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Abstract— The robustness of the stability properties of dy-
namical systems in the presence of unknown/adversarial pertur-
bations to system parameters is a desirable property. In this pa-
per, we present methods to efficiently compute and improve the
approximate stability radius of linear time-invariant systems.
We propose two methods to derive closed-form expressions of
approximate stability radius, and use these to re-design the
system matrix to increase the stability radius. Our numerical
studies show that the approximations work well and are able
to improve the robustness of the stability of the system.

I. INTRODUCTION

Stability is one of the fundamental concepts in the analysis
and design of dynamical systems. Earlier, the binary notion
of stability was studied and the focus was on determining
whether the system is stable or not. However, in practical
applications, it is crucial to assess the robustness of the
system towards maintaining stability when subjected to mod-
eling/adversarial variations in its parameters.

To address this, the notion of Stability Radius (SR) was
introduced for Linear Time-Invariant (LTI) system ẋ = Ax
in [1]. SR quantifies the minimum-norm perturbation ∆ that
a stable system can tolerate before becoming unstable, and
thus, it provides a quantitative measure of system stability.
The perturbation forms A + ∆ and A + B∆C are referred
to as unstructured and structured, respectively. In addition,
∆ may have sparsity constraints to allow only a subset of
entries to change. Further, the cases when ∆ is allowed to
be complex and real are called complex SR and real SR,
respectively. For robust system design, SR should be taken
into account while designing and deploying a system. In this
paper, we present techniques to find (analysis) and improve
(design) the SR of an LTI system.
Related Work: Several papers have studied SR since the
seminal paper [1]. Closed-form expressions of the complex
(unstructured and structured) SR problems were provided in
[1] and [2]. In contrast, the real SR problem is considerably
difficult and no closed-form solution exists [3], [4]. Bounds
on the real SR were obtained in [5], [6], and a numerical
computation formula was presented in [7]. Recently, several
papers have proposed numerical approaches for computing
the approximate SR for Frobenius norm bounded perturba-
tions for the non-sparse [8], [9] and sparse [10], [11] cases.
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A similar analysis problem has been studied in the context
of controllability [12] and observability [13].

While the analysis problem of computing the SR has
been studied extensively, not much focus has been given
to the system design problem where the goal is to modify
the system in order to improve its SR. The system design
problem is considerably more difficult since it is a bi-
level optimization problem where the computation of SR
appears in the constraints. Note that system design problems
have been studied for other problems related to dynamical
systems. For instance, the design problem is studied in the
context of consensus [14], [15], [16], controllability [17],
and smart grid design [18]. However, to the best of our
knowledge, the system design problem has not yet been
studied in the context of stability radius.

The main contributions of this paper are:
1. We present two methods to approximately compute the
SR based on linear approximation of eigenvalues. The ap-
proximations enable us to get closed-form solutions which
can be computed easily and efficiently.
2. We use the approximate SR solutions to solve the
system design problem to improve the SR. The closed-
form approximate solutions allow us to solve the otherwise
computationally intensive design problem efficiently.
3. We present numerical simulations to show that the approx-
imations work well, and that the approximated and actual SR
values are close.
Mathematical Notations: (·)r denotes the real part of a
complex number. (·)T and (·)∗ denote the transpose and
complex conjugate transpose, respectively. Tr(·) and ∥·∥
denote the trace and Frobenius norm of a matrix, respectively.
◦ denotes the Hadamard product. I denotes the identity
matrix. | · | denotes the absolute value of a scalar. j =

√
−1

denotes the unit imaginary number. α(·) denotes the spectral
abscissa (maximum of the real part of all eigenvalues). 1n

and 1n×m denote a vector and matrix of appropriate sizes
whose all elements are 1, respectively.

II. PROBLEM FORMULATION

We consider a perturbed continuous-time LTI system:

ẋ(t) = (A+B∆C)x(t), (1)

where x ∈ Rn is the state of the system, A ∈ Rn×n is
the nominal system matrix, B ∈ Rn×m and C ∈ Rp×n are
the structure matrices, and ∆ ∈ Rm×p is the perturbation
matrix. The term B∆C captures the perturbation to A, and
we denote the perturbed system as A(∆) ≜ A+B∆C.

