapshot of the circadian rhythms can be approximated with
a zero-poles linear model. Let q be the number of circadian
rhythms to be analyzed. The proposed model is then:

G(s) =
sq + zq−1sq−1 + · · ·+ z0

sq + pq−1sq−1 + · · ·+ p0
, (1)

where the anticipatory component corresponds to the treat-
ment of the intervention or the care-as-usual routine.

For visualization, we propose a multi-harmonic sine model
based on the first h harmonics:

V (t) =
h

∑
i=1

ai sin(bit + ci). (2)

We arrived at this at-a-glance visualization in collaboration
with our clinician colleagues who provided feedback on
comprehensibility. In this study, the preferred multi-harmonic
models had h ∈ [q;2q], for q ≤ 12.

Figure 2 illustrates the concept for stability analysis of
circadian rhythms for persons with dementia using actigra-
phy data with at-a-glance-visualization design. The filtering
process aims to reduce the noise in the raw data caused by
very small hand movements. The frequency domain response
is chosen to account for all types of period inputs to the sys-
tem, which are mostly unknown and unmeasured (day/night
cycles, care routines, etc.). The calculation of periods from
natural frequencies ωn is necessary for comprehensibility
by clinicians. Damping factors correspond to a decrease
in rhythm amplitude, while driving factors to an increase.
The circadian rhythms stability classification is based on the
placement of conjugated pole pairs in relation to the imagi-
nary axis of the complex plane, while any |ζ |≥ 1 associated
with real poles represents a total loss of periodicity.

V. RESULTS AND DISCUSSION

Due to attrition, only 37 participants have a near-complete
dataset of outcome measures and actigraphy. For our analy-
sis, we selected 8 participants covering small and big changes
in BPSD, to serve as a proof-of-concept: 4 persons from the
intervention group and 4 from the control group.

We applied the procedure described in IV. All calculations
and visualizations are obtained in Matlab 2019a. Filtering is
Gaussian-weighted moving average (smoothdata function),
while fitting is performed with the tfest function in its default
configuration [27]. The model fitting for visualization is
based on trust-region reflective least squares (fit function).
In this study, we choose q = 6 and h = 8.

Figure 3 shows the frequency responses for all participants
as raw and filtered data, as well as the response of the fitted
models. The focus in this study is on low frequencies, which
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Fig. 3. Bode plots for system estimation results vs. the filtered and raw actigraphy data.

Fig. 4. Visualization of movement with multiple harmonic sine estimation.

the models fit well. The fitting percentages are between
15.47 − 86.39%. Interestingly, the fit percentages are on
average 39.72% for the intervention group and 74.47% for
the control group. At the same time, the higher frequency
movement is more present in the intervention group, which
is an effect of the multicomponent intervention, specifically
the daily and weekly care activities. This means that both
filtering and model fitting should be tailored based on the
amount of caregiver interactions and/or other social activities.

Figure 4 shows the result of the visualization with a
multi-harmonic 8-sine wave model. We arrived at this for-
mat through an iterative interdisciplinary design procedure
together with our clinician team members.

Fig. 5. Cumulative differences in traditional outcome measures vs. the
dampening/driving factors at month 0 and month 4.

Table I presents the outcome measures for all partici-
pants at both collection points (baseline M0 and after four
months M4), alongside all six poles of the identified models
(presented as three complex conjugated pairs, and in one
case two pairs and two first-order poles), the associated
damping/driving factors for each pair (and in one case for
each first-order behavior), and the first three or four dominant
periods of the circadian rhythm associated with each pair (in
one case for each first order behavior). Figure 5 shows the
differences M0−M4 between cumulative traditional outcome
measures and ζ for all participants: negative differences
signify worsening of symptoms, whereas negative ζ signifies
increase in oscillation amplitudes (and vice versa).

However, because the traditional measures are state de-
scriptors (status of symptom) and the system parameters such
as dampening/driving factors, poles, and periods are dynamic
descriptors (circadian rhythm changes over time), a correla-
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TABLE I
RESULTS OF THE CIRCADIAN RHYTHM STABILITY ANALYSIS VS. TRADITIONAL MEASUREMENT SCORES.