Additionally, we impose sparsity constraints on ∆ as
follows. Let S ∈ {0, 1}m×p be a binary sparsity matrix spec-
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ifying the sparsity pattern as ∆ij =

{
∗ if Sij = 1,

0 if Sij = 0,
where ∗ ∈ R is a scalar, then the sparsity constraints are

Sc ◦∆ = 0, (2)

where Sc ≜ 1m×p−S is complement of the sparsity matrix.
The case where S = 1m×p is the non-sparse case.

Remark 1 (Perturbation structure). The perturbation A +
B∆C can result from output feedback of linear dynamical
system as: ẋ = Ax + Bu, y = Cx, u = ∆y, where
A+B∆C is the closed-loop matrix. The perturbations can
also be interpreted as attacks that modify the nominal A to
disrupt the functioning of the system. The B and C matrices
add structure to the perturbation (for instance, modifying
certain rows or columns of A). The sparsity constraints
allow us to change only certain entries of A, which is useful
in networked systems where only some edge weights are
allowed to change.

Next, we define the stability radius corresponding to
system (1), denoted by SR(A).

Definition 1 (Stability Radius).

SR(A) = min{∥∆∥ : α(A(∆)) = 0, Sc ◦∆ = 0}. (3)

■

Note that we consider ∥·∥ as the Frobenius norm through-
out this paper. Without loss of generality, we assume that
A is stable (α(A) < 0). This ensures that SR(A) is strictly
positive. SR is a measure of the resiliency of the system since
it captures the minimum-norm perturbation, which makes the
system unstable by shifting the eigenvalues of A to the right-
half plane.

We propose a System Design (SD) problem where the
system operator wishes to change matrix A to A+Bo∆oCo

in order to improve the SR. Note that Bo ∈ Rn×mo , Co ∈
Rpo×n and So ∈ Rmo×po impose structure and sparsity
constraints on how the system operator is allowed to modify
the matrix A. In contrast, B,C and S impose constraints on
“potential” perturbations to a nominal matrix and are used to
compute the SR. The benign perturbation ∆o is desired to
be small so that the modified system remains “close” to the
original system. The system design problem is formulated as

SD : min
∆o∈Rmo×po

∥∆o∥ (4)

s.t. SR(A+Bo∆oCo) ≥ ϵ (4a)
Sc
o ◦∆o = 0, (4b)

where ϵ > SR(A) is the desired increased level of SR.
The SD problem (4) is a bi-level optimization problem

since constraint (4a) involves computing the SR, which itself
is an optimization problem given in (3). Note that problem
(3) is non-convex and does not admit a closed-form solution.
Thus, computationally intensive iterative algorithms are used
to obtain the solutions [10], [11], [8]. This makes the SD
problem difficult to solve.

In order to simplify the SD problem, we propose to
approximate the SR using approximations for α(A(∆)).
Specifically, we use linear and successive-linear approxi-
mations of the spectral abscissa, denoted by αla(·) and
αsla(·), respectively. We explain these approximations later
in Section III. The corresponding approximated SR problems
are given as:

SRla(A) = min{∥∆∥ : αla(A(∆)) = 0, Sc ◦∆ = 0}, (5)
SRsla(A) = min{∥∆∥ : αsla(A(∆)) = 0, Sc ◦∆ = 0}. (6)

We later show that the above two problems admit closed-
form solutions that can be computed easily and efficiently.

For the system design problem, we propose to use the ap-
proximations SRla and SRsla in constraint (4a), and denote
the corresponding approximate system design problems as
SDla and SDsla, respectively. The approximate SR problems
are analyzed in Section III and the approximate system
design problems are addressed in Section IV.

III. APPROXIMATE STABILITY RADIUS PROBLEMS

In this section, we analyze the approximate SR problems
given in (5) and (6). Both these problems involve linear
approximation of eigenvalues, which we describe next.

A. Eigenvalue Approximation

We use the eigenvalue sensitivity analysis which dictates
how eigenvalues are modified when a matrix is perturbed. In
particular, we use the following result.

Lemma 1. (Eigenvalue Sensitivity [19]) Let λk be a simple
eigenvalue of A with corresponding left and right eigen-
vectors, yk and zk, respectively, such that y∗kzk = 1 for
k = 1, 2, · · · , n. Then, as A is perturbed to A(∆), the
sensitivity of λk with respect to parameter ∆ij is given as

∂λk

∂∆ij
= y∗k

[∂A(∆)

∂∆ij

]
zk = y∗kBEijCzk, (7)

where Eij is a matrix with (i, j)th entry as 1 and all other
entries as 0.

The above lemma requires the eigenvalues to be simple,
so we make the following assumption.

Assumption 1. All eigenvalues of A are assumed to be
simple.

Let Pk denote the sensitivity matrix corresponding to
eigenvalue λk, where [Pk]ij = y∗kBEijCzk. Based on
Lemma 1, we approximate the real part of λk as

λr
k(A+B∆C) ≈ λ̂r

k(∆) = λr
k +

m∑
i=1

p∑
j=1

[P r
k ]ij∆ij ,

⇒ λ̂r
k(∆) = λr

k + 1T
m(P r

k ◦∆)1p, (8)

where λr
k and P r

k denote the real parts of λk and Pk

respectively.

Remark 2 (Effect of normality of A on the approximations).
When A is normal, the sensitivity values in (7) are small
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[19], and as a result, the approximation provided in (8)
works well. In contrast, for non-normal matrices, the ap-
proximation error may be large. We comment on this fact
later in the simulation Section V.

B. Stability Radius via Linear Approximation

Based on the linear approximation (LA) of the eigenvalues
in (8), we re-write (5) as

SRla(A) = min{∥∆∥ : max
k=1,··· ,n

{λ̂r
k(∆) = 0, Sc◦∆ = 0}, (9)

= min
k=1,··· ,n

{∥∆∗
k∥},where

∆∗
k = argmin{∥∆∥ : λ̂r

k(∆) = 0, Sc ◦ ∆ = 0}. (10)

Thus, we solve (10) individually for each eigenvalue, and
then take the minimum-norm over these solutions to get
SRla(A). Note that problem (10) is a quadratic optimization
problem with linear equality constraint and admits a closed-
form solution that can be computed quickly.

Next, we discuss the feasibility of the SRla problem.

Lemma 2. (Feasibility) The optimization problem in (9) is
feasible if and only if S ◦P r

k ̸= 0 holds true for at least one
k ∈ {1, 2, · · · , n}.

Proof. In (10), the second equality constraint Sc ◦∆ = 0 is
equivalent to ∆ = S ◦ ∆̄, where ∆̄ is any arbitrary matrix.
Substituting ∆ in the first equality constraint in (10), we get

1T
m(P r

k ◦ S ◦ ∆̄)1p = −λr
k.

Since α(A) < 0, we have λr
k ̸= 0. Thus, a solution ∆̄ exists

for the above equation if and only if S ◦P r
k ̸= 0. The result

then follows from (9). ■
Note that the condition S ◦ P r

k = 0 implies that under
Sc ◦ ∆ = 0, the term 1T

m(P r
k ◦ ∆)1p = 0. Therefore, the

kth eigenvalue of A cannot be shifted by the perturbation
with the given sparsity constraints. If this holds true for
all eigenvalues, then none of the eigenvalues of A can be
perturbed, and SRla(A) = ∞.

Example 1. Consider A =

[
−1 0.5
−2 0.2

]
, B =

[
0 1
0 1

]
,

C =

[
0.4 1
1 1

]
and S =

[
1 1
0 0

]
. Here, λ = −0.4 ± 0.8j,

P r
1 = P r

2 =

[
0 0
0.7 1

]
. Thus, S ◦ P r

1 = S ◦ P r
2 = 0. Hence,

the feasibility condition is violated for both the eigenvalues.

Next, instead of solving problem (9) directly, we present
the following equivalent alternate reformulation given as

∥∆∗
k∥ = {β : SAk(β) = 0}, where (11)

SAk(β) = max
∆

λr
k + 1T

m(P r
k ◦∆)1p (12)

s.t ∥∆∥ ≤ β (12a)
Sc ◦∆ = 0. (12b)

The next subsection will also require this reformulation for
computing αsla(·). Note that in both problems (9) and (11),

we compute α(A(∆)) and determine the minimum-norm
perturbation that shifts it to the unstable region. Hence, the
solutions to these two problems are identical.