Person Group MMSE MOBID-2 CMAI NPI-NH Periods [hours] ζ Poles ·10−5

M0 M4 M0 M4 M0 M4 M0 M4 M0 M4 M0 M4

1 I 12 0 0 15 28 0 1
11.3
4.29
2.51

16.7
2.84
2.47

0.011
-0.012
0.013

-0.228
-0.247
0.052

-0.92 ± i 69.3
0.49 ± i 40.6
-0.18 ± i 15.3

-3.70 ± i 70.3
15.1 ± i 59.3
2.38 ± i 10.1

2 I 1 0 3 29 34 0 0
5.18
2.55
2.02

18.9
2.45
1.21

0.075
-0.012
-0.020

-0.217
0.019
0.018

1.78 ± i 86.2
0.85 ± i 68.2
-2.55 ± i 33.5

-2.66 ± i 143
-1.36 ± i 71.2
1.99 ± i 8.97

3 I 13 7 6 30 22 8 12
2.56
1.26
0.73

8.75
2.36
1.25

-0.001
0.005
0.013

0.209
0.030
-0.003

-3.08 ± i 236
-0.73 ± i 138
0.10 ± i 68

0.55 ± i 139
-2.25 ± i 73.8
-4.16 ± i 19.4

4 I 21 5 7 14 13 12 3
1.25
0.50
0.42

2.45
1.23
0.83

-0.001
0.001
-0.003

-0.009
-0.008
0.003

0.16 ± i 413
-0.49 ± i 343
0.27 ± i 138

-0.79 ± i 210
0.12 ± i 141
0.67 ± i 71.1

5 C 21 0 1 14 14 0 0
7.60
2.51
1.25

4.60
2.51
1.36

0.034
-0.007
0.006

0.077
0.014
-0.153

-0.95 ± i 138
0.50 ± i 69.5
-0.78 ± i 22.9

19.6 ± i 126
-0.99 ± i 69.4
-2.95 ± i 37.7

6 C 1 0 3 37 36 0 0
11.8
2.50
2.05

3.48
2.45

23.7 & 3.19

0.076
-0.002
-0.062

0.0004
-0.005

-1 & -1

5.34 ± i 84.8
0.18 ± i 69.8
-1.12 ± i 14.7

0.35 ± i 71
-0.02 ± i 50
7.35 & 54

7 C 7 1 4 22 24 0 0
6.40
3.22
2.51

40.5
2.52
1.26

-0.106
0.207
0.010

-0.489
0.010
0.020

-0.76 ± i 69.2
-11.2 ± i 52.9

2.9 ± i 27

-2.86 ± i 138
-0.69 ± i 69.2
2.1 ± i 3.75

8 C 16 3 3 23 22 9 4
12.6
5.14
2.50

5.68
2.52
1.55

0.414
0.0005
-0.009

-0.034
0.002
-0.015

0.68 ± i 69.6
-0.02 ± i 33.9
-5.71 ± i 12.5

1.77 ± i 112
-0.14 ± i 69
1.06 ± i 30.6

Note. Groups I intervention, C control; M0/M4 month 0/4. MMSE ∈ [0;30] (low score: impaired cognitive function); MOBID-2 ∈ [1;10] (high score:
high pain levels); selected CMAI ∈ [11;77] (high score: high agitation levels); nighttime disturbances NPI-NH ∈ [0;12] (high score: frequent, severe).

TABLE II
INTERDISCIPLINARY CLINICAL/SYSTEMS INTERPRETATION OF RESULTS OF THE CIRCADIAN RHYTHM STABILITY ANALYSIS VS. TRADITIONAL

MEASUREMENT SCORES, OVER A 4-MONTH PERIOD.

Pain Movement
agitation

Nighttime
disturbances Periods [hours] Dampening or driving

factors
Pole characteristics

and stability (real part)

1 no pain increase very slight
increase

1 large increases
2 small decrease

increase from 3 around 0
to 2 driving 20%

increase from 1 to 2 unstable
1 unstable becomes dominant

2 significant
increase increase none 1 increases significantly

2 small decrease
increase from 3 around 0

to 1 driving 20%
decrease from 2 to 1 unstable

with 1 stable larger in size

3 slight
decrease decrease increase 1 increases significantly

2 small decrease
increase from 3 around 0

to 1 dampening 20%
maintains 2 stable
all larger in size

4 increase none significant
decrease

all increase slightly
but remain small

all 3 maintain
around 0, slightly larger

maintains 2 unstable
small size variations

5 slight
increase none none 1 decreases (∼half)

2 remain small
increase from 3 around 0

to 1 dampening 15%
maintains 2 stable

1 unstable becomes dominant

6 significant
increase

approx.
constant none periodicity disrupted

by 2 first-order behaviors
increase in driving

to 100%
two unstable become real

losing periodicity

7 significant
increase

approx.
constant none 1 increases significantly

2 small decrease
1 driving increases to 50%

1 dampening increases to 20%
1 stable decreases significantly

maintains 1 unstable

8 constant approx.
constant decrease 2 decrease (∼half)

1 remains small
2 maintain around 0

1 dampening decreases 40% to 0
increase from 1 to 2 unstable

1 stable loses dominance

tion analysis between them is not suitable. Therefore, we
proceed to an interpretation of both outcome measure types
from the clinical and the systems perspectives. Thus, table II
shows the interpretation of the periods, dampening/driving
factors and pole configurations. The loss of periodicity is
validated against the interpretation of the traditional outcome
measures. For instance, participants 1 and 2 experience
increased agitation, reflected by the appearance of driving
factors in the M4 model compared to M0. Participant 4 expe-
riences increased pain but decreased nighttime disturbances,
reflected by the unstable poles. Participant 6 loses periodicity,
as shown by the visualization in figure 4.

When it comes to predicting the overall improvement or

deterioration of the health status based on the circadian
rhythms, the driving/dampening factors themselves, as well
as the positions of the poles, give an insight on how the
system response would evolve without changes in inputs
(e.g., treatment). We surmise these model parameters have
the potential to become predictors, but different data is
necessary for proof, collected over longer periods and from
complementary sensors (e.g., heart rate, temperature) in
addition to movement.

For all participants IS ∈ [0.0131;0.0644], with differences
between the M0 and M4 measurements of maximum 0.88%,
which does not properly reflect the changes in periodicity.
Similarly, IV ∈ [0.3716;0.8473], with the exception of one
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measurement (person 1, M4) which was 1.0733; according to
[18], values of IV< 1 correspond to healthy persons, which
is clearly not the case here, and thus IV does not suit our
focus population, i.e. persons with dementia.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we propose a circadian rhythm stability
analysis method from actigraphy data for persons with de-
mentia based on frequency domain transfer function iden-
tification and a visualization procedure with multi-harmonic
sine models. Results show that dynamic and stability analysis
of actigraphy has the potential to inform on the evolution
of circadian-related health status for persons with dementia.
Our proposed method is also compatible with multiresolution
analysis at different time scales for various rhythms. In the
next step, we aim to incorporate the anticipatory behavior
from zeros in the analysis, as well as other factors that
can affect circadian rhythms, such as medication reviews
and progression toward the end of life. Ultimately, we will
include the results of stability analysis into a classification
algorithm that accounts for measurements with traditional
scales and for systematic medication reviews, developed
around reasoning based on clinical expert knowledge.
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