Problem (12) is convex with linear cost and quadratic and
linear constraints. Next, we present its closed-form solution.

Theorem 1. Let the feasibility condition in Lemma 2 hold
true, and define K = {k : S ◦ P r

k ̸= 0}. Then, the solution
of the optimization problem (11) is given by

∆∗
k = −λr

k(S ◦ P r
k )

∥S ◦ P r
k ∥2

, k ∈ K. (13)

Further, we have

SRla(A) = min
k∈K

{
−λr

k

∥S ◦ P r
k ∥

}
. (14)

Proof. We first solve optimization problem (12) for k ∈
K using the first-order KKT conditions. Using ∥A∥2 =
Tr(ATA), (12a) can be rewritten as

∥∆∥ ≤ β ⇔ Tr(∆T∆) ≤ β2.

Let l ≤ 0 and M ∈ Rm×p be the Lagrangian multipliers
associated with constraints (12a) and (12b), respectively. The
Lagrangian function is given by

L = λ̂r
k(∆) + l(∥∆∥ − β) + 1T

m(M ◦ Sc ◦∆)1p,

= λr
k + Tr(P r

k
T∆) + l (Tr(∆T∆)− β2) + Tr((M ◦ Sc)T∆),

where we use the property 1T
m(A ◦ B)1p = Tr(ATB).

Differentiating L w.r.t. ∆ and equating to 0, we get
∂L
∂∆

= P r
k + 2l∆+M ◦ Sc = 0. (15)

Taking the Hadamard product of (15) with Sc, using (2) and
Sc ◦ Sc = Sc, we get

Sc ◦ P r
k + 2l(Sc ◦∆) + Sc ◦M ◦ Sc = 0,

⇒M ◦ Sc = −Sc ◦ P r
k .

Substituting the above expression in (15) and using S =
1m×p − Sc, we get

1m×p ◦ P r
k + 2l∆− Sc ◦ P r

k = 0,

⇒ 2l∆ = −S ◦ P r
k . (16)

Since S ◦P r
k ̸= 0 for k ∈ K, (16) implies that l ̸= 0, we get

∆ = −(S ◦ P r
k )/2l. (17)

By complementary slackness, l ̸= 0 implies that constraint
(12a) is active. Substituting ∆ obtained in (17) in the active
constraint ∥∆∥ = β, we get

l = −∥S ◦ P r
k ∥/2β. (Since, l ≤ 0 from dual feasibility)

Next, substituting l in (17), we get the solution to (12) as:

∆k =
β(S ◦ P r

k )

∥S ◦ P r
k ∥

, (18)

and SAk(β) = λr
k+β∥S◦P r

k ∥. Since Problem (12) is convex,
any solution satisfying the first-order KKT conditions is a
global minimum. Next, we solve the equality in (11) to get
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∥∆∗
k∥ = β∗ = − λr

k

∥S ◦ P r
k ∥

, (19)

and substitute β∗ in (18) to get (13), ∆∗
k = −λr

k(S◦P r
k )

∥S◦P r
k ∥2 . The

result (14) then follows from (10). ■
Result (19) implies that SRla is dependent on the ratio

λr
k/∥S ◦ P r

k ∥. Thus, a system with eigenvalues of large
magnitude and corresponding small sensitivities requires
large perturbation to shift.

Our approach of linear approximation of eigenvalues
works well if the perturbations are small. Intuitively, if
SRla(A) is small, then we expect the approximation to
work well and SRla(A) to be close to SR(A). However,
when SRla(A) is large, the linear approximation may not
be precise. To address this issue, we propose a successive-
linear approximation (SLA) approach next.

C. Stability Radius via Successive-Linear Approximations

As mentioned before, we expect the linear approximation
to work well if the perturbations are small. Motivated by
this, we propose to decompose the perturbation ∆ as

∆ = ∆(1) +∆(2) + · · ·+∆(J), (20)

and ensure that each perturbation is small, that is, ∥∆(j)∥ ≤
β << 1. We compute the optimal value of ∆(j) (denoted by
∆(j,∗)) in a successive/iterative manner and this results in a
successive approximation of the spectral abscissa.

Let Aj−1 ≜ A0 + B∆(1,∗)C + · · · + B∆(j−1,∗)C with
A0 ≜ A. Next, we explain the steps to obtain ∆(j,∗).

1. Solve problem (12) with the eigenvalues and sensitivity
matrices of Aj−1 and denote the optimal solution by ∆

(j,∗)
k .

2. Compute

∆(j,∗) = argmax
k=1,··· ,n

{α(Aj−1 +B∆
(j,∗)
k C)}. (21)

3. Update Aj = Aj−1 +B∆(j,∗)C.
4. Repeat the above steps until α(Aj) < 0.
Let J denote the number of iterations of the above

algorithm. Then,

SRsla(A) = ∥∆(1,∗) +∆(2,∗) + · · ·+∆(J,∗)∥. (22)

Algorithm 1 SR via successive-linear approximations
Require: A,B,C, S, β

Output: SRsla(A)
while α(Aj) < 0 do ▷ α(Aj) > 0⇒ unstable region

for k = 1, · · · , n do
Pk ← (7) ▷ sensitivity matrix of λk

∆
(j,∗)
k ← (18)

end for
∆(j,∗) ← (21)
Aj = Aj−1 +B∆(j,∗)C

end while

Several remarks are in order for Algorithm 1. First, note
that although computation of SRsla(A) is an iterative pro-
cedure, in each iteration, we use the closed-form expression
given in (18). Thus, the overall computation time is small.

Second, the algorithm is greedy in nature since at each
iteration in (21) we pick a perturbation that corresponds
to the largest spectral abscissa. Third, since we are using
the eigenvalue sensitivity result given in Lemma 1, our
approach requires that all eigenvalues of Aj are simple
in each iteration. Fourth, we conjecture that the SRsla(A)
is a better approximation than SRla(A) since the former
involves several small perturbations as compared to a single
but potentially large perturbation in the latter. Our conjecture
is supported by simulations presented in Section V.

Remark 3 (Implementation details of Algorithm 1). Each
iteration of Algorithm 1 involves solving Problem 12 for
Aj . This requires Problem 12 to be feasible as per the
condition provided in Lemma 2. If this feasibility condition
is violated, we slightly perturb Aj randomly such that the
problem becomes feasible and continue thereafter.

Also, for Algorithm 1 to terminate, we require that
α(Aj) > α(Aj−1) holds true at each iteration. However,
since Aj is computed based on the linear approximation of
eigenvalues, this condition might be violated. In this case,
then we repeat the iteration with a slightly higher value of β
such that α(Aj) > α(Aj−1) holds, and continue thereafter.

Remark 4 (Comparison of LA and SLA based approaches).
The SLA-based approach to compute SRsla is more accurate
than the LA-based approach to compute SRla. However, the
former is iterative in nature, and therefore, requires more
computational time as compared to the latter (details are
presented in Section V). Thus, depending on the accuracy
requirements and computational resources, one can select
one of these two approaches.

Remark 5 (Approximate solutions can aid other SR al-
gorithms). The approximate solutions provided by our al-
gorithms can serve as a good initializing point for the
iterative algorithms proposed earlier [4], [10], [11] for the
SR problem. This can considerably reduce the execution time
of these algorithms. We defer the demonstration of this as a
future work.

IV. SYSTEM DESIGN PROBLEMS

In this section, we study the system design problem
mentioned in (4). We wish to find a benign perturbation
∆o added by the operator that improves the stability radius
of the system. In problem (4), the constraint (4a) involves
computation of SR(A + Bo∆oCo). As mentioned earlier,
computation of the actual stability radius is computationally
difficult and requires an iterative procedure. Hence, we use
the approximated SR - SRla(A) and SRsla(A) presented in
Section III to approximate (4a) in the system design problem.

A. System Design via Linear Approximation

We replace SR(·) by SRla(·) in constraint (4a) to get

min
∆o∈Rmo×po

∥∆o∥ (23)

s.t. SRla(A+Bo∆oCo) ≥ ϵ (23a)
Sc
o ◦∆o = 0. (23b)
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Next, we focus on the term SRla(A + Bo∆oCo). Note
that in the SRla problem, the optimal solution ∆∗

k in (10)
corresponds to matrix A, where λk and Pk are eigenvalue
and sensitivity matrix of A. Similarly, let us denote the
corresponding optimal solution for the matrix A+Bo∆oCo

as ∆∗
k,o. Then, by (10), we have

SRla(A+Bo∆oCo) = min
k=1,··· ,n

{∥∆∗
k,o∥}. (24)

Using (24), we reformulate Problem (23) as:

SDla : min
∆o∈Rmo×po

∥∆o∥ (25)

s.t. ∥∆∗
1,o∥ ≥ ϵ, ∥∆∗

2,o∥ ≥ ϵ, · · · , ∥∆∗
n,o∥ ≥ ϵ

Sc
o ◦∆o = 0.

Thus, the single constraint in (24) which involves a min(·)
function is converted into multiple constraints, since the
min(·) function can be non-smooth and can cause numerical
difficulties while solving the optimization problem.

Several comments are in order. First, SDla is not a bi-level
optimization problem since ∆∗

k,o in the inequality constraints
admit a closed-form solution. Thus, it is computationally
tractable. Second, the terms ∆∗

k,o depend on ∆o since
their computation depends on the eigenvalues and sensitivity
matrices of A + Bo∆oCo. This dependence makes SDla a
non-convex problem and may have multiple local minima.
Third, we solve the SDla problem using numerical solvers.
More details are presented in Section V.

B. System Design via Successive-Linear Approximations

As mentioned earlier, SRsla gives a better approximation
of stability radius as compared to SRla. Therefore, we now
replace SR(·) by SRsla(·) in (4) to get

SDsla: min
∆o∈Rmo×po

∥∆o∥ (26)

s.t. SRsla(A+Bo∆oCo) ≥ ϵ (26a)
Sc
o ◦∆o = 0. (26b)

We use (22) to compute SRsla(·) in constraint (26a) suc-
cessively. Further, similar to SDla problem, SDsla problem
is also non-convex and is solved using numerical solvers.
More details are presented in Section V.

V. NUMERICAL SIMULATIONS

In this section, we present numerical simulation results of
our algorithms. We perform the simulations using MATLAB
R2023a. We first consider the spectral abscissa and SR
problems, and later the system design (SD) problems.

A. Approximations of Spectral Abscissa and SR

Our SR algorithms rely crucially on approximations of the
spectral abscissa. Thus, we first analyse the quality of these
approximations. Recall that α(·), αla(·) and αsla(·) denote
the spectral abscissas without approximation, with linear
approximation and with successive-linear approximations,

respectively. For a given norm bound γ, we compute the
spectral abscissas by solving the following problems

α(γ) = max
∆

{α(A(∆)) : ∥∆∥ ≤ γ, Sc ◦∆ = 0}, (27)

αla(γ) = max
∆

{αla(A(∆)) : ∥∆∥ ≤ γ, Sc ◦∆ = 0}, (28)

αsla(γ) = max
∆

{αsla(A(∆)) :∥∆∥ ≤ γ, Sc◦∆ = 0}. (29)

We solve Problem (27) by performing an exhaustive grid
search over the set of perturbations that satisfy the constraints
in (27). Problem (28) it equivalent to Problem (12) for the
kth eigenvalue. Thus, we have αla(γ) = max

k=1,··· ,n
{SAk(γ)}.

The computation of αsla(γ) in (29) is done in a successive
manner similar to Algorithm 1. The difference is that we run
the algorithm until ∥∆(1,∗)+∆(2,∗)+· · ·+∆(j,∗)∥ ≤ γ is not
violated (see (20)). Let Jγ denote the iteration number until
the above condition is not violated. Then, we get αsla(γ) =
α(A+B(∆(1,∗) +∆(2,∗) + · · ·+∆(Jγ ,∗))C).

We define the approximation errors of the spectral abscis-
sas as ela(γ) = |α(γ) − αla(γ)| and esla(γ) = |α(γ) −
αsla(γ)|. Further, we use the following non-normality mea-
sure (normality gap [20]) of a matrix A : NG(A) =
∥ATA − AAT ∥. To begin, we consider two cases given in
Table I, one with a normal A and the other with a non-normal
A.

TABLE I: System specifications (A,B,C) for numerical examples

Case NG(A) A B C

Case I
Normal 0

−1.2 −0.3 −1
−0.3 −1.4 −1
−1 −1 −1.3

 0.4 0.1
0.2 0.3
0.4 0.1

 [
0.7 0.3 0.3
0.1 0.3 0.6

]

Case II
Non-normal 148.29

−3 −4 −7
−1 −9 −6
−1 −1 −9

 1.3 1
1 0.7
0.5 1.4

 [
1 0.8 1.3
1.5 1.8 0.8

]

Note: S = I for both cases
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(a) Case I: A is normal
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(b) Case II: A is non-normal

Fig. 1: Variation of spectral abscissas as a function of γ.

Figure 1 shows the plots of α(γ), αla(γ) and αsla(γ)
for the above two cases. For Case I in Figure 1a, we
observe that αla(γ) and αsla(γ) overlap with α(γ) for all
values of γ. This is because A is normal, and hence, the
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eigenvalue sensitivities are small (∥P r
1 ∥ = 0.6063, ∥P r

2 ∥ =
0.0666, ∥P r

3 ∥ = 0.0399). Thus, the approximations work
well. On the other hand, for Case II in Figure 1b, we observe
differences between αla(γ), αsla(γ) and α(γ), especially
for large values of β. This is because A is non-normal,
and hence, the eigenvalue sensitivities are large (∥P r

1 ∥ =
8.3881, ∥P r

2 ∥ = 0.7848, ∥P r
3 ∥ = 1.9765). However, we

observe that αsla(γ) provides a better approximation than
αla(γ). Further, as γ increases, spectral abscissas increase
because as the perturbation norm increases, the eigenvalue
spectrum increases, hence, the spectral abscissas increase.
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0
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Approximation 

Errors

Fig. 2: Variation of approximation errors ela and esla as a function of
normality gap NG for 200 random triplets (A,B,C).

Next, we perform a similar comparison for a set of 200
random triplet of matrices (A,B,C) with n = 5,m = 2
and p = 2, S = I and γ = 10. For each triplet, we
compute normality gap NG(A) and approximation errors
ela(γ) and esla(γ). Figure 2 shows that the errors esla(γ)
are considerably smaller than ela(γ), implying that the
successive-linear approximation performs better than the
linear approximation. Further, ela(γ) is larger for higher
values of the normality gap, whereas esla(γ) remains small.
This shows that the SLA-based algorithm is more suited for
non-normal problems.

These results provide an empirical evidence that our
approximation-based approaches are well suited for approx-
imate stability radius and system design problems.

Next, we use our algorithms to compute SRla and SRsla

for a subset of test problems in the COMPleib [21]. This
library contains test problems for LTI control systems and
A,B,C matrices are specified for each problem. However,
the sparsity pattern is not specified for any of the test
problems in the library. For some problems, we define the
sparsity pattern and mark (S) against those in Table II. We
compare SRla and SRsla with the SR values (computed
using gradient based method in [10]) in Table II. We denote
the computation time (measured in seconds) for computa-
tion of SRla and SRsla as τla and τsla, respectively. We
observe that the approximation-based algorithms work well
in approximating the SR. Also, the SLA-based algorithm
performs better than LA-based algorithm for the majority of
systems. However, the former has a larger computation time
since it is iterative in nature (c.f. Remark 4).

B. System Design Problem

In this subsection, we present numerical results for the
system design problems SDla and SDsla given in (25) and

TABLE II: SR values for different test problems

Test Problem n SR SRla SRsla τla τsla
Case I [10] 4 0.5159 0.5218 0.5140 0.0030 0.0959
Case II [10] 4 0.5653 0.6110 0.5694 0.0035 0.0929

HF2D12 5 1.4912 1.5371 1.3921 0.0017 0.1591
HF2D13 (S) 5 0.0424 0.0421 0.0422 0.0057 0.0274

TG1 10 0.0673 0.0642 0.0661 0.0014 0.0022
AGS 12 0.0688 0.0624 0.0719 0.0022 0.534

WEC2 (S) 10 0.0435 0.0420 0.0430 0.0035 0.0454
WEC3 10 0.5534 0.5221 0.5410 0.0052 0.0237
BDT1 11 0.0515 0.051 0.0514 0.0030 0.0099
MFP 4 0.7986 0.8123 0.8011 0.0020 0.1211
UWV 8 0.127 0.132 0.1239 0.0031 0.0123
EB1 10 0.0201 0.0205 0.0200 0.0137 0.1249

PSM (S) 7 0.4432 0.3508 0.4190 0.0198 0.4074
CDP (S) 120 0.0073 0.0071 0.0074 0.0649 0.3550

Note: Specified sparsity patterns specified are: S(HF2D13) =
[
1 0 1 0
0 1 0 1

]
,

S(WEC2) =

1 0 1 0
0 1 0 1
1 0 0 1

 , S(PSM) =
[
1 0 1
0 1 0

]
, S(CDP) = I.

(26). We use the MATLAB function fmincon to solve these
problems. In each iteration of fmincon, we use the closed-
form expressions of SRla and SRsla.

We first consider Case I and Case II, which are presented
in the previous subsection. We pick Bo, Co, So same as
B,C, S and solve SDla and SDsla for different values of ϵ.
We denote the optimal solutions of SDla and SDsla as ∆∗

o,la

and ∆∗
o,sla, respectively. Figure 3a for Case I shows that the

optimal perturbation norms ∥∆∗
o,la∥ and ∥∆∗

o,sla∥ are very
close for all values of ϵ. This is again due to the fact that A is
normal. Further, as ϵ increases, the optimal norms increase.
This is because larger-norm perturbations to the system are
required to achieve a larger value of SR. Further, Figure 3b
verifies that the SR of the optimally perturbed system indeed
matches with the desired SR value ϵ.
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Fig. 3: Variation of (a) ∥∆∗
o∥, and (b) SR as a function of ϵ for Case I.

The corresponding plots for Case II are presented in Figure
4. In contrast to Case I, we observe some difference between
the optimal solutions ∆∗

o,la and ∆∗
o,sla for large values of ϵ in

Figure 4a. Again, this is due to the fact that A is non-normal
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in this case. In Figure 4b, we observe that the modified
system achieves the desired value of SR.
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Fig. 4: Variation of (a) ∥∆∗
o∥, and (b) SR as a function of ϵ for Case II.

Next, we consider the SDla and SDsla problems for the
test problems given in Table III. For each system, we pick
Bo, Co, So same as B,C, S and set ϵ = 1.2SR(A) (that is,
we aim to increase the SR by 20%). Table III provides the
norms of the optimal solutions. We denote the computation
time (measured in seconds) for SDla and SDsla as τo,la and
τo,sla, respectively. We observe that ∥∆∗

o,la∥ and ∥∆∗
o,sla∥

are close for majority of problems and ∥∆∗
o,la∥ ≥ ∥∆∗

o,sla∥
for all the cases. Further, τo,la < τo,sla for each problem
as computation of SR in SDsla involves successive-linear
approximations.

These results demonstrate that our approximated SR
methods are useful for designing sparse and non-sparse
systems with improved stability properties.

TABLE III: ||∆∗
o|| for different test problems

Test Problem ∥∆∗
o,la∥ ∥∆∗

o,sla∥ τo,la τo,sla
Case I [10] 0.045 0.043 0.689 21.939
Case II [10] 0.4147 0.3631 10.23 23.025

HF2D12 0.1657 0.1649 20.74 22.1
HF2D13 (S) 0.0502 0.0467 0.6105 2.0420

TG1 0.0577 0.0520 1.591 3.579
AGS 0.1413 0.1141 5.472 31.27

WEC2 (S) 0.1015 0.1008 0.0426 1.5758
WEC3 0.5866 0.5721 12.31 77.60
BDT1 0.0033 0.0030 12.309 75.289
MFP 1.8646 1.5145 1.689 6.014
UWV 0.0944 0.0942 0.5410 4.141
EB1 0.0036 0.0034 0.4773 4.898

PSM (S) 0.4488 0.5078 1.9464 21.0752
CDP (S) 1.6542 1.5195 3.5064 153.42

VI. CONCLUSION

We propose approximated SR formulations based on
eigenvalue sensitivity via linear and successive-linear ap-
proximations. We study these problems with sparsity con-
straints on perturbations and derive closed-form solutions.

These results are used to develop an efficient framework to
improve the stability radius. Future works include proposing
a relaxed convex version of the design problem to solve it
efficiently and easily. Also, we aim to extend our analysis
for other system properties, like controllability, observability,
detectability, etc., to design a system with improved charac-
teristics.
